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Climate zoning plays a vital role in the development and implementation of building

energy regulations. his paper presents a novel building performance-based approach

for climate zoning. By using a high resolution spatial climate dataset, a climate severity

mapping of Ethiopia is presented. Ethiopia represents 13 of the Köppen Geiger global

climate zones. Real-time thermal performance measurement of representative residential

buildings in three climatic locations is presented. Thermodynamic models of these

buildings are developed and validated using energyplus software tool. Hourly building

simulations of these buildings are performed for 1,490 locations (15min spatial resolution)

across Ethiopia. Cooling and heating discomfort hours, as well as energy performance

index, are computed for each of these geolocations. Spatially interpolated building

performance metrics and adaptive thermal comfort limits are presented. The relevance

of Köppen Geiger’s classification in the context of building performance is statistically

tested. We observed that the existing climate zones do not considerably represent

the building thermal performance and energy footprint. Effect of thermal severity on

building performance is described. Further, climate zones are deduced based on the

building performance variables usingmultivariate statistical clustering. In order to evaluate

potential climate responsive strategies, bioclimatic zoning of Ethiopia is presented. The

bioclimatic zoning is created using an improved Mahoney’s method that incorporates

solar radiation. This analysis resulted in 21 bioclimatic strategy zones. A comparative

assessment of the new climate zoning with Mahoney’s bioclimatic classification is

presented. The proposed framework will be relevant for regulating building performance

and energy conservation measures.

Keywords: climate clustering, k-means algorithm, PCA, degree discomfort hours, energy performance index,

Ethiopia, bioclimatic zoning

INTRODUCTION

Climate of a region impacts the thermal comfort and energy demand which are the two prime
movers of building performance (Brager and de Dear, 1998). There are several global and local
climate-zoning schemes proposed over the years. These are intended for specific themes such as
agro-ecology (Hashemi et al., 1981), and building energy performance (Lee and Kung, 2011; Xiong
et al., 2019). These themes demand a careful selection of climate variables, zoning methods, and
class intervals in the case of supervised classifications.

Climate classification is a necessary precursor tool for energy efficiency programs. This is
demonstrated in studies such as Erell et al. (2003), Wan et al. (2010), Bodach (2014), Walsh
et al. (2017a,b), Naveen Kishore and Rekha (2018), Attia et al. (2019), Verichev et al. (2019),
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and Xiong et al. (2019). It facilitates the design of climate
responsive, comfortable indoor environments and reduced
energy demand (Markus, 1982; Xiong et al., 2019). Many
countries adopt climate classification as a first step to their
thermal comfort and building energy efficiency policies,
regulations and guidelines. In their recent review, Walsh et al.
(2017b) identified as many as 19 climate variables used across 54
countries. Some of these classifications such as the DOE climate
zoning (Ashrae Standard, 1999) are used in the national and
international context, while others such as the National Building
Code climate zoning (Bureau of Indian Standards, 2016) are
tailored for a specific country. Though climate classification is
the common theme, climate variables used for classification vary
significantly. In addition to climate variables, methods used for
zoning also differ.

Conventional methods such as the Köppen Geiger climate
classification (Geiger and Pohl, 1954; Kottek et al., 2006) and
Thornthwaite’s classification (Thornthwaite, 1948) are based on
predefined thresholds of climate variables. These thresholds
are derived from observed ecological variabilities and can be
influenced by subjective decisions of the researcher (Jacobeit,
2010). In recent years the use of multivariate statistical
techniques for climate classification is frequented. Multivariate
statistical techniques are useful in identifying classes where
observation of the phenomena being studied (for instance,
building energy performance) is difficult to categorize. These
statistical techniques eliminate the subjective nature of threshold
based classifications.

One such climate zoning method is cluster analysis (Lee
and Kung, 2011; Walsh et al., 2018). Cluster analysis is a
statistical method of pattern recognition to categorize data (Bai
et al., 2017). It uses various algorithms to detect within-group
similarity and between-group differences among data points.
Unsupervised data clustering is exploratory (Jain, 2010) and
is essential to pick up structures in data where classes are
not predetermined (Johnson and Wichern, 2007). Clustering
methods can be categorized into hierarchical, partitional, model-
based, density-based and grid-based (Saxena et al., 2017). In
climate clustering, hierarchical (Anyadike, 1987; Fovell and
Fovell, 1993; DeGaetano, 1996; Unal et al., 2003; Iyigun et al.,
2013; Xiong et al., 2019) and partitional (Zscheischler et al.,
2012; Gao and Malkawi, 2014; Carvalho et al., 2016; Parracho
et al., 2016) methods are widely used. Climate data required

Abbreviations: Tmax, mean monthly maximum temperature [◦C]; Tmin, mean

monthly minimum temperature [◦C]; Tµ, mean monthly minimum temperature

[◦C]; 1Tout, monthly mean temperature range [◦C]; TmaxAµ, annual maximum

temperature [◦C]; TminAµ, annual minimum temperature [◦C]; TAµ, annual

mean temperature [◦C]; 1TAµ, annual mean temperature range [◦C]; RHAµ,

annual mean relative humidity [%]; RHµ, monthly mean relative humidity

[%]; IAµ, annual mean solar radiation [kWh/m2]; Iµ, monthly mean solar

radiation [kWh/m2]; Tn, neutral temperature [◦C]; WWR, window-to-wall ratio

[%]; U-Value, thermal transmittance [W/m2K]; Kappa, thermal mass [kJ/m2K];

DDH_heating, heating degree discomfort hours; DDH_cooling, cooling degree

discomfort hours; EPI, energy performance index [kWh/m2/y]; RMSE, root

mean square error; CH index, Calinski-Harabasz pseudo-F-statistic; PC, principal

component; PCA, principal components analysis; SST; total sum of squared

differences; SSE, sum of the squared errors; CZ, climate zone.

