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Transportation networks have a hierarchical structure, and the spatial scale of their impact

on urban growth differs depending on the hierarchy. However, in empirical analyses of the

impacts that transportation has on land use and prices, such hierarchy is often examined

using dummy variables, and the network dependence and heterogeneity of impacts are

often ignored. Thus, this study develops a spatial regression method that considers

not only spatial dependence, but also network dependence within a hierarchical

transportation network. This method was developed by extending the random effects

eigenvector spatial filtering approach. Subsequently, it was applied to a pre-existing

analysis that focused on the impacts that high-speed rail (HSR) had on residential land

prices in Japan over the last 30 years. The results of the analysis suggested that HSR

lines had hierarchical effects on residential land prices. The results also provide interesting

insight into the ongoing problem of Japanese urban hierarchy; that is, the excessive

concentration of population and industry in the Tokyo metropolitan area.

Keywords: high-speed rail, network dependence, spatial regression, Moran eigenvectors, land prices, urban form

INTRODUCTION

Transportation networks are hierarchical. For example, a road network consists of expressways,
national roads, prefectural roads, municipal roads, and others. The commuter rail network has
major stations where rapid transit services are available and other stations where it is not. Such
hierarchical transportation networks have heterogeneous impacts on urban structures, which is
evidenced in the vast amounts of existing research regarding the interactions between land use and
transportation (e.g., Newman and Kenworthy, 1996; Stanley, 2014).

High-speed rail (HSR) is one of the most influential transportation systems within urban
structures in Japan (Takami and Hatoyama, 2008), China (Chen and Hall, 2011), and Europe (e.g.,
Garmendia et al., 2012). The presence of HSR causes a concentration of economic activities around
stations and creates hierarchies within the urban network (Jiao et al., 2017). For example, Albalate
and Bel (2012) suggested that Japanese HSR encouraged rapid growth in major cities, such as in
Tokyo andOsaka, leading to a concentrated urban hierarchy. Similar results were obtained in Spain
(Garmendia et al., 2012) and China (Jiao et al., 2017). Contrastingly, the HSR in France was found
to encourage rapid growth in minor cities and create a dispersed hierarchy in the city network
(Cervero and Bernick, 1996).
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Moreover, HSR typically has rapid trains that only stop at
major stations, and local trains that stop at every station. Such
a hierarchy within the HSR network may create an urban
hierarchy. However, in empirical analyses, such a hierarchy in
transportation networks is often solely considered through the
use of dummy variables that indicate differences in services,
whilst ignoring network dependence.

To quantify the hierarchical impacts of HSR on urban
growth, this study develops a spatial regression method that
considers (i) network dependence, (ii) city-wise heterogeneity
in each hierarchy, and (iii) spatial dependence (decaying with
respect to Euclidean distance) by extending the random effects
eigenvector spatial filtering (RE-ESF) approach (Griffith, 2003;
Murakami and Griffith, 2015). Although it is typical to use spatial
econometric models to consider spatial dependences (Anselin
and Griffith, 1988; LeSage and Pace, 2009; Yamagata and Seya,
2019), the RE-ESF framework is flexible and can easily be applied
to models for transportation research, as Yu et al. (2020) showed
and as we will show later.

The number of studies considering network dependence
is relatively limited. Cressie et al. (2006) and Garreta et al.
(2010) considered network dependence on river networks, and
Lu et al. (2017) and Ver Hoef (2018) considered dependence
through road networks. Yet, these studies utilize either network
dependence alone or compared Euclidean and network distances,
then merely choosing the model with better accuracy. In the
case of land prices, however, while there is spatial dependence,
they may also be affected by network dependence and station-
wise heterogeneity. Moreover, these variables can affect multiple
hierarchies in the city network, as explained above. Based on our
literature review, no regression studies simultaneously consider
variables (i)–(iii).

This study analyzes the impact that HSR development has
on land prices in Japan. Since 1964 when Japan’s first HSR, the
Shinkansen, first opened, major cities have been connected by the
HSR network and urbanization has accelerated along rail lines. As
discussed by Seya and Timmermans (2018), a properly executed
transportation project may improve the land accessibility. An
improvement in accessibility may be reflected in both the price
of land and the concentration of development. Typically, the
effect of transport on land use and development can take a
relatively long time to observe, whereas the effect of transport on
property values can occur sooner (Stokenberga, 2014). Existing
studies have attempted to examine both the former and the
latter. The results of the analysis, as explained below, indicate
that both spatial dependence and HSR network dependence
influence residential land prices. This suggests the importance
of considering network dependence when analyzing interactions
between land use and transport. We also observed a hierarchical
pattern in which both major and minor cities were affected by
network dependence. However, the former was further affected
by another global network dependence.

