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Monitoring air quality is very important in urban areas to alert the citizens about the risks

posed by the air they breathe. However, implementing conventional monitoring networks

may be unfeasible in developing countries due to its high costs. In addition, it is important

for the citizen to have current and future air information in the place where he is, to avoid

overexposure. In the present work, we describe a low-cost solution deployed in Lima

city that is composed of low-cost IoT stations, Artificial Intelligence models, and a web

application that can deliver predicted air quality information in a graphical way (pollution

maps). In a series of experiments, we assessed the quality of the temporal and spatial

prediction. The error levels were satisfactory when compared to reference methods. Our

proposal is a cost-effective solution that can help identify high-risk areas of exposure

to airborne pollutants and can be replicated in places where there are no resources to

implement reference networks.

Keywords: air quality, low-cost, Artificial Intelligence, spatio-temporal prediction, air pollution, machine learning,

forecasting, monitoring system

1. INTRODUCTION

Air pollution is a major challenge in urban environments. There is ample evidence supporting
the association between prolonged exposure to air pollutants and negative effects on human
health (Kumar et al., 2019). In the short term, it can cause irritation in the respiratory tract,
eyes, headaches, nausea, etc. In the long term it may produce allergies, cardiovascular and
neuropsychiatric diseases, or even cancer (Shahriyari et al., 2021). Several authors have warned
that air pollution is the largest environmental risk factor for ill health. This has been named as “the
new tobacco” (Manisalidis et al., 2020).

As part of air pollution control policies, several countries, mainly in the developed world,
have deployed large air quality monitoring systems in urban centers in order to collect real-time
data to inform authorities and citizens about their current air quality situation (see waqi.info).
However, such a reality is not commonly found in low-to-middle income countries, where there
are precarious or even non-existent environmental monitoring systems. One of the main reasons
for this is the high costs of having a certified air quality monitoring system as a reference. This is
the case of Peru, where its capital city, Lima, with an urban area of around 3,000 square kilometers
and more than 10 million inhabitants, has an official air monitoring network of 10 stations,
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half of which are nowadays inoperative. This is even more critical
in other major cities in Peru, where there is absolute absence of
any kind of air monitoring. This reality is contrasted with several
studies that place Peru as one of the most polluted countries
in Latin America by particulate matter (Reátegui-Romero et al.,
2018).

Due to the high costs of reference monitoring stations, over
the last years low-cost sensing technologies have increased their
variety and appear as a cost-effective alternative for air quality
assessment (Morawska et al., 2018; Liu X. et al., 2020). In
fact, various monitoring networks, based on low-cost sensors,
have been deployed around the world to aid or supplement
air monitoring. Some representative examples are the IVAN
project in Imperial County—California (ivan-imperial.org),
the Lufdaten project (luftdaten.info) and the Opensense
project (opensense.epfl.ch). All these initiatives have shown the
advantages of low-cost technologies in providing air quality data
with high spatial resolution that would be very expensive if
implemented with high-end stations.

A sensor network is a powerful tool for scientific research
and environmental agencies. However, it is not enough for
the citizens, who need tools to be informed about the current
and future air quality in the places where they carry out
their activities. Traditionally, numerical-based models have been
proposed to infer the spatial distribution of air pollutants
by simulating the physicochemical and dispersion processes
of air pollution (Gea et al., 2017). However, despite being
based on physical principles, the implementation of numerical
models often requires accurate emissions inventories and high-
end computing platforms, which discourages their adoption
when the cost is a limitation. Recently, models based on
Artificial Intelligence have emerged as a data-driven alternative to
predict air quality with satisfactory results and without requiring
expensive computational hardware (Iskandaryan et al., 2020;
Amuthadevi et al., 2021).

The present work describes the implementation of an air
quality monitoring system in Lima city based on a network
of low-cost stations and Artificial Intelligence (AI) techniques.
The low-cost stations, called qHAWAX, are IoT devices that
can measure the concentration levels of five gas pollutants, fine
particulate matter and meteorological parameters. They were
located in strategic locations in the central region of Lima city and
have been operating since March 2020. With the data collected it
has been possible to adjust Artificial Intelligence (AI) models that
are able to produce real-time pollution maps and to forecast air
quality values for the next 6 h.

The major contributions of this work are: (i) a new design
of a complete low-cost IoT system for air quality monitoring,
detailing the components in the sensing layer, the data processing
and the construction of artificial intelligence models for spatial
and temporal prediction; (ii) a deployment description of the first
low-cost IoT air quality network installed in Lima city, together
with a dataset collected during a year of operation; and (iii) a
web platform to showmeasurements and predictions to end users
(available at: https://main.d2bs3bzajz7n0u.amplifyapp.com).