for clustering can be either weather station based time-series
data recorded over a long period or spatial grid data with
average monthly values. In the case of station based time-
series data, a variable reduction is performed to simplify the
number of inputs and reduce redundancy that might occur
through the years. Statistical or empirical methods can be
employed for the reduction. For instance, Badraddin (1997) used
factor analysis for the climate clustering of Saudi (Arabia and
Wan et al., 2010) simplified daily temperature and humidity
variables to seasonal discomfort in terms of heat and cold stress
values. Though measured weather data is preferable, lack of
reliable data with consistent spatial and temporal resolutions
necessitate output interpolation to obtain climate zoning. To
avoid this problem some studies delineate the climate zones
based on administrative boundaries (Walsh et al., 2017a). This
works well when geographic extent is small and the spatial
climate diversities are minimal (Daly, 2006). Some studies adopt
supervised learning algorithms such as discriminant analysis
(DA) to interpolate the station data based clustering to a higher
resolution spatial setting (DeGaetano, 1996; Chang et al., 2018).
However, one of the major drawbacks in DA is that, new
classes which are not visible in the original station data based
clustering cannot be introduced while increasing the spatial
resolution. Therefore, to represent all unique climate zones in the
interpolated result the input weather stations should be inclusive
(DeGaetano, 1996). On the other hand, the use of high-resolution
spatial monthly climate data has shown a better potential for
climate zoning applications. For instance, the Köppen Geiger
classification was re-created on gridded datasets in various
studies (Kottek et al., 2006; Kriticos et al., 2012; Chen and Chen,
2013; Beck et al., 2018). Other applications include thermal
comfort design zoning (Pawar et al., 2015), climate zoning (Attia
et al., 2019), and bioclimatic classification (Rivas-Martinez et al.,
2011; Pesaresi et al., 2014). Gridded spatial data are also used
in unsupervised classifications (clustering). Metzger et al. (2013)
presented a global bioclimatic zoning using cluster analysis of 30”
resolution climate data. Gridded datasets are a better replacement
for station data because they offer reduced time step data that
cover large geographic areas. However, depending on the number
of input layers a variable reduction might still be required.

In this context, this paper presents a multivariate clustering
based climate classification using interpolated high-resolution
monthly climate datasets. The proposed climate zoning is
intended to serve as a basis for future thermal comfort standards
and building energy performance guidelines for residential
buildings of Ethiopia. The objectives of this study are (1) to create
multivariate clustering-based geospatial climate classification of
Ethiopia and (2) to verify the robustness of the climate zones
through geospatial profiling of comfort and energy performance
of residential buildings. Ethiopia is an East African country with
climate diversities originating primarily from altitude differences
(Fazzini et al., 2015). Existing climate classifications categorizes
the country into six agro-ecological zones (Tadesse et al., 2006).
Apart from this, the country does not have climate classifications
purpose built for building energy performance assessment or
building energy standards in general (Iwaro and Mwasha, 2010).
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METHODS AND MATERIALS

The study comprises of four major parts: (a) climate severity
of Ethiopia is analyzed and mapped. (b) Thermal performance
evaluation of representative houses is performed through field
measurements. (c) Cooling and heating discomfort hours
(DDH), as well as energy performance index (EPI), are computed
for these representative residential buildings. This is realized
through hourly energy simulation of these buildings across
1,490 sample locations gridded approximately at 27 km ×

27 km interval. (d) The climate of Ethiopia is clustered using
the k-means clustering method that includes k-means++ for
initial cluster centroid selection. Clustering involves variable
selection, standardization and variable reduction using principal
components analysis (PCA). Clustering is performed on
extracted component scores (PCs). The accuracy of clustering
is tested through Calinski-Harabasz (CH) pseudo-f-statistic
index. Similarities and separations of DDH and EPI in the
climate clusters are statistically tested. (e) In order to evaluate
potential climate responsive strategies, bioclimatic zoning of
Ethiopia is presented. The bioclimatic zoning is created using an
improved Mahoney’s method that incorporates solar radiation.
A comparative assessment of the new climate zoning with
Mahoney’s bioclimatic classification is presented. A summary
of passive design strategy recommendations applicable to each
climate zone is created. Additionally, the robustness of the
proposed zones to climate change is discussed considering
representative locations. A Step-by-step methodology of the
study is presented as follows.

Data Selection and Processing
Variable Selection
Current climate classifications in Ethiopia are either based on
altitude (the traditional agro-ecological climate classification),
or a combination of temperature and rainfall (Köppen Geiger
climate classification). In this study, climate variables that
influence building thermal performance are given precedence.
A raster data of 30” resolution is sourced from WorldClim
repository (Fick and Hijmans, 2017) for temperature and solar
radiation variables (Fick and Hijmans, 2017). RHµ data in 10’
resolution is obtained from CRU CL v. 2.0: (A high-resolution
data set of surface climate over global land areas) (New et al.,
2002). The confidence level of climate variables (Tmax, Tmin, Tµ,
RHµ, and Iµ are iteratively tested. Pilot clusters are developed
using Iso-cluster unsupervised classification in combination with
the maximum likelihood classification. Various climate variable
combinations are considered and the confidence level of variables
evaluated. The climate clusters developed using Tmax, Tmin,
RHµ, and Iµ yielded the best confidence levels. The clusters
developed with Tµ fail to differentiate moderate locations with
low diurnal temperature range and hotter locations with high
diurnal temperature ranges.