The subsequent sections are organized as follows: Section
methodology explains the method employed, section empirical
analysis applies this method to an analysis that evaluates the
influence that HSR has on urbanization in Japan, and section
concluding remarks states the conclusions from this study.

FIGURE 1 | Median residential land price per area (1976–2014).

FIGURE 2 | Spatial distribution of the residential land price per area (2000).

METHODOLOGY

Data Model
This study assumes the following model for the land price yi at
the i-th location:

log
(

yi
)

=

K
∑

k=1

xi,kβk+si+

M
∑

m=1

zi,m+εi, εi ∼ N
(

0, σ 2
)

, (1)

where xi,k denotes the k-th explanatory variable, βk is the
regression coefficient, si denotes (iii) spatially dependent process,
and zi,m denotes influence from the m-th HSR network
characterized by (i) and (ii). εi represents data noise with variance
σ 2. Following land price modeling studies (e.g., Tsutsumi and
Seya, 2009; Kunimi and Seya, 2021), land price has been log-
transformed.

This study considers M transportation networks, each of
which has the same network structure but different set of
stations/nodes; the m-th network has the stations/nodes that the
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FIGURE 3 | Study area and the high-speed rail network. The major stations and other stations are shown in the right panel while the number of passengers is shown

in the left. In the right panel, route names are surrounded by black border while station names are not. The major stations are considered as the nodes of the global

network while all the stations are considered as the nodes of the local network.

TABLE 1 | Summary of the high-speed rail lines.

Name Line Year of opening Daily mean number of passengers (2000)a

Tokaido-Sanyo Shinkansen Tokyo-Hakata 1964 (Tokyo-Osaka)

1972 (Osaka-Hakata)

617,745

Tohohoku Shinkansen Tokyo-Aomori 1982 (Tokyo-Morioka)

2002 (Morioka-Hachinohe)

2010 (Hachinohe-Aomori)

237,792

Joetsu Shinkansen Tokyo-Niigata 1982 107,386

Hokuriku Shinkansen Tokyo-Nagano 1997 32,931

Although Hokuriku and Tokaido Shinkansen lines are extended after 2015, they are not shown here because our target period is until 2014.
aTransport Policy Research Organization, Japan (2020).

m-th class train stops1. Later, we analyze the impact of the rapid
and local HSR networks on urban hierarchy, assuming M = 2.
The influence from them-th network zi,m is modeled as follows:

zi,m=wi,I(m)

(

bm + nI(m)+n∗I(m)

)

. (2)

The nearest station from the i-th location in the m-th network is
indexed by I(m). nI(m) models (i) the dependence through them-
th network, and n∗

I(m)
models (ii) the station-wise heterogeneity.

While nI(m) and n∗
I(m)

are stochastic processes defined by the

network, they are assumed to influence the land price nearby
the I(m)-th station (i.e., spill-over from the station). While the
expectations of these processes are assumed to be zero, the bm
parameter estimates the mean increase of the logged land price at
each station owing the m-th transport network. wi,I determines

1The M networks can also be defined by different transportation networks (e.g.,

bus and railway networks).

the strength of the influence that the i-th location receives from
the nearest station I(m). It is specified as follows:

wi,I(m) = exp

(

−
di,I(m)

RI(m)

)

, (3)

where di,I(m) is the Euclidian distance between the i-th location
and the I(m)-th station. RI(m) represents the distance that the
spatial spillover extends from the I(m)-th station. This study
parameterizes it as RI(m) = RmAI(m) where Rm is a range
parameter and AI(m) is a multiplier adjusting the range according
to the scale of the I(m)-th station. Later, it is given by the square
root of the number of passengers at the station.

In short, Equation (1) models logged land price using
explanatory variables {xi,1, . . . , xi,K}, (iii) spatial dependent
effects si, (i) dependent and (ii) heterogenous effects induced by
the M transportation networks {nI(1),. . .,nI(M), n

∗
I(1), . . . , n

∗
I(M)

},

and noise εi. Since si, nI(m), and n∗
I(m)

can be collinear each other,

these effects must be identified and analyzed carefully.
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TABLE 2 | Summary of models.