The rest of the work is organized as follows. Section 2 presents
a brief review of related works. Section 3 describe the components

and methods of the proposed air quality monitoring system.
Section 4 present evaluation results of the components. Finally,
the conclusions are presented in Section 5.

2. RELATED WORK

Modern air quality monitoring systems are being designed as
Internet of Things (IoT) systems. IoT can be defined as the
interconnection of everyday devices in order to share and analyze
data for monitoring and decision making processes (Somayya
et al., 2015). IoT coupled with automated data analytic techniques
has fueled the rise of “smart cities” concept. In a smart city,
IoT devices collect data in real time from different city-related
variables and locations with the intention of turning such data
into useful knowledge so that citizens and authorities know
the current state of their environment and can take actions to
improve the quality of life (Mohd Abdul et al., 2020). Air quality
monitoring is a representative application in Smart Cities due
to the serious issues that many cities suffer associated to poor
air quality and the need to monitor and control this problem
(Bashir Shaban et al., 2016).

The literature on air quality monitoring systems focuses
primarily on two aspects: (i) the sensing/network layer;
and (ii) the application layer. With respect to the sensing
layer, we can find a variety of technologies (see reviews in
Zhang and Srinivasan, 2020; Kang et al., 2022). There is
an increasing number of companies offering hardware for
air quality measurement. Among them, we can mention:
AQMesh (www.aqmesh.com), Kunak AIR Pro (www.kunak.es),
Aeroqual (www.aeroqual.com), Alphasense (www.alphasense.
com), among others. The common parameters targeted are:
toxic gases (NO2, O3, CO, SO2, H2S), particulate matter and
meteorological variables. Also, some researchers have described
implementations of low-cost monitoring hardware. For instance,
Barot et al. (2020) implemented and deployed a low-power
consumption IOT device using an ESP8266 Wi-Fi chip for
transmission of PM10, PM2.5, and CO, temperature and
humidity sensor data. Glass et al. (2020) implemented a low-cost
sensor to work as part of a wireless sensor network running a
LoRaWAN protocol in a Murata chip (microcontroller + radio)
as well as working individually through an ESP8266 Wi-Fi chip.
Moreover, the project “Moreair” (Gryech et al., 2020) is another
example of a low-cost device built on top of a Raspberry Pi.

Regarding the application layer, most academic works are
focused on the construction of models for near-term air
quality forecasting or for correcting uncalibrated measurements.
Machine learning algorithms are widely employed for these tasks
(Cabaneros et al., 2019; Ullo and Sinha, 2020; Su et al., 2021). For
instance, Liu et al. (2016) proposed Spatio-Temporal Extreme
Learning Machine (STELM) to forecast PM2.5 concentration
considering temporal and spatial features; Bashir Shaban et al.
(2016) applied Support Vector Machines (SVMs), shallow neural
networks and M5P models to forecast NO2, SO2, and O3

using 3 months of historical data for training; Chiwewe and
Ditsela (2016) applied also shallow neural networks to predict
ground ozone levels using data from Johannesburg air quality
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network; Maleki et al. (2019) also applied classical feedforward
neural networks to predict air pollutant concentrations, air
quality index (AQI), and health quality index (AQHI). More
recently, some sophisticated deep neural network architectures
have been devised for air quality prediction. For instance, Liu D.-
R. et al. (2020) proposed an attention Long Short-term Memory
(LSTM) wind-sensitive model with extreme Gradient Boosting
(XGBoost) to predict PM2.5 concentrations for the next 6–24 h.
Fan et al. (2017) described a procedure to better handle missing
values during pre-processing, arguing that real-world time series
are more probable to present discontinuous intervals of data,
which in turn may affect the adequate training of the model.
Lastly, Wen et al. (2019) presented a novel procedure for spatio-
temporal prediction of air pollutants. This approach considers
the possibility of working with data from stations deployed
in different geographical points. For this purpose the authors
proposed a Convolutional Neural Network (CNN) combined
with a LSTM Neural Network to predict PM2.5 concentrations
over all the monitoring stations for the next 24 h.

Despite this growing amount of literature on sensing
hardware and predictive models, there are few publications
describing complete designs and implementations of low-cost
air quality monitoring systems. Among them we can mention
the work of Wong et al. (2018), who implemented a Integrated
Environmental Monitoring System (IIEMS) formed by a set of
portable devices that can measure nine parameters (temperature,
humidity, PM2.5, PM10, CO, SO2, VOC,UV, and noise) and send
the acquired data to a web database through a wireless service.
However, this work lacks user app and forecast services. Another
system, described by Bashir Shaban et al. (2016), is composed by
a network of low-cost devices that can sense toxic gases (O3, SO2,
and NO2) and meteorological parameters. Part of this system
is a Web portal and a mobile application, which also integrates
forecasting models to predict gases concentration up to 24 h
ahead. However, the system lacks spatial prediction models to
provide pollution maps.