Data Pre-processing
Relative humidity datasets are interpolated into a high-resolution
raster dataset from a 10-min resolution ASCII file. Since the units
of each variable group vary, the input data is standardized to (z)

data ranging from a minimum value of (0) and a maximum value
of (1) using the following equation.

z =
(x− oldmin)× (new max− newmin)

(old max− old min)
+ new min (1)

The standardization is based on the assumption that all variables
contribute equally to the variance inherent in the clusters
(Fovell and Fovell, 1993). The resulting standardized variables
are combined in a composite band raster dataset containing 48
bands. Bands 1–12 represent standardized scores of Tmax from
January to December. Bands 13–24 contain standardized Tmin,
bands 25–36 represent standardizedmonthly RHµ and bands 37–
48 represent standardized monthly Iµ values. These variables are
exported as a point data for further analysis.

Variable Reduction
Multivariate data exhibits complex relationships among different
variables. A similarity check is performed using Pearson’s
correlation to evaluate redundancy among input variables. A
correlation matrix reveals a significant relationship among
multiple variables (result not included). This correlation
indicates that a variable reduction is necessary before cluster
analysis. This study employs PCA as the dimension reduction
technique. PCA is a multivariate statistical technique (Wilks,
2011) that creates uncorrelated variables from the linear
transformation of original variables and a transposed eigenvector
matrix. Given a data matrix X (n locations and p variables),
PCA reduces p variables X1, X2, . . . , Xp into fewer (k) principal
components while retaining as much information as the original
p variables in reproducing the total system variability (Johnson
and Wichern, 2007). The estimation of principal components or
non-correlated linear transformations Y = (Y1, Y2. . . Yp) for a
random vector X’ = (X1, X2. . . Xp) having covariance matrix
Σ or correlation matrix ρ, eigenvalues λi, (i=1, 2, . . . p) and
eigenvectors ei is given as (Johnson and Wichern, 2007):

Yp = ep 1X1 + ep 2X2 + . . . + ep pXp (2)

The first few PCs with the highest variance are termed as
principal components. PC1 is constrained to the condition eT1
e1 =1, while PC2 is constrained to the condition covariance
(PC1,PC2) =0 (Ramos et al., 2017) and eT denotes transpose of
the eigenvector matrix.

Climate Severity Assessment
climate severities in the country are investigated though annual
summaries of Tµ, RHµ, and Iµ. Additionally, derived variables
such as monthly average diurnal temperature range (1T) is
also used.

Real-Time Thermal Performance
Measurement of Representative
Residential Buildings
Indoor climate data consisting of air temperature and relative
humidity are collected from sample residential buildings in three
cities (Addis Ababa located at 8.9806◦ N, 38.7578◦ E, Bahir Dar
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FIGURE 1 | Temperature and humidity data loggers used for indoor measurements. (A) UNI_T temperature and humidity data logger, (B) HTC Easy Log

humidity/temperature data logger, (C) Elitech RC-51 High Accuracy USB Temperature Data Logger, and (D) Fulcrum temperature and humidity pdf data logger.

at 11.5742◦ N, 37.3614◦ E, and Nekemte at 9.0893◦ N, 36.5554◦

E). These cities are located at an elevation of 2,355, 1,800, and
2,088m above sea level.

The measurements are taken at a sub-hourly interval of
10min. In addition to indoor measurements, one data logger
is deployed outdoors to make direct comparisons of indoor
and outdoor conditions. Thermal performance is analyzed
by investigating temperature (T), relative humidity (RH),
temperature difference (Tdiff), diurnal temperature range (1T),
and thermal damping (Td). Figure 1 shows the devices used for
the assessment. The third logger (1c) only measures temperature
while the others measure both temperature and humidity.

All software used to handle modeling, simulation, and post-
processing of climate data are either free or are licensed to IIT
Roorkee. ArcGIS 10.5 software licensed to IIT Roorkee is used to
process spatial data.

Representative Houses
In Addis Ababa and Bahir Dar, the selected typology is multi-
family low-rise condominiums. The height of these buildings
vary from two to seven stories. Each flat’s functional designs share
similarities in the size of rooms, openings, and circulation areas.
Figure 2A presents the plan layout of a typical condominium
block in Addis Ababa. This building contains three of the houses
(AA_H1, AA_H5, and AA_H6) in the field study.

Figure 2B presents a photograph of the building
discussed above (Figure 2A). This photograph is included
here for visualization purposes and does not represent all
houses surveyed.

Statistical Multivariate Clustering
Unsupervised clustering algorithms are broadly divided into
hierarchical, and partitional (Jain, 2010). Hierarchical methods
create nested clusters either by using agglomerative (AHC) or
divisive (DHC) techniques. The k-means algorithm is one of the
widely used partitional clustering techniques. Compared to other
methods the k-means method performs well for large datasets
(Kidson, 2000). The k-means clustering algorithm divides n
points in p dimensions into K clusters through minimizing the
within-cluster sum of squares (Hartigan and Wong, 1979). It
works by combining two steps: first the initial cluster centroids
are estimated, and then the distance between cluster centroids
and data points are calculated (Malinen et al., 2014). Cluster
centroids are moved each time a new iteration is run until

the centers become stationary. The first seed location is taken
randomly while the rest are taken by using an optimized
initialization technique also known as k-means++ (David and
Vassilvitskii, 2006) which ensures separation between seeds in
the attribute space. Multiple iterations are tested before final
decision is made. The algorithm uses Euclidean distance to group
data points (Arora et al., 2016). Euclidean distance estimates the
distance between object (i) and group centroid (C) as:

d =

√

√

√

√

V
∑

i=1

(xi− xC)2 (3)

Multivariate clustering results in varying clusters even while
using the same data due to the randomness of initialization. A
measure of effectiveness is required to ensure the accuracy of
the clustering.

