
ORIGINAL RESEARCH
published: 31 January 2022

doi: 10.3389/frsc.2021.791595

Frontiers in Sustainable Cities | www.frontiersin.org 1 January 2022 | Volume 3 | Article 791595

Edited by:

James Evans,

The University of Manchester,

United Kingdom

Reviewed by:

Prashant Rajput,

Banaras Hindu University, India

Tomiwa Sunday Adebayo,

Cyprus International University, Cyprus

*Correspondence:

Elisa Coraggio

elisa.coraggio@bristol.ac.uk

Specialty section:

This article was submitted to

Governance and Cities,

a section of the journal

Frontiers in Sustainable Cities

Received: 08 October 2021

Accepted: 21 December 2021

Published: 31 January 2022

Citation:

Coraggio E, Han D, Gronow C and

Tryfonas T (2022) Water Quality

Sampling Frequency Analysis of

Surface Freshwater: A Case Study on

Bristol Floating Harbour.

Front. Sustain. Cities 3:791595.

doi: 10.3389/frsc.2021.791595

Water Quality Sampling Frequency
Analysis of Surface Freshwater: A
Case Study on Bristol Floating
Harbour
Elisa Coraggio*, Dawei Han, Claire Gronow and Theo Tryfonas

Department of Civil Engineering, University of Bristol, Bristol, United Kingdom

Water quality monitoring is essential to understanding the complex dynamics of water

ecosystems, the impact of human infrastructure on them and to ensure the safe use of

water resources for drinking, recreation and transport. High frequency in-situ monitoring

systems are being increasingly employed in water quality monitoring schemes due to their

much finer temporal measurement scales possible and reduced cost associated with

manual sampling, manpower and time needed to process results compared to traditional

grab-sampling. Modelling water quality data at higher frequency reduces uncertainty

and allows for the capture of transient events, although due to potential constraints of

data storage, inducement of noise, and power conservation it is worthwhile not using

an excessively high sampling frequency. In this study, high frequency data recorded

in Bristol’s Floating Harbour as part of the local UKRIC Urban Observatory activities is

presented to analyse events not captured by the current manual sampling and laboratory

analysis scheme. The frequency components of the time-series are analysed to work

towards understanding the necessary sampling frequency of temperature, dissolved

oxygen (DO), fluorescent dissolved organic matter (fDOM), turbidity and conductivity as

indicators of water quality. This study is the first of its kind to explore a statistical approach

for determining the optimum sampling frequency for different water quality parameters

using a high frequency dataset. Furthermore, it provides practical tools to understand

how different sampling frequencies are representative of the water quality changes.

Keywords: sampling frequency, water quality, monitoring network design, high frequency data analysis, wireless

sensor network (WSN)

INTRODUCTION

The ability to monitor water quality is critical to managing precious freshwater resources
for drinking water, recreation and ecosystem support purpose. As climate-related and other
anthropogenic impacts on water quality increase, it is more andmore important to be able to design
monitoring networks that provide real time information on water quality, and track short, medium
and long term changes in water quality.

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://doi.org/10.3389/frsc.2021.791595
http://crossmark.crossref.org/dialog/?doi=10.3389/frsc.2021.791595&domain=pdf&date_stamp=2022-01-31
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elisa.coraggio@bristol.ac.uk
https://doi.org/10.3389/frsc.2021.791595
https://www.frontiersin.org/articles/10.3389/frsc.2021.791595/full


Coraggio et al. Water Quality Sampling Frequency Analysis

Designers of water quality networks (WQMNs) must consider
a range of factors including monitoring locations, water quality
parameters, frequency of sampling, identify human and technical
resources, as well as constraints such as cost, accessibility, data
collection and handling in order to design a program that
meets the overall purpose of the monitoring network (Behmel
et al., 2016). Until the 21st century, water quality monitoring
networks (WQMNs) were typically reliant on manual (grab)
sampling, followed by transportation to a laboratory for chemical
and biological analysis (Strobl and Robillard, 2008; Tapparello
et al., 2017). This provides adequate information for long-
term monitoring of many water quality parameters but it can
become time consuming and costly if needs to provide data
for analysing short-term trends or changes in time and indeed
may be impractical for detecting rapid changes in variables
that are highly sensitive to weather and other environmental
influences, for example turbidity, temperature, conductivity and
dissolved oxygen and dissolved organic matter (Ivanovsky et al.,
2016). These manual networks are highly dependent on human
interaction time to obtain results due to transportation of samples
and potential loss of quality control (Tapparello et al., 2017), and
sometimes during extreme events involve health and safety risks.

Two key technological advances have significantly changed
collection of water quality data and can overcome disadvantages
of manual sampling. The first of these is the use of in-situ
sensors to provide high frequency measurement of a range of
physical and chemical water quality parameters without the need
for labour-intensive grab sampling and laboratory analysis. The
second is the ability to connect these in-situ sensors to wireless
sensor networks, significantly increasing both the amount of data
that can be collected and the ability to observe water quality in
real time (Kirchner et al., 2004; Halliday et al., 2015; Chen and
Han, 2018).