3. MATERIALS AND METHODS

In this section we describe the overall air quality monitoring
system, including the methods and procedures employed for its
development. Figure 1 shows a general scheme of the system,
which is composed of three main components described bellow:
(i) low-cost air quality sensor network; (ii) spatio-temporal
forecasting models, and (iii) a web application.

3.1. Low-Cost Air Quality Sensing Devices
(qHAWAXs)
The sensing layer of the proposed system is composed by several
low-cost IOT sensing devices named qHAWAX (“Air guardian”
in Quechua), which can be seen in Figure 2. Each device
can sense concentrations of the following air pollutants: CO
(ug/m3), SO2 (ug/m3), H2S (ug/m3), O3 (ug/m3), NO2 (ug/m3),
PM2.5 (ug/m3), and PM10 (ug/m3). Additionally, the devices
are equipped with sensors to measure ambient variables like:
temperature (◦C), relative humidity (%), ultraviolet radiation

FIGURE 1 | General architecture of the proposed air quality monitoring and

forecasting system. It is composed by a network of air quality stations

(qHAWAXs), predictive models and a web application to deliver information to

users.

(UV), ambient noise (dB), and atmospheric pressure (hPa). For
gas sensing, electrochemical sensors from Alphasense (Zuidema
et al., 2021) were used. The sensor outputs an analog signal,
which is digitized with the help of an 18-bit ADC. On the
other hand, optical sensors from the same provider (Bezantakos
et al., 2021) were used for particulate mater. The remaining
sensors (particulate matter and ambient sensors) deliver digital
signals that are gathered every second by the core microprocessor
MCUSTM32F446RE (ARM Cortex M4) and averaged every 20 s.
The mean values are backed up in a microSD card (8GB) and
send through the 3G mobile network to a cloud database using
the Adafruit FONA GSM cellular module (SIM5320E). Finally,
the HTTPS protocol is used for data transmission, which ensures
a secure communication through a TLS/SSL encryption layer.

Each module communicates directly and individually with the
server. Among the communication functionalities, the following
stand out: (i) sensory data transmission, (ii) remote monitoring
and diagnosis, (iii) parameters calibration, and (iv) over-the-
air software updates. The device has a power source module
composed by a 12 V solid acid battery (26 Ah). It is prepared
to charge/run plugged into the electric-grid or to a solar panel.
All sensors are calibrated using EPA-certified equipment before
being deployed in the city.

3.2. Predictive Modeling
Two types of models have been developed for the system: one to
predict the hourly spatial distribution of important air pollutants,
and the other to predict air quality in the near future (short-
term forecasting).
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FIGURE 2 | qHAWAX: a low-cost IoT device used in the proposed system to sense air quality. It is equipped with sensors to measure toxic gas concentrations (CO,

SO2, H2S, O3, and NO2), particulate matter (PM2.5, PM10) and ambient variables (temperature, relative humidity and atmospheric pressure).

3.2.1. Data Acquisition
Thirteen monitoring stations were deployed in public spaces in
the central region of Lima city during the period from March
to May 2020. Figure 11 shows the geographic locations of the
installed stations (represented as rhombuses). The minimum
(maximum) distance between stations was 440m (9.8 km). As the
stations are compact and lightweight devices they were installed
on street lamppost and on roofs at a height from the surface
between 2 and 4 m (the Peruvian norms regulates that for
outdoor monitoring the sensors must be at a height between 1.5
and 15 m). Among the criteria considered to choose the locations
were: sites with different pollution conditions, easy access to
the site for maintenance, availability of power source, and site
security to prevent damage or theft of equipment.

For model construction we considered data collected during
2020. The measurements were aggregated at hourly frequency,
resulting in 60,102 records from all stations. For the present
system we only target to predict concentrations of three
pollutants that are of concern in Lima city: CO, NO2, and PM2.5.
Together with these variables we considered the Temperature
and Relative Air Humidity as input variables, which are known
to be related with the target pollutant concentrations. The data is
available at the link in section Data Availability Statement.