Cluster Evaluation
There is no unified technique to ascertain the accuracy of
unsupervised classifications. The difficulty arises from the
variations in the clustering algorithms, methods, and input
variables (Kumar et al., 2006). Another reason is that in
unsupervised techniques there is no prior knowledge about the
type and number of classes. In this work, accuracy of clustering
is evaluated using two methods: pseudo-f-statistic is used to
solve the number of groups problem, and building performance
assessment is used to evaluate the clustering robustness.

Pseudo-F-Statistic
CH pseudo-F-statistic is an indicator to measure the grouping
effectiveness and suggest optimum number of clusters (Caliński
and Harabasz, 1974). It is a ratio reflecting within-group
similarity and between-group difference. Higher pseudo-f-
statistic values indicate ideal number of classes. The ratio is
expressed as:

CH =

(

R2/nC − 1
)

(

1− R2
)

/ (n− nC)
(4)

Where:

R2 =
SST − SSE

SST
(5)
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FIGURE 2 | A typical floor layout of a condominium block in Addis Ababa. This building contains studio type apartments (light blue), one-bed type apartments (light

green), and two-bed type apartments (light yellow). (A) Floor plan, (B) Photograph of the building (Photo by Mekides Worku).

SST measures the total sum of squared differences, and SSE
represents sum of the squared errors in ith group, reflects within-
group similarity.

SSE =

nc
∑

i=1

ni
∑

j=1

nv
∑

k=1

(vkij − vtk)
2 (6)

where, n is the number of features. The number of
features in group i is given as ni, while nc stands for
the number of classes (groups), and nv is the number of
variables used to group features. vkij represents the value

of the kth variable of the jth feature in the ith group,

and vtk is the mean value of the kth variable in group
i. SST is also calculated using a similar equation but
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substitutes the mean value of the kth variable, (vk) instead

of vtk.

Building Energy Performance Assessment
In recent years, building energy performance is being used as an
indicator to evaluate the relevance of climate zones. One such
attempt uses the mean percentage of misclassified areas (MPMA)
to identify overlap of climate zones based on discomfort hours
(Walsh et al., 2018). This method demonstrated good results
when the number of classes is few (2-4 zones) and the geographic
area is small. In a similar note, Xiong et al. (2019) used building
heating and cooling load to verify a hierarchical climate zoning.
In this study, validation of climate zoning is done through a
statistical comparison of heating and cooling DDH, and EPI.
Two residential units from the Integrated Housing Development
Program of Ethiopia are modeled using energyplus software tool.
The first (case 1) is a one-bed room condominium house. The
second (case 2), is a single room studio. Two alternatives a low
mass (case 1a and 2a) and a high mass (case 1b and 2b) are
generated. The low mass buildings are modeled according to
the existing specifications of the integrated housing development
program of Ethiopia (Table 1). High mass building is generated
by modifying kappa value (κ) of walls without altering the U-
value and reducing the window-to-wall ratio (WWR) as shown
in Table 1. Hourly simulations are performed at 1,490 locations
across Ethiopia with an approximate grid interval of 27 x 27 km.
The hourly weather data for simulations are synthesized using
Meteonorm software tool verified with available ground station
data. For each location, simulations are performed for four cases
(cases 1a, 1b, 2a, and 2b) operated in free running (natural
ventilation) and mixed mode scenarios. This resulted in 11,920
simulation runs. DDH and EPI are extracted from the simulation
output using a python post processing script developed by the

authors. The results are interpolated using the geospatial analyst
tool in ArcMap 10.5.

The discomfort degree hours are estimated as the difference
between the adaptive comfort neutral temperature and the
zone air temperature. Neutral temperature is calculated from
the running mean outdoor temperature through Nicol and
Humphrey’s equation (Nicol and Humphreys, 2010). Upper and
lower comfort temperature limits are determined by adding
±3◦C for moderate expectation, as demonstrated by Rajasekar
et al. (2015). The whole process was automated using a python
post-processing script to reduce errors. The cooling DDH is the
cumulative fraction of the inside air temperature that is more
than adaptive comfort neutral temperature. Heating DDH is the
cumulative fraction of indoor temperature that is less than the
adaptive comfort neutral temperature. EPI is the annual energy
consumption of a building per unit area in kWh/m2/year (BEE,
2017).

FIGURE 3 | Scatterplot of the diurnal temperature range (x-axis) and thermal

damping (y-axis).

TABLE 1 | Details of building typology selected for analysis.

Building details Case 1a Case 1b Case 2a Case 2b

U –Value (W/m2K) 1.78 1.75 1.78 1.75

Wall Thickness (mm) 225mm 325mm 225mm 325 mm

WWR (%) 25% 10% 25% 10%

Kappa (kJ/m2K) 74 217 74 217

Shade no 0.5m No 0.5 m

Natural Ventilation conditions

Ventilation- Indoor set point 24oC 24oC 24oC 24oC

Ventilation-Minimum Outdoor Temperature 18oC 18oC 18oC 18oC

Ventilation-Maximum Outdoor Temperature 35oC 35oC 35oC 35oC

Delta T 0oC 0oC 0oC 0oC

Natural ventilation mode Temperature Controlled

Air conditioning operation schedule

Bedroom 22:00 to 06:00 h 22:00 to 06:00 h - -

Living 06:00 to 22:00 h 06:00 to 22:00 h

Studio - - 24 h 24 h

Floor and roofs are modeled as adiabatic, while occupancy is kept similar for all cases.
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Bioclimatic Zoning
Bioclimatic zoning is performed using Mahoney’s method. This
method takes monthly temperature, humidity, and precipitation
data to analyze thermal severity, identify remedial actions
(indicators), and recommend passive building design strategies.
This method is suitable for applications on high-resolution
monthly data.