Name Description Spatial dependence (si) Global-level effects (zi,1) Local-level effects (zi,2)

LM Basic log-linear regression model

SM Spatial regression model (RE-ESF) ×

SM_G SM + Global-level effects × ×

SM_L SM + Local-level effects × ×

SM_GL SM + Global and local-level effects × × ×

SM is a standard spatial regression model while SM_G, SM_L, and SM_GL are spatial regression models considering network effects. “×” is used to indicate the models considering

each property.

Process Model
Spatially Dependent Process si
Moran coefficient (MC; Griffith, 2000) is a diagnostic statistic
of spatial dependence. The MC value for a vector y is defined
as follows:

MC
[

y
]

=
N

1′C1

y
′
MCMy

y
′
My

, (4)

where C is a symmetric spatial proximity matrix with zero
diagonals. M = I − 11′/N is a centering matrix where I is an
identity matrix 1 is a vector of ones. In the absence of spatial
dependence in y, the expectation of MC

[

y
]

equals − 1
N−1 ≈ 0.

If N is sufficiently large, MC
[

y
]

> 0 if y is positively dependent
whileMC

[

y
]

< 0 if it is negatively dependent.
It is known that theMC of the p-th eigenvector ep of theMCM

matrix yields (Griffith, 2003).

MC
[

ep
]

=
N

1′C1
λp. (5)

Equation (5) suggests that ep has a positively dependent map
pattern if λp > 0 while the opposite is true if λp < 0. In
other words, the P eigenvectors e1, . . . , eP corresponding positive
eigenvalues {λ1, . . . , λP} explains positive spatial dependence.
Thus, the P eigenvectors are sufficient for modeling positively
dependent spatial processes, which is predominant in most real-
world cases.

Using the P eigenvectors, RE-ESF models positively
dependent spatial process as follows:

si=

P
∑

p=1

ei,pγp, γp ∼ N
(

0, τ 2λα
p

)

, (6)

where ei,p is the i-th element of ep and τ 2 denotes the variance
of the process (e.g., τ 2 = 0 means no spatially dependent
variation). The α parameter determines the scale or theMC value
of the process. Specifically, the expectation of I [s] where s =

[s1,. . .,sN]
′ approaches the theoretical maxima, which implies the

largest-scale map pattern, as α → ∞, while the expectation
approaches zero, which implies the smallest-scale map pattern, as
α → −∞. Thus, Equation (6) attempts to estimate the structure
of the underlying process through the τ 2 and α parameters (see
Murakami and Griffith, 2021).

Network Dependent Process nI(m)

Equation (6) is readily extended to model dependence among
stations through them-th network as follows:

nI(m)=

Qm
∑

qm=1

eI(m),qmγqm , γqm ∼ N
(

0, τ 2mλαm
qm

)

, (7)

where eI(m) = [eI(m),1, . . . , eI(m),Qm
]′, and λqm are the qm-

th eigen-pair corresponding positive eigenvalue extracted from
a doubly centered proximity matrix MmCmMm on the m-th
network. The (I(m), J(m))-th element of the Cm matrix may be
defined by a function decaying with respect to the shortest-path
distance, travel time, or other distances between the stations I(m)
and J(m). The parameters τ 2m and αm estimate the variance and
scale of the dependent process upon the network.While Equation
(7) models a dependence on the m-th network, it influences on
the land prices nearby the I(m)-th station though a spillover, that
decays with respect to wi,I(m), as previously explained.

Station-Wise Heterogenous Process n∗

I(m)
The following station-wise random intercept is assumed for n∗

I(m)
:

n∗I(m)∼N
(

0, v2m
)

, (8)

where v2m is a variance parameter. The random intercepts take
uniformly zero values when v2m = 0, while the intercepts have
large variation across stations when v2m is large. In general,
consideration of such a group effect is crucial to avoid estimation
bias attributed to the heterogeneity by groups (ecological fallacy;
see Piantadosi et al., 1988).