3.2.2. Spatial Prediction Modeling
Our proposed system uses spatial prediction techniques to
provide estimates of pollutant concentration levels across the
entire monitored region (pollution maps). To this end we
experimented with two techniques commonly implemented in
GIS software: Inverse Distance Weighting (IDW) and Ordinary
Kriging (OK). We tried these techniques due to its appealing

trade-off between simplicity and effectiveness that we seek for
our system (Shukla et al., 2020). There is no agreement in the
literature on which of these techniques is more effective for
air quality modeling, some point to IDW (Sajjadi et al., 2017;
Choi and Chong, 2022), some others point to Kriging (Kumar
et al., 2016; Shukla et al., 2020). Such differences could be due
to variations in local environments and sensor networks. Due
to this, we performed our own evaluation to choose the most
suitable technique for our system (results presented in Section
4.1). First, we describe the preprocessing step we followed to
arrange the acquired data for spatial modeling and then describe
the IDW and Ok technique.

3.2.2.1. Data Preprocessing
The data stream of each station and pollutant is aggregated
to an hourly temporal granularity (average aggregation). Each
resulting time series is then submitted to a verification process
to identify possible wrong data points. For each pollutant we
defined a maximum hourly threshold value as twice the hazard
threshold level defined by the Peruvian air quality standard
(INCA). Values exceeding this threshold are marked as null
values to avoid distorting the spatial modeling. After this, the
data of the different stations are arranged into a matrix for
each pollutant, with columns representing stations and rows
representing aggregated hours. In the evaluation phase we use
leave-one-out crossvalidation (LOOC): each station (column) is
iteratively simulated to be an unknown point and the remaining
stations are used as known points for the estimation of the
unknown point values, so an error metric can be calculated
between the predicted and the actual values.
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3.2.2.2. Inverse Distance Weighting (IDW)
IDW is a deterministic method that estimates the value of an
unknown point, x0, using the values of known points {x1, . . . , xk}.
Considering the values of the known points at a given hour are in
the vector Z = (Z(x1), . . . ,Z(xk)), the estimated value at point x0
by IDW is calculated as Equation 1:

Ẑ(x0) = λ
T
Z (1)

where λ
T = (λ1, . . . , λk) is a weight vector, with element λi

representing the weight of point xi values, computed as: λi =

( 1
d
p
i

)/(
∑k

j=1
1
d
p
j

). Here dj is the distance from known point xj

to point x0. Parameter p controls how fast the contribution of
known points decreases with the distance to the interpolated
point (typically p = 2) (Schloeder et al., 2001).

3.2.2.3. Ordinary Kriging (OK)
OK is a statistical method that follows IDW’s idea of interpolating
the unknown point x0 by weighting known points values, as
in Equation 1. However, the way Kriging chooses the weights
λ
T is different. Kriging considers not only the distances from

the known points, but also the structure of correlations between
neighboring points. For this end, it is defined a variogram
function γ (h), that assesses the degree of similarity between any
two points around x0 separated by a distance h. This can be
empirically computed for any pair of neighboring points, xi, xj
separated by distance ‖xi − xj‖ as in Equation 2:

γ (‖xi − xj‖) =
1

2|Mij|

|Mij|∑

t=0

(Zt(xi)− Zt(xj))
2 (2)

where Mij is a set of pairs of observed values of the two points,
[Zt(xi),Zt(xj)], t ∈ {1, ..., |Mij|}.

Having been defined the variogram function γ (), the weights
λ
T can be obtained by solving the system of equations given in

Equation 3:

k∑

j

λjγ (‖xi − xj‖)+m = γ (‖xi − x0‖), i ∈ {1, 2, ..., k} (3)

where m is the lagrange multiplier. Solving this system ensures
the minimization of the error variance. Note that the weights are
constrained to sum 1 and depend on the prediction location and
the positions of the known points.

3.2.3. Forecasting Models
Another functionality of the proposed system is its ability to
provide short-term forecasts (6 h in advance) of concentration
levels of target pollutants (CO, NO2, and PM2.5) at station
locations. We describe here the steps taken to build the
forecasting models: data processing, training, testing and
deployment of the models.

3.2.3.1. Data Preprocessing
Figure 3 shows density plots of the data collected at each
monitoring station for each pollutant. It can be seen variations in

the distributions across the different stations. This is attributable
to the differences in the station’s local environment, such as
vehicular traffic density and land use type. Similar to the spatial
modeling case, we mark as null data all values that are above
the defined maximum threshold of the corresponding pollutant.
Subsequently, we impute null time points that are surrounded by
valid time points using linear interpolation.

Aside outliers and missing values, we also sporadically
observed short sub-sequences of repeated values at some stations
and pollutants. After verification, it was found that this was
related to power supply interruptions or fluctuations causing
repeated entries in the station’s memory and in the data
forwarding to the cloud. It was established that a sub-sequence
of repeated values for more than 12 h can be safely considered as
an incorrect sub-sequence and null values are attributed instead
for the following processing steps. Figure 4A illustrates this
preprocessing task.