Uncertainties in Multivariate Clustering
Uncertainties in cluster analysis can occur due to a combination
of factors. Among these are uncertainties due to methodological,
latent, and information biases (Fovell and Fovell, 1993). The

FIGURE 4 | Scree plot of eigenvalues.

methodological biases are discussed in section Data Selection
and Processing above. Measurement related errors are also dealt
with through standardization of the variables in the data pre-
processing stage.

Data Related Errors
Two types of climate data are used in the study. The first type of
data is a monthly spatial raster and vector data. Root mean square
error (RMSE) of Tmax is 1.29◦C, while Tmin has an RMSE of
1.39◦C, and Iµ 1.45MJ/m2. Errors associated with RH is reported
as the square root of generalized cross validation (RTGCV). Over
the domain of North Africa including Ethiopia, monthly RTGCV
of RH is reported between 4.6 and 5.6% (New et al., 2002).
Further interpolation of RH from 10’ to 30” spatial resolution
results in RMSE below 0.6%. The second type of data is TMY
datasets synthesized from Meteonorm for hourly simulation
of building performance. Meteonorm uses a combination of
interpolation and stochastic models (Meteonorm, 2018). Errors
of interpolation associated with the yearly means of these
datasets, as given in the Meteonorm handbook II are discussed
here. Cross-correlation of measured and interpolated values is
used to calculate the RMSE for individual variables. Accordingly,
relative RMSE of Iµ over Africa is reported as 7.4% while RMSE
of temperature is estimated at 1.8◦C.

RESULTS

Climate Severity
In Ethiopia, TAµ varies from 12 to 30oC. RHAµ varies from
45% to 76%. IAµ varies between 4.8 KWh/m2/day and 6.4
KWh/m2/day. The central parts of the country are characterized

FIGURE 5 | Final climate clustering.
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by highlands and plateaus resulting in lower temperatures. An
exception to this is the central rift valley that intersects the
country in a northeast to southwest axis. Regions in the rift valley
exhibit warm to hot temperatures with varying humidity. The
highest values of IAµ occur in the eastern and northern parts of
the country.

The variations of temperature range (1T) indicate both spatial
and temporal differences (map not included). Some parts of
Tigray and Amhara regional states exhibit high levels of 1T
(>15◦C) in winter as well as summer. Some climate severity
indicators like the Mahoney’s method consider a 1T that is
>10◦C as high. Accordingly, only small parts of the country
in the Northeast indicate low levels of temperature swings in
January and western and southwestern regions in June.

Thermal Performance Measurement of
Representative Residential Buildings
The types of houses studied in Addis Ababa, and Bahir Dar
share common characteristics. For one, these houses are public
condominiums constructed under the IHDP scheme. These
buildings have similarities in design, construction materials, and
overall layout of the buildings themselves. The site settings of
these buildings also share a similarity. Both sites are located
in outrebounds of the respective city and have an open plan
with ample spacing between buildings allowing for unobstructed
access to sunlight and air movement. Keeping these factors in

mind, a direct comparison of thermal characteristics between
Tdiff, 1T, and Td of all houses in these locations is made.

A general comparison shows the variation in thermal
performance across cities and similarity within a given city.
A thermal damping comparison between the three locations
indicate that there is a visible difference between Td in all three
locations. In Addis Ababa, the mean Td is 85%, while Td in Bahir
Dar is near 60%. Nekemte houses have the lowest Td at < 40%.

Figure 3 presents 1Tin against Td of all locations. Houses in
Addis Ababa have a short range of 1Tin as well as Td. On the
other hand, Bahir Dar houses show the broadest range of 1Tin,

while Nekemte houses have a larger spread indicating a weak
relationship between 1Tin and Td.

Since the houses in Addis Ababa demonstrated a better
thermal performance, a representative house is selected for
further analysis through simulations.

Climate Zoning Through Multivariate
Clustering
Principal Components Analysis
A strong correlation among temperature variables is reflected in
the resulting principal components. Optimum number of PCs
is estimated using the scree plot. As indicated in Figure 4, the
first four PCs are well-separated from the rest. Among 48 layers,
four dimensions in the component space account for 93.7% of the
variance. Individually, PC1, PC2, PC3, and PC4 account for 53.9,
18.6, 11.3, and 9.9% of the variance respectively. The component

FIGURE 6 | Parallel box plot of four principal components.
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loadings reveal the variable groups represented in each extracted
PC (Appendix a).

The component loading on the first PC explains Tmax and
Tmin of all months. PC two explains RHµ and August Iµ at |R|
> 0.60. PC 3 represents Iµ of the months March to June and
October to November. The fourth PC shows correlation with
late summer RHµ and winter Iµ. Additionally, the communality
shows all input variables are well-represented (> 84%) in the
extracted PCs. The variable with the lowest variance explained by
all PCs is Iµ for November at 72%, followed by RHµ of September
at 76%.

The latent variables on the extracted PCs are shown in
Appendix b (PC1 to PC4) while the last principal component
before extraction (PC48) is displayed for comparison.

Climate Clustering
Grouping is performed iteratively to determine the optimum
number of groups inherent in the data. At each stage (number of
groups k= 2,. . . 15), 10 iterations are run each yielding a different
pseudo-f-statistic value (CH index). The highest mean pseudo-f
value is used to determine the optimum number of groups. Based
on the pseudo-f-statistic, a 10 class-clustering yields the best
results for the current data. However, the differences between 6
and 10 group classification is minimal. In order to investigate this

the clustering is repeated by varying the number of groups from
6 to 13. The 6-group classification results in a much-generalized
climate zoning and fails to highlight sub zones. On the other
hand, any classification that has more than 10-groups is left out
due to smaller mean pseudo-f-statistic.