Summary
By substituting the process models (6–8) into Equation (1), our
model is written as follows:

log
(

yi
)

=

K
∑

k=1

xi,kβk+

P
∑

p=1

ei,pγp+wi,I(m)bm

+

M
∑

m=1

Qm
∑

qm=1

(

wi,I(m)eI(m),qm

)

γqm+

M
∑

m=1

wi,In
∗
I(m) + εi,

εi ∼ N
(

0, σ 2
)

(9)

γp ∼ N
(

0, τ 2λα
p

)

, γqm ∼ N
(

0, τ 2mλαm
qm

)

,

n∗I(m)∼N
(

0, v2m
)

.
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FIGURE 4 | BIC differences between SM and {SM_G, SM_L, SM_GL}. A larger negative value means better model accuracy relative to SM.

Equation (9) is a mixed effects model with random
coefficients {γp, γqm , n

∗
I } regularized by the variance parameters

{τ 2,α, τ 21 , . . . , τ
2
M ,α1, . . . ,αM , v21, . . . , , v

2
M}. While the model

estimation can be slow for large samples because of the need
to optimize the 2 + 3M variance parameters, Murakami and
Griffith (2019) developed a fast restricted maximum likelihood
(REML) method to estimate a spatial mixed effects model (see
Murakami et al., 2020) including Equation (9). The model is
estimated using the REML. Since the original fast REML does
not assume the Rm parameter in wi,I(m), it is optimized though
a grid search (grid size: 1 km) in the subsequent empirical part.
Therefore, the fast REML is iterated while varying the r value,
and the value maximizing the restricted likelihood is adopted.

EMPIRICAL ANALYSIS

Outline
This section applies the developed model to the HSR to examine
the HSR’s effects on urbanization between 1984 and 2014 through
land price analysis. The study area included the main island of
Japan (Honshu) and the Kyushu region where the HSR runs.
The explained variable is the logged officially assessed residential
land price per area [JPY/m2] (source: National Land Numerical
Information download service (NLNI); https://nlftp.mlit.go.jp/
ksj/). The yearly sample size ranged between 26,264 (1984) and
45,008 (1998). In this study, the static model is estimated on an
annual basis (i.e., for each cross-section).

Figures 1, 2 display the temporal and spatial distributions of
the land prices. As shown in Figure 1, the median land price
peaked in 1991 when Japan was in a bubble economy, which
lasted from 1986 until 1991. After that, the economy stagnated
and land price began a gradual decline. This was especially true
around major urban areas, including the Tokyo metropolitan
area (see Figure 2).

As shown in Figure 3, theHSR stretches outwards fromTokyo
in every direction. Among the HSR lines summarized in Table 1,
the Tokaido-Sanyo Shiknansen, which connects Tokyo and
Hakata through Nagoya, Kyoto, and Osaka with the maximum
speed of 275–300 km/h, is the busiest line. This line is thought

to have had a huge impact on urban growth. The other lines
which connect Tokyo to other major cities havemaximum speeds
between 240 and 320 km/h.2

Each of these lines have rapid trains that only stop at
major stations. This is indicated by red circles in Figure 3

(left). However, local trains stop at every station. In other
words, Japanese HSR has a global-level HSR network, whose
proximity matrix C1 is defined by the distance among the major
stations that the rapid trains stop, and a local-level network
with proximity matrix C2 being defined by the network distance
among all the HSR stations. The (I(m), J(m))-th element of

the Cm matrix is given by exp
(

−
dI(m),J(m)

rm

)

where the distance

dI(m),J(m) between stations is given using the shortest travel time,
which is defined as (network distance) × (the maximum speed).
The rm value is given by the longest distance between two
adjacent stations/nodes in the M-th network3. The rm value acts
as a prior for the scale of the network dependence, and the scale
is adjusted to fit the data by estimating the αm parameter as
explained in section summary.

Regarding AI(m), to determine the range of the spillover
from the I(m)-th station (see Equation 3), the square-root
of the average number of daily passengers in 2013 (source:
NLNI) is used4. The resulting range is RI(m) = RmAI(m),
wherein the spillover becomes larger for stations with more
passengers. The Rm parameter is estimated by maximizing the
restricted likelihood.

The explanatory variables considered as are follows: Euclidean
distance to the nearest railway station among stations including

2Mini-Shinkansen that goes through conventional railway is not considered in this

study because theirmaximum speed is 130 km/h, which is considerably slower than

our targets and impacts may be different.
3It is an analog of relevant studies (e.g., Murakami and Griffith, 2015) that gave

the same range parameter by the longest distance between two adjacent nodes in a

network connecting all sample sites for modeling spatial dependence.
4Area in the Rm distance radius equals πR2m. Therefore, it is reasonable assume that

population in the radius is proportion to R2m. In other words, R2m ∝ population,

or equivalently, Rm ∝
√

population. Given that, we assume the square-root of

the number of passengers as the adjustment factor AI(m) for the distance range

parameter Rm.
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FIGURE 5 | Estimated range of the spatial spill-over from the Tokyo station.