After the above processing, we proceeded to induce the
forecasting models. We tried two approaches for this: a multi-
model approach (one model to predict one pollutant) and
a single-model approach (one model to predict the 3 target
pollutants at once). In our experiments, we found the multi-
model approach giving better predictive performances (data not
shown). This may be due to the fact that each pollutant has its
own dynamics and specialized per-pollutant models find it easier
to learn such dynamics than a multi-pollutant model that gets
hard trying to learn the interlinks among pollutants. We describe
next the data preparation for the multi-model approach, as this
was adopted in the proposed system.

We explain here the data preparation for the case of CO
forecasting modeling. The same applies to the other pollutants.
A training instance is a tuple composed by a multivariate
input sequence [CO, Temperature (Temp) and Relative Air
Humidity (Hum)] and a output sequence (target) of the predicted
pollutant (CO). For the input sequences it was determined
that 24 h is suitable for the desired task. Longer input
lengths increase the model complexity but do not improve
predictability. For the output sequence, it was decided to predict
6-h in advance (6 time-points). This horizon presented tolerable
error levels in our experimental results and is of practical
use for planning activities. The inclusion of Temperature and
Air Humidity as inputs showed better overall results than
using only the target variable. This can be explained by the
known influence that meteorological parameters have on air
pollution. The whole training set is obtained by sliding the
input-target window over the entire training sequences of
each station (see Figure 4B). Each movement of the window
one step forward produces a training instance, provided that
the input and target sequences have non-null values. If there
is a null value in the current window, the instance is not
generated and the window is moved one step forward. This
process is performed on every station data stream, stacking
the resulting instances in a single training data-set with input
shape (n_instances, 24, 3) and target shape (n_instances, 6, 1).
Each variable of the generated training dataset is then scaled
using Min-Max scaling. This is done to have the same scale in
all variables and thus facilitate model training. The max and
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FIGURE 3 | Density Plots of the (hourly) air quality data acquired at each monitoring station during 2020. (A) Represents the distributions of CO pollutant (ug/m3), (B)

Represents the distributions of NO2 pollutant (ug/m3 ), and (C) Represents the distributions of PM2.5 pollutant (ug/m3). X axis represents the station.

FIGURE 4 | Illustration of the preprocessing step to deal with constant incorrect subsequences (A) and the procedure to generate training instances for forecasting

model induction (B). (A) Illustrates the case when one variable (e.g., CO) presents a subsequence of repeated values for more than 12 consecutive hours. In this case,

the subsequence is considered erroneous and is replaced by null values to discard its use as training data. (B) Shows how the one-step moving window is used to

generate the input-target pairs (training instances). The input sequence is of 24 h length, the target sequence is of 6 h length. Null values are linearly interpolated

provided that they are surrounded by valid values.
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FIGURE 5 | Illustration of the generation of time-difference instances from the original instances. The time-differencing process is done to each input-target instance

resulting from the moving-window procedure. All three variables are differenced. The resulting differenced instances are used for training the deep learning models.

FIGURE 6 | Illustration of the process used to evaluate forecasting models. For a given model architecture this process evaluates the predictive performance in

validation data of all combinations of hyperparameters indicated in the textbox above “Model Training” box. At the end, the process delivers the RMSE value of each

evaluated combination.

min values used for the scaling transformation are found from
the training set and then used to scale both training as well
as testing sets. Finally, the scaled instances are converted to
time-difference instances, as depicted in Figure 5. This is done
in order to have stationary sequences so that the models can
focus on learning the most relevant part, which is, predicting
future variations in air quality based on past variations. After
differentiation, each input instance has a shape of (23, 3) and
the corresponding output target has a shape of (6, 1). Predicted
difference vectors are converted to value vectors for model
evaluation and operation.

3.2.3.2. Forecasting Model Selection
Three types of models were evaluated for the forecasting task:
Recurrent Neural Networks with Long Short-Term Memory
units (LSTM), Recurrent Neural Networks with Gated Recurrent
Units (GRU), and 1D Convolutional Neural Networks (CNN).
These neural network architectures have shown recently
interesting results on air quality forecasting applications (Krishan
et al., 2019; Tao et al., 2019; Ragab et al., 2020; Yan et al.,
2021; Kristiani et al., 2022). Although most of these works
show predictive advantages over classical methods, it is not clear
which of them is more suitable for our system, since the data
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FIGURE 7 | Neural network architectures optimized for air quality forecasting. (A) Corresponds to a LSTM model, (B) corresponds to a GRU model, and (C)

Corresponds to a CNN model.