Figure 5 presents the final climate clustering of Ethiopia
obtained by this method. The country is grouped into 10 zones
based on the highest mean CH index. Some of the zones such
as CZ3 and CZ4 correspond to the altitude. However, some
of the larger geographical swathes with similar altitude are sub
categorized. For instance, climate zones CZ8 and CZ9 in the
western lowlands have a similar elevation. This is in contrast
with the existing agro ecological climate zoning, which groups
geographies based on altitude similarity.

A parallel box plot of principal components used for the
clustering is presented in Figure 6. The graph indicates the
overlap and separation between each class in terms of the four
PCs. It is evident that each group is separated from others at
least in one input (PC). The use of optimized seed initialization
proves significant by producing less variability of pseudo-f-
statistic values as compared to random seed selection. The
difference between themaximum andminimumCH index values
is 68,187 for random seed selection, and 40,656 for optimized
seed selection.

FIGURE 7 | Annual climate summary of new climate zones: (A)maximum temperature; (B)minimum temperature; (C)mean relative humidity; (D)mean solar radiation.
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FIGURE 8 | Comparison between measured vs. simulated (A) Tin maximum of Case 1a, and (B) Tin minimum of Case 1a.

Cluster Evaluation Through
Pseudo-F-Statistic
A statistical summary of pseudo-f-statistic values for groups
between 2 and 15 is presented in Appendix c. The f-statistic
values remain significantly lower for K <=4. On the other hand,
for K > 10 these values show a decreasing trend. Since the
maximum and minimum values represent extreme conditions,
the highest mean value is considered to be better in the
current analysis.

Climate Profile of the New Zones
A statistical summary of TmaxAµ, TminAµ, RHAµ and IAµ of
the proposed climate zones is presented in Figures 7A–D.
As indicated, a difference between medians and distributions
are observed.

Assessment of Clusters Through Building
Simulations
The robustness of the climate zones is verified by comparing
the spatial profiles of DDH and EPI. The purpose of this is to
test if there is a significant difference in cooling DDH, heating
DDH, and EPI between each of the proposed climate zones. It
works under the assumption that different climate conditions
lead to varying levels of discomfort and thermal performance
requirements for a similar building.

Validation of the Base Case
The correlation between the measured outdoor temperature
and relative humidity and the locations outdoor climate data
is tested. The result shows a significant relationship. For
instance, in Nekemte, a simple regression analysis of Tout

between measured and climate station data shows a positive
correlation (R2 = 0.94) and RHout shows a positive correlation
(R2 = 0.92). A paired sample t-test shows, at the 95% CI, the
differences between measured Tout and station data Tout are
< 0.2◦C.

Validation of the model is performed on the low-thermal
mass 1-bed type apartment (Case 1a). The inside air temperature
taken from the field measurement in Addis Ababa (Haile
Garment condominium site) is compared with the same room’s
simulated Tin. Climate data for the simulation is selected from
a nearby location to the actual location of the building. Since
the simulation model is designed according to the existing
building, the validation doesn’t include different scenarios
(for instance, optimizing various aspects of the model to
enhance performance).

Figure 8A presents a line graph comparing the base
case’s maximum inside air temperature (Case 1a). The result
shows that the model fits the measured values significantly.
At 95%CI, the difference between measured and simulated
Tin_Max is between 0.4 and 1.2◦C. A 2-sample standard
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FIGURE 9 | Maps of annual total cooling degree discomfort hours (A) case 1a, (B) case1b, (C) case 2a, and (D) case 2b.

deviation test for the measured Tin_Max and simulated
Tin_Max is performed. The result shows at the 0.05 level;
there is no significant difference between standard deviations
of measured Tin_Max and simulated Tin_Max (P = 0.431).
A simple regression analysis between Tin_max measured
and Tin_max simulated indicated a positive correlation
(r = 0.69).

A similar analysis on measured and simulated Tin_Min is
performed. At the 95%CI, the difference between Tin_Min

measured and Tin_Min simulated is below 1.01◦C at the highest.
Once again, a 2-sample standard deviation test for the measured
Tin_Min and simulated Tin_Min is performed. The result shows
at the 0.05 level; there is no significant difference (P = 0.43).
Figure 8B compares simulated and measured minimum inside
air temperatures in Case 1a.

The differences observed above do not solely result from
the error in modeling. The raw climate data itself has
some inherent differences from the actual measured outdoor
climate. The difference stems from (a) climate data for
simulation represents a typical meteorological year (TMY)
while measured data only represents instant data. (b) the
meteorological stations are not located at the building site,
and slight variations are expected. Considering these, the
building model is validated for further batch processing
and analysis.

Limitations
Though the houses used in this analysis are considered
representative of emerging residential trends in the country,
they are not enough to account for the vast traditional building
practices throughout Ethiopia.

Cooling Degree Discomfort Hours
The cooling DDH in this context indicates hot thermal stress
that requires cooling. Figure 9 presents the geo-spatial profile of
cooling DDH for case 1a, 1b, 2a, and 2b.

A case-by-case analysis of cooling degree discomfort hours
partially reveals the variation between some groups. For instance,
in (case1a) distribution of cooling DDH for climate zone 3 and 4
show a considerable difference in terms of both medians as well
as distribution. However, these variations are not pronounced
between other zones, as is indicated between zone 2 and 7.