The gray line represents the raw estimates, and the black line represents the

smoothed estimates, which are used in the subsequent analysis.

those for non-high-speed rail lines (Sta_dist [km]), bus stop
(Bus_dist [km]), airport (Air_dist [km]), and prefectural
government official (Gov_dist [km]); and dummy variables for
residential land (Res), commercial land (Com), and industrial
land (Ind). All these variables were acquired from NLNI.

The objective of this empirical analysis is to examine if the
HSR network has hierarchical effects influencing the major cities
though the global-level network and the major and local cities
through the local-level network. Section accuracy comparison
result verifies the existence of global and local effects through
accuracy comparison. Section estimation results visualized the
estimated effects.

Accuracy Comparison Result
The accuracy of the models summarized in Table 2 were
compared using Bayesian Information Criterion (BIC). The
BIC values of all the spatial models are considerably smaller,
and therefore better, than LM, suggesting the presence of
the conventional spatial dependence (si). Figure 4 plots the
differences in the BIC values between SM and {SM_G, SM_L,
SM_GL}. Based on this figure, consideration of both the
global and local networks can improve the BIC. In particular,
throughout the target period, the best accuracy was achieved by
SM_L and SM_GL which consider the local-level effects. The
local network dependence appears more influential on land price
than the global network dependence is. Based on that result, land
prices near minor stationsmay be strongly influenced by network
dependence from Tokyo, for example. From 1984 to 1988, SM_L
achieved the best, or smallest, BIC values in 4 or 5 years. After
1989, SM_GL achieved the best BIC values out of all of the years
that were analyzed. Both the HSR’s global and local networks may
affect land prices. Based on this result, we report an estimated
result of SM_GL in the subsequent sections.

Estimation Results
Figure 5 plots the estimated range rI(m) of the spillover effects
from the Tokyo station. The range, which ∼20 km in the
80s and gradually increased during 90s, became ∼40 km in
2000. The HSR may have encouraged urban development and,
therefore, urban sprawl (Bagan and Yamagata, 2012) in this

period. Contrastingly, the range gradually declined after 2000.
Note that this pattern is similar to the net population inflow to
the Tokyo metropolitan area (Ministry of Land Infrastructure
Transport and Tourism (MLIT), 2014, p. 3), which increased
from just after the end of the bubble in 1991 until the 2008
financial crisis, although it peaked a slightly earlier. As the
optimized range values are a bit noisy as shown in the gray line in
Figure 5, we smoothed the value as shown in the black line and
used in the subsequent SM_GL model estimation.

Figure 6 plots the regression coefficients estimated in each
year. Sta_dist, Bus_dist, Gov_dist, which are accessibility
measures, are negatively significant within certain periods. The
coefficients on Sta_dist is smaller than Bus_dist, meaning that
railway station has a long-range effect whereas the bus stop has
a short-range effect. The result is reasonable given that buses
are typically responsible for local transportation. The coefficients
for Gov_dist are smaller than those for Sta_dist and Bus_dist,
indicating longer-range effects. Again, this is reasonable given
that only 41 prefectural offices cover the entire study area. The
coefficients on Air_dist had values near zero and tended to be
statistically insignificant.

Res, Com, and Ind were all positively significant. Among the
three, Com was the largest and Ind was the smallest coefficient.
Commercial land, which has many urban facilities, was found to
be the most popular area. Meanwhile, industrial land, which may
suffer from air pollution and noise, was the cheapest area of the
three land types.

Based on the fact that the coefficients for Sta_dist, Res, Com,
and Ind all declined over the study period, a decline in land prices
during a stagnate economy appeared to be especially severe in
urban areas, specifically those that were near railway stations.

The left panel in Figure 7 plots the estimated spatially
dependent process (si). The process identified two hotspots
around Tokyo and Osaka, which are two major urban areas.
However, Osaka’s hotspot gradually diminished, whereas Tokyo
is still the dominant hotspot as of 2014. This result suggests that
there has been a popular residential area concentrated around
Tokyo for years.