FIGURE 8 | Software components of the web application developed for delivering air quality information.

used in the publications have been collected under different
conditions of our system (differences on: input variables,
target pollutants, meteorological and pollution conditions,
sample size, temporal granularity, forecast time, etc.). For
this reason, a comparative evaluation was carried out (results
on Section 4.2).

Figure 6 shows the process used for model evaluation to
identify a suitable forecasting model for each pollutant. In this
process a hyperpararmeter grid search is performed for each
model architecture. The optimized hyperparameter and tried
values: number of convolutional/recurrent layers = {1,2}; number
of units (state dimension) in recurrent layers = {100,200,300,400};
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FIGURE 9 | Boxplots of RMSE values obtained in a spatial cross-validation strategy by different spatial prediction models (IDW and OK with spherical, gaussian, and

exponential variogram). (A) Presents results for CO pollutant, (B) presents results for NO2 pollutant, and (C) presents results for PM2.5 pollutant. The X-axis indicates

the number of nearest stations used in the models to make the predictions.

number of 1D kernels in convolutional layers = {16,32,64}. Fixed
hyperparameter: units in output layer = 6 (each output neuron
predict one future time-step); units in pre-output layer = 50;
dropout ratio previous to dense layers = 0.2; kernel size in first
and second convolutional layer = (4,3); pool size in max pooling
layer = 2; activation function in hidden (output) layers = Relu
(Linear); learning rate = 0.001; optimizer = Nadam; loss function
= mse (mean squared error); batch size = 64; kernel initializer =
Glorot uniform.

Each hyperparameter configuration was evaluated using a
train-validation strategy: the model is fitted using the first 80%
of the training instances and then evaluated in the remaining
20% set (validation set). The same train-validation sets were used
for all configuration evaluations. All models were trained for 100
epochs. The evaluation were based on two error criteria metrics:
MAE (Mean Absolute Error) and RMSE (Root Mean Squared
Error), calculated in validation data for each pollutant and
forecasted time-step. Figure 7 shows the optimized configuration
for each model type after hyperparameter optimization. Section
4 presents and discuss performance results of these best models
on new test data.

3.3. Web Application
A web application was developed to offer the users two
functionalities: a view of pollution level in a city map and detail

information about air quality forecasting. The application also
has a configuration functionality to set up the monitored area
and to add/remove monitoring stations. Bellow we describe the
app components and integration in detail.

3.3.1. App Components and Integration
Figure 8 shows the application components and their
integration. For the front-end web side we use AWS Amplify
service, which stores all front-end code in a cloud server. Every
button in the web application is connected to a RESTful API
built in Python using Flask framework. This API runs in a
EC2 cloud server and is responsible to serve any request from
the client application. It is also capable of connecting to a
PostgreSQL database (using RDS service) to recover/store air
quality measurements and predictions. Two python scripts
were developed and programmed to run every hour the spatial
prediction and forecasting models respectively, storing the
prediction results into the database for later visualization in the
web application. These scripts are executed independently of user
requests and do not depend on their number, thus guaranteeing
the scalability of the app. Details of these scripts are given bellow.

3.3.1.1. Spatial Prediction Script
After every o’clock hour this script wakes up and retrieves the
last hour average measurements of each station (using the API
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FIGURE 10 | Error distribution (real - predicted) at each station obtained by the selected spatial prediction models. (A) Presents results for CO pollutant, (B) presents

results for NO2 pollutant, and (C) presents results for PM2.5 pollutant. The X-axis indicates the test station.

service). It also retrieves the grid cell centers stored in the
database. Then, it calls the selected spatial prediction model
(IDW for CO pollutant and Kriging with gaussian variogram
for NO2 and PM2.5) to estimate each pollutant concentration
map. To achieve this, in each cell center location, (x,y), the
script finds the k-nearest stations with valid values (according
to our experimentation, the most suitable value for k was equal
to 5 stations for all pollutants, see section [ref]). Then, the
interpolation is obtained at (x,y) using such stations. After all
the cells get interpolated, the resulting values are stored in the
database with the timestamp of the last hour. In this way, the app
can retrieve and visualize the last and historical pollutant maps to
give an understanding of the pollutant’s spatial dynamics.