Heating Degree Discomfort Hours
The heating DDH in this context indicates cold thermal stress
which requires heating. Heating DDH is found to significantly
vary among the proposed climate zones (figure not included).
Testing of similarities and differences in building performance
necessitated the building layout and specifications to be kept
consistent across all the 1,490 locations. Though it poses certain
practical limitations, this is essential for assessing the climate
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TABLE 2 | Statistics of mean daily cooling and heating degree discomfort hours for each house type.

House type Thermal mass Climate zone Cooling degree discomfort hours Heating degree discomfort hours

Mean P5* P95* Mean P5 P95

House type 1 (1bed) Low thermal mass CZ1 5.4 1.7 15.9 70.7 35.3 87.1

CZ2 4.7 1.9 12.8 61.3 37.1 75.6

CZ3 2.0 1.3 3.5 90.2 72.2 118.3

CZ4 43.3 8.1 70.0 23.2 8.1 54.9

CZ5 33.1 8.0 48.9 15.4 5.4 44.9

CZ6 20.1 1.9 39.6 41.6 12.9 74.7

CZ7 5.6 1.6 15.5 68.7 36.2 108.8

CZ8 25.7 4.4 48.9 34.3 14.0 74.4

CZ9 25.7 3.2 57.1 35.5 15.3 72.4

CZ10 2.5 1.7 4.1 80.4 67.0 98.1

High thermal mass CZ1 2.6 1.6 6.1 104.1 47.9 131.6

CZ2 2.2 1.7 4.4 85.3 51.2 111.4

CZ3 1.7 1.4 2.0 136.9 106.5 177.5

CZ4 28.1 2.9 49.9 35.8 15.4 77.5

CZ5 16.0 2.0 28.3 24.8 11.5 62.6

CZ6 9.3 1.6 21.3 60.9 21.7 109.9

CZ7 2.4 1.5 6.6 102.7 51.6 163.8

CZ8 12.9 1.8 31.5 49.6 21.9 109.8

CZ9 12.9 1.7 38.0 52.5 24.1 107.1

CZ10 1.8 1.6 2.0 119.0 96.9 150.1

House type 2 (Studio) Low thermal mass CZ1 2.7 1.5 7.0 81.0 37.4 99.8

CZ2 2.3 1.5 5.4 68.2 39.2 88.4

CZ3 1.6 1.3 2.0 105.4 82.7 136.3

CZ4 27.8 2.6 52.0 22.8 6.7 59.3

CZ5 17.9 2.2 30.7 17.1 6.5 48.1

CZ6 8.8 1.5 20.2 46.9 14.5 89.1

CZ7 2.4 1.4 7.1 74.9 37.5 124.1

CZ8 13.8 2.0 30.2 37.7 14.2 88.9

CZ9 13.4 1.6 37.2 38.0 13.5 86.7

CZ10 1.7 1.5 2.1 94.4 75.6 116.3

High thermal mass CZ1 3.2 0.5 11.8 93.2 41.2 116.1

CZ2 2.9 0.7 10.8 76.7 43.5 100.2

CZ3 0.7 0.4 1.3 123.8 96.3 163.1

CZ4 37.3 2.6 66.2 24.9 6.0 69.1

CZ5 29.1 6.5 43.4 16.0 3.5 55.1

CZ6 15.0 0.7 32.4 51.1 12.4 100.7

CZ7 3.3 0.5 10.3 88.7 41.3 149.2

CZ8 22.4 4.4 41.1 41.8 12.3 98.6

CZ9 23.2 3.0 51.4 42.0 14.2 98.3

CZ10 1.3 0.4 2.8 108.1 87.4 135.1

*P5, P95 represent the 5th and 95th percentile respectively.

impact. Further discussions and interpretations related to the
performance of high mass and low mass buildings at different
locations are limited in this paper considering the intent of
the simulations.

A statistical comparison of climate clusters based on cooling
DDH and heating DDH confirms a significant difference among
different climate clusters (Table 2).

Energy Performance Index of Climate
Zones
The geospatial profile of EPI for the four cases is presented
in Appendix d. CZ4 is associated with higher EPI followed by
parts of CZ5, CZ6, CZ8, and CZ9. CZ3 is associated with lowest
EPI. As indicated in these maps, EPI varies from case to case.
To understand the relationship between the climate zones and
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combined EPI, mean EPI of all cases is calculated (maps not
included). The results show similar trends for individual cases.

Figure 10 presents the case wise statistical summary of annual
EPI for the proposed climate zones. These results highlight
the statistical difference in EPI between climate zones and
reinforce the findings presented in Figure 10. CZ4 and CZ5
have higher EPI values across all cases. However, CZ4 shows
wider distribution from the mean compared to CZ5. Compared
to all zones CZ6 has the widest distribution of EPI. A further
investigation of cooling DDH and heating DDH of this particular
climate zone indicates high seasonal variability. Climate clusters
CZ4 and CZ5 show higher mean EPI while CZ2 and CZ10 show
lower mean EPI values.

A one way between-clusters ANOVA of EPI shows significant
differences among the means at the p = 0.05 level. Additionally,
pairwise comparisons aimed to analyse the overlap or separation
of clusters based on EPI show significant differences (P < 0.001)
between each cluster. Table 3 presents the climate zone wise
EPI summary for case 2 as an example. At the mean and
95% confidence interval EPI of every cluster is significantly
different. Similar results are observed for the other cases
(case 1, 3 and 4).

Mood’s median test is performed to check the separation
between clusters. In this test, median values of EPI for case
4 are compared across climate clusters. At p = 0.05 level the
medians of EPI are significantly different across climate zones

TABLE 3 | Grouping information using the Tukey method and 95% confidence.