The middle panel of Figure 7 maps the effects of the global-
level network dependence (wi,I(1)(b1 + nI(1))). The dependence
was estimated to increase the land price around the major
stations, including the Nagoya and Hakata stations in Tokaido-
Sanyo Shinkansen. The increase was substantial in Osaka
and Kyoto. Because these cities dramatically improved their
accessibility to Tokyo through the HSR, the increase in land
price was reasonable. Similar increases in land price were also
found around major stations outside Tokyo, likely due to the
accessibility to Tokyo and other major cities caused by the
HSR. Contrastingly, the global-level network dependence did not
increase land prices in Tokyo after 2005. In short, the global-
level network dependence is especially beneficial for major cities
outside Tokyo.

Based on the right panels in Figure 7 showing the global-level
station-wise effects (wi,I(1)(b1+n∗I(1))), land price along Tokaido-
Sanyo Shinkansen increased not only dependently through the
network but also heterogeneously/independently within each
major city. Given that Tokaido-Sanyo Shinkansen runs along
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FIGURE 6 | Coefficients estimated from SM_GL. Solid line represents the coefficient estimates and dashed lines represent the upper and lower limits of the 95

percent confidence intervals.

Taiheiyo Belt, which covers a concentration of various industries,
this heterogeneity is attributable to differences in industrial
structure in each major city. Unlike the global-level network
dependence (middle column of Figure 7), the station-wise effect
increases land prices in the Tokyo metropolitan area. The land
price patterns in Tokyo are estimated to be highly heterogeneous,
relative to other major cities.

Figure 8 plots the estimated local-level effects. The local-
level network dependence strongly increases land prices between
Tokyo and Sendai, along the Tohoku Shinkansen. The increase
in land price is substantial in the city of Utsunomiya, which has
a minor station. This result is intuitively consistent given that
the HSR allowed Utsunomiya to become a commuter town for
Tokyo. It follows that the section of the Tohoku Shinkansen near
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FIGURE 7 | Estimated spatial dependent effects and spill-over effects from the global network dependence through the HSR (1985, 1995, 2005, 2014). For

comparison, the same color scale is assumed for all the panels in this figure and Figure 8 except for the left four panels in this figure.

Tokyo benefitted strongly from aspects of the local-level HSR
network.

This study verified the existence of hierarchical effects that
influence major cities along the HSR lines due to the global-level
network, and minor cities due to the local-level network. Further,
the effects of HSR are heterogenous in different spaces. Regarding
trends over time, the Tokyo metropolitan area’s role as the largest
metropolitan area in Japan has not changed during the studied
period. However, its contents have changed. When compared to
the 1980s, the influence that spatial dependence had has gradually
strengthened and that of HSR networks has weakened since the
2000s. That is, the spillover effect that the Tokyo metropolitan
area experiences from other metropolitan areas is weakening.
This is a phenomenon that can only be understood when both
spatial and network dependences are considered.

CONCLUDING REMARKS

Transportation networks encourage a hierarchy within urban
growth. However, in extant literature, these hierarchies are
usually examined by simply using dummy variables, and the
network dependence within the impacts is often ignored.
Using the example of HSR in Japan, this study proposed a
regression method for the simultaneous estimation of spatial
dependence, network dependence among stations, and station-
specific heterogeneity. The empirical results verified that there
are hierarchical effects along HSR lines. The findings provide an
interesting insight into an ongoing problem within the Japanese
urban hierarchy; that is, the fact that the spillover effect that the
Tokyo metropolitan area experiences from other metropolitan
areas is weakening.
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FIGURE 8 | Estimated spatial dependent effects and spill-over effects from the local network dependence through the HSR (1985, 1995, 2005, 2014). The former

around Tokyo is zoomed. See Figure 7 for the color scale.

The proposed method allows for modeling dependencies
on multiple networks simultaneously and can achieve efficient
computation through an extension of the RE-ESF approach.
However, several issues remain to be examined in future
studies. For example, although this study focused on railway
networks, the proposed modeling method can be applied
to other transportation networks, including airports and
ports. Additionally, this model can be expanded into a
spatiotemporal model that allows for the consideration of
dynamic processes that underly urbanization. Therefore, it may
also be pivotal to consider a network’s direction (e.g., Tokyo

strongly influences Osaka, but the opposite might be less
remarkable). Similarly, although this study considered only two
levels with HSR lines, there are more levels to be examined in
future research.
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