3.3.1.2. Forecasting Script
The forecasting script awakes also after every o’clock hour. The
forecasting is computed only at station sites. The following steps
are carried out to forecast future time points at each station
and pollutant: (i) retrieve the last 24 h averages measurements
(pollutant+temperature+humidity) of the station through the
API service; (ii) arrange the data into a matrix of shape (24,3);
(iii) identify outliers and replace them with null values; (iv)
impute missing values with linear interpolation, provided that
the imputed data is surrounded by valid data; (v) apply min-
max value normalization using the max and min values of each
pollutant found in the training dataset; (vi) transform the data
to time-differences, leaving a matrix of shape (23,3); (vii) submit

the resulting matrix to the corresponding forecasting model
to predict the next 6 h differences of the target air pollutant;
(viii) transform the output prediction (time differences) to actual
pollutant concentration values; (ix) apply the inverse operation
of themin-max normalization to recover the non-scaled values of
the air pollutant, (x) store the predicted values into the database
through the API service for use of the app.

4. RESULTS AND DISCUSSION

4.1. Evaluation of Spatial Prediction
In order to identify the best spatial prediction model for each
pollutant we performed an empirical evaluation of the following
methods: IDW, OK with spherical variogram, OK with gaussian
variogram and OK with exponential variogram. Each method
was evaluated in each pollutant using a spatial cross-validation
strategy: one station is selected as a testing point and the k nearest
neighbors stations with non-null values are used as known points
in the model (k is iterated from 2 to 7) and a prediction is
obtained for every hour of the testing period (July 2021). Then,
the root mean square error (RMSE) is calculated between the
predicted values and the actual values measured by the testing
station. This process is repeated until every station is used as
testing point. Figures 9A–C show boxplots of the obtained RMSE
values for CO, NO2, and PM2.5 pollutant, respectively. The
boxplots are shown as a function of the number of nearest
stations (k) and colored according to the method type.
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FIGURE 11 | Representation of spatial prediction errors across the monitored points (rhombus icons). The sizes of the rhombus are proportional to the average RMSE

values obtained with the chosen model for the respective pollutant. (A) Presents results for CO pollutant, (B) presents results for NO2 pollutant, and (C) presents

results for PM2.5 pollutant.

TABLE 1 | Six-hours average of RMSE and MAE values for the three optimized

deep learning models and the persistent model.

Pollutant Persistent CNN LSTM GRU

Six hour Average-RMSE

CO (µg/m) 500.55 364.46 380.18 387.28

NO2 (µg/m3) 15.99 18.61 11.63 13.63

PM2.5 (µg/m3 ) 15.74 14.36 13.62 14.39

Six hour Average-MAE

CO (µg/m3 ) 376.26 269.41 278.13 285.15

NO2 (µg/m3) 10.84 14.94 8.37 10.48

PM2.5 (µg/m3 ) 9.14 8.25 7.61 8.17

Bold values are the lowest error values for each pollutant and error metric.

With respect to the effect of k value, we can see that for
all pollutants and prediction models, the mean cross-validation
error decreases as more nearest stations are used in the model
until reaching 5 stations, where the error stabilizes. In the case of

CO pollutant there are two stations with outlier errors and in the
case of PM2.5 pollutant there is one station with outlier values.
With respect to the model type, we can see that OK method
presents similar results across the different tested variograms.
IDW model tends to present higher RMSE values and variances
in NO2 and PM2.5 pollutants. However, in CO pollutant, IDW
presents slightly better results than the other methods for k ≥ 5.
Based on these results we selected the following spatial models
for deployment in the system:

• IDW with k = 5 for CO pollutant. This model presented the
lowest error values with k ≥ 5.

• OKwith k = 5 and exponential variogram for NO2 and PM2.5
pollutants. Despite all OKmodels presented similar results and
better than IDW for k ≥ 5, the exponencial variogram was
selected because it is simple to compute.

Figures 10A–C show, for each pollutant respectively, the per-
station error distributions (real-predicted) of the selectedmodels.
We can observe that the spatial prediction of gas concentrations
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FIGURE 12 | RMSE of selected forecasting models at each station vs predicted hour. (A) Presents results for CO pollutant, (B) presents results for NO2 pollutant, and

(C) presents results for PM2.5 pollutant. It is also included results of persistent models (dotted curve) as a baseline for comparison.

(CO and NO2) is harder than predicting particulate matter
concentration (PM2.5). In this latter we see the violin plots
more centered around zero (less bias). In the case of gases we
observe that the predictions at some stations have systematic
overestimations or underestimations. To better understand
the spatial behavior of the prediction error, we show maps
(Figures 11A–C) with the prediction points (rhombus icons)
whose sizes are proportional to the average RMSE values
obtained with the chosen model for each pollutant. In the case
of CO pollutant it seems that the error of the prediction point
are associated with the proximity of it to large avenues (points
13, 3, 5). In the case of NO2, it seems that one error contributing
factor is the distance of the prediction point to the sensor network
(points 5, 11). In PM2.5 we also observe this behavior, but
it seems that other factors are contributing to the prediction
error. For example, point 6 and 8 are near to sensors but have
high errors. Probably, the local urban features and land use are
influencing the transportation of particulate matter. In fact, point
6 is on a large plaza with restricted traffic and point 8 is located
on a large park. This shows that it may be possible to improve
spatial prediction errors with models that take into account the
local features of the prediction point.