Climate zone Mean EPI_HM Grouping

CZ5 100.0 A

CZ4 93.8 B

CZ8 77.1 C

CZ9 72.8 D

CZ6 60.2 E

CZ7 30.6 F

CZ1 26.6 G

CZ2 22.4 H

CZ3 19.3 I

CZ10 17.5 J

Means that do not share a letter are significantly different.

FIGURE 10 | Energy performance index (EPI) comparison (A) case 1a, (B) case1b, (C) case 2a, and (D) case 2b.
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with (P < 0.001). Statistical summary of medians is presented in
Table 4. The Mood’s median test does not assume normality.

Bioclimatic Zoning Through Mahoney’s
Method
The bioclimatic zoning of the country represents the overall
passive design strategies recommended individually. Each zone
represents places that share similar sets of passive design
strategies and in turn, similar climatic preconditions. The
eight recommended specifications (a-h) are overlaid with solar

TABLE 4 | Mood’s median test: EPI of case 4 vs. climate zone.

Climate Median N <= N > Q3–Q1 95%

zone Overall Median Overall Median Median CI

CZ 1 17.8 103952 28,826 22.7 (17.7, 17.9)

CZ 2 15.2 146632 26,843 18.5 (15.2, 15.4)

CZ 3 16.3 104444 5,935 9.2 (16.3, 16.4)

CZ 4 99.0 9,767 143410 21.9 (98.9, 99.1)

CZ 5 107.2 7019 169686 11.0 (107.1, 107.2)

CZ 6 84.1 81,305 128664 81.1 (84.0, 84.2)

CZ 7 24.4 46,100 16,410 23.5 (24.2, 24.5)

CZ 8 82.6 13,124 89,477 47.8 (82.4, 82.8)

CZ 9 79.1 10,063 54,435 43.4 (78.6, 79.4)

CZ 10 14.9 144590 3,310 6.9 (14.9, 15.0)

Overall 38.9

radiation groups to create the final bioclimatic strategy group
(Figure 11). The methods and resulting bioclimatic zones
are documented in a previous work (Zeleke and Rajasekar,
2020). Here the bioclimatic zoning is presented to provide
a comparison.

Comparative Analysis Between the New
Climate Zones and Bioclimatic Zones
This section presents a comparison between bioclimatic zones
and the new climate zones in Ethiopia. Each climate zone
includes a minimum of five bioclimates zones. Since the number
of bioclimate zones is higher than climate zones, this result is
not unexpected. This comparison is performed after discretizing
both datasets to the district level administrative boundary. Six
bioclimatic zones (16a, 7b, 10b, 19b, 13c, and 14c) are found in
single climate zones. However, some bioclimatic zones such as
17b are found in as many as seven climate zones.

Energy Efficient Design Strategy
Recommendations for Climate Zones
Based on the results of this research, the following general
strategies are recommended. In colder climate zones, including
CZ3 and CZ10, the use of passive solar heating is encouraged.
This is especially important in CZ7, where the cold climate
is complimented with relatively high solar radiation. In hotter
zones such as CZ4, design strategies that maximize natural
ventilation and solar shading are recommended. In extremely
cold zones (CZ3) where passive solar heating is unattainable and
extremely hot humid zones, HVAC can be used coupled with

FIGURE 11 | District-level discretization of modified bioclimatic strategy groups (An expanded legend is presented in Appendix e).
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high thermal mass design. A list of useful bioclimatic strategies
for each climate zone is summarized based on the statistical
majority (Appendix f). This analysis is meant to provide a
simplified representation of design strategy combinations in each
climate zone. However, since most of the climate zones cover
large geographic areas, a more comprehensive summarization of
strategies as well as climate zones to the smallest administrative
boundary is performed (table not included).

CONCLUSIONS

This study presented a multivariate climate clustering of Ethiopia
using high-resolution climate datasets for building energy
performance applications. The clustering was performed using
the k-means algorithm coupled with the k-means++ initial
cluster centroid selection method. Reduction of redundant
variables was performed using PCA and four PCs were extracted
(Figure 4). Calinski-Harabasz pseudo-f-statistic identified the
optimum number of groups as 10 (Appendix c). The use of
optimized seed initialization proves significant by producing
less variability of pseudo-f-statistic values as compared to
random seed selection. The optimized algorithm results in robust
climate clusters with resemblances to known climate zones with
extreme features while introducing new zones. Robustness of the
proposed climate clusters is evaluated by analyzing the cooling
DDH, heating DDH and EPI of representative residential cases.
These values are obtained through 11,920 runs of building
energy simulations performed by considering alternate building
layouts, thermal characteristics and operational scenarios for
1,490 locations across Ethiopia. A significant difference in DDH
and EPI between climate zones was demonstrated. This study
highlights the need to include monthly maximum and minimum
temperatures, mean relative humidity and mean solar radiation
in the climate zoning for building energy efficiency purposes.
The use of multivariate clustering on a high-resolution climate
data can be a better alternative to station based clustering used
in combination with other supervised interpolation techniques,
which might increase uncertainties. The results of this research
can be used as a step toward building performance regulations
related to building performance, energy efficiency, and usage and

will have a potential effect on architectural and urban design for
Ethiopia. The results of this study can be used to inform design
at the front end and drive the adaptation of climate responsive
strategies. However, further tests incorporating other building
types and operational characteristics are essential for evolving
thermal performance criteria for the proposed climate zones.

Limitations of the Study
This study is limited to exploring a data-driven climate
classification of Ethiopia for building energy performance
applications. The dimension reduction technique adopted in
the study (PCA) assumes a linear relationship between climate
variables. The study did not take into account the effects of
vegetation cover, availability of open spaces, and differences
of rural/urban microclimate due to urban heat island. The
effects of the number of residents on heating/cooling is also
not investigated.
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