4.2. Evaluation of Forecasting Models
The optimized forecasting models for each pollutant (Figure 7)
were tested on a new test dataset, which was constructed with
data collected from 7 new monitoring stations implemented
in Lima city during the months of March 2021 to May 2021
(the training/validation data were from 2020). Table 1 shows
the average RMSE and MAE values obtained on this dataset
with the optimized models for each model type and pollutant
(averaged over the 6 forecasted hours). We included in the
evaluation a persistent model, which predicts the next 6 h
equal to the value of the current hour. This simple method

is used as a baseline to get a lower-bound performance. We
can appreciate that the LSTM model presents the best average
performance values for NO2 and PM2.5 pollutant, while the
CNNmodel proved to be the most suitable model for forecasting
CO values.

Figures 12A–C show, for each pollutant, the per-station
RMSE curves of the best models as a function of the forecasted
hour. We also include the RMSE curves of the respective
persistent model for comparison. From these plots it is clear
that the deep learning models show to be consistently better
than the persistent model, especially predicting the distant future
(4 h onward), where the error is considerably lower than the
persistent model.

To further verify how close the predictions are to the actual
values, we show in Figures 13A–C some examples of the deep
learning predictions (at 6 h ahead) against the actual values
for each one of the three air pollutants during the testing
period (March–May 2021). It is important to notice that air
pollution dynamics in 2021 was different from that of 2020
due to COVID19 mobility restrictions. However, throughout
our experiments we found that the deep learning models have
been able to generalize well on data of a different period. We
infer that this result can be due to the fact of having trained
the models on data from varied locations and having worked
on temporal differences and not in absolute values. Working
on time differences seems to facilitate the learning of the air
pollution dynamics since the model pays attention to changes
of consecutive observations and not their scale. Finally, Table 2
presents the MAPE (%) metrics per hours for the selected
deep learning models evaluated on the new validation data.
It can be seen that the LSTM models for NO2 and PM2.5
behaves reasonably, presenting a maximum MAPE of 22.5%.
The forecasting of CO seems to be harder, reaching a maximum
MAPE of 61.2% at the last forecasted hour.
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FIGURE 13 | Examples of predictions with the selected deep learning models (at 6 h ahead) against the actual values during the testing period (March to May 2021).

(A) Presents results for CO pollutant, (B) presents results for NO2 pollutant, and (C) presents results for PM2.5 pollutant.

TABLE 2 | Average MAPE (%) values by hour ahead predicted obtained by the selected models in the 7 new air quality stations evaluated with data from March, April and

May from 2021.

Pollutant 1h 2 h 3 h 4 h 5 h 6 h

Station Average - MAPE (%)

NO2 10.85 17.31 23.55 24.45 23.24 21.52

PM2.5 13.05 16.76 18.98 20.06 21.47 22.21

CO 30.38 40.78 47.32 55.36 59.95 61.20

5. CONCLUSIONS

In urban environments there is a need for citizens to be informed
about the current and future situation of the quality of the air
they breathe in order to minimize the risks of overexposure to
polluted air. However, the implementation of official monitoring
networks can be prohibitive for many cities, given the high costs
of acquisition and maintenance. In this paper we described a

low-cost solution for air quality monitoring that can inform
to the citizen the current and the near future situation (6 h
ahead) about the quality of his surrounding air. The system,
deployed in Lima city, is composed of low-cost IoT stations,
Artificial Intelligence models and a web application that can
deliver the predicted information in a graphical way (pollution
maps). Through a series of experiments we assessed the quality
of the temporal and spatial prediction. The error levels were
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satisfactory for predicting particulate matter (PM2.5) when
compared to reference methods. We conclude that this low-cost
solution is a cost-effective solution that can help identify high-
risk areas for exposure to airborne pollutants. The computational
resource requirements for the deployment of the system are
modest when compared to numerical operational models. It
can be easily replicated in places where there are no resources
to implement reference networks. In future work we plan to
incorporate in the AI models more layers of information to give
the models more local context and improve predictions. For
example, we are planning to supply the models with variables
such as: vegetation index, surface elevation data, and land
use data, information that is known to be related with air
pollution processes.
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