This type of high frequency data supports a range of
applications including water quality forecasting models,
compliance monitoring, baseline characterisation and event
based monitoring. However, a very high volume of data is
not necessarily an advantage as consideration also needs to
be given to capacity to store, handle and process data as well
as associated costs. There is a need to optimise the frequency
vs. manageability of data, however this optimisation will vary
depending on the overall purpose of any monitoring network.
Further, these networks need to be set up in advance, and have
limited flexibility in terms of responding to unexpected events at
different locations.

Naddeo et al. (2007) and Liu et al. (2013) used statistical
techniques to optimise low frequency (monthly or daily) datasets,
and only two studies have been identified that deal with high
frequency datasets (Anvari et al., 2009; Zhou et al., 2018).

This study further explores the issue of frequency optimisation
by applying three different statistical approaches for determining
the optimum sampling frequency for different water quality
parameters using a high frequency dataset. It intends to
determine the minimum frequency required to communicate
periodic fluctuations in water quality and investigate the
additional benefit of recording data at a frequency higher than
the minimum required.

Three approaches are tested: (i) Analysing the frequency
components of each parameter at each site to quantify the
Nyquist frequency and supposed minimum sampling rate for
determination of periodic fluctuations, proposed by Zhou (1996)
and Khalil and Ouarda (2009). (ii) Using spectral analysis to
determine the Power Spectral Density cumulation curve (Otis
and Solomon, 1991) to determine reasonable frequencies to
monitor water quality determinants; for each frequency evaluate
the loss of information (da Silva et al., 2019). (iii) Analysing
the limits of the spectral analysis computing spectrograms using
Wavelet analysis (Torrence and Compo, 1998).

The proposed approaches are tested utilising a high frequency
dataset built from recording continuous physical and chemical
water quality parameters (conductivity, dissolved organic matter,
dissolved oxygen, temperature, turbidity) with multiparameter
sondes at 3 sites in Bristol’s Floating Harbour. This dataset has
been obtained by building on the work of Chen and Han (2018).

In this paper, a background section (section Background)
is presented which reviews the use of wireless sensors in
water quality monitoring networks, the benefits of high
frequency monitoring. The importance of selecting a suitable
sampling frequency is also discussed. In section Materials
and Methods, relevant information about the history and
known dynamics of the Floating Harbour are presented and
the methods of data collection and frequency analysis are
discussed. Results are presented in section Results, followed by
the discussion (section Discussion and Conclusions) about the
suitability and limitations of the different approaches used to
assess and select sampling frequencies and possible areas for
further research.

BACKGROUND

Use of Wireless Sensor Networks for Water
Quality Monitoring
In recent decades, wireless sensor networks (WSNs) have been
developed and are being increasingly deployed by researchers,
councils and commercial companies alike for water quality
monitoring. General WSN system architecture consists of data
acquisition, transmission, processing, storage and redistribution
(Tapparello et al., 2017; Chen and Han, 2018; Hadimani et al.,
2021). Data acquisition is achieved by a network of in-situ
sensor(s) using a given sampling frequency, and these sensor
probes have evolved to now be capable of measurement a
broad range of physicochemical parameters such as conductivity,
turbidity, dissolved oxygen (DO) and pH (Marcé et al., 2016).
Collected data is transferred to the central monitoring hub
by technologies commonly including cellular networks such
as GSM or newer networks including ZigBee or even Wi-Fi.
These networks are expected to continue to develop as the
Internet of Things (IoT) grows commercially and gains research
attention. Once transferred, the data can be processed, stored,
and analysed. Technologies such as these make possible remote
continuous real-time monitoring and visualisation of water-
body quality parameters at fixed locations (Tapparello et al.,
2017; Chen and Han, 2018; Hadimani et al., 2021) and have
been found to better describe water-bodies when compared to
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TABLE 1 | Considerations to address when defining the sampling frequency for a

high frequency WQMN.

Consideration Description

Purpose of the WQMN −Compliance monitoring

−Baseline characterisation

−Building water quality

forecasting models

Water quality parameters time

variability

−Hourly patterns

−Daily patterns

−Seasonal patterns

−Event-based variability

Technology related capabilities −Data storage

−Data transfer

−Data handling

Noise in the dataset

manual methods, allowing the understanding of biogeochemical
processes (Kirchner et al., 2004; Ivanovsky et al., 2016).

WSNs offer much freedom in the selection of frequency for
monitoring water quality parameters, with systems monitoring
at low frequency being prone to uncertainty (Birgand et al.,
2013). A review by Khalil and Ouarda (2009) found that the
use of multiparameter sondes and the much finer possible
temporal sampling resolutions were able to capture transient
events likely to have been missed by grab sampling; this is
particularly important for flashy streams where timing sampling
with peak flow is challenging. However, despite high-frequency
data collection not incurring excessive cost, there are constraints
to data transfer and storage in systems without automated
telemetry (Chappell et al., 2017). Also, too high a monitoring
frequency can return redundant information (Khalil andOuarda,
2009), increasing potential noise in the data, as well as power
demand, increasing capital cost of setting up a renewable source
(e.g., a solar panel) if mains electricity is unavailable. These
considerations necessitate finding a balance in frequency for
analysis of each physicochemical parameter.

Frequency Considerations in Water Quality
Monitoring Network Design
There is no universally accepted method of designing a WQMN
(Strobl and Robillard, 2008), yet it is a general consensus that a
successful design is dependent on the clear definition of system
objectives, which should identify the information to be gathered
(Bartram and Ballance, 1996; Khalil and Ouarda, 2009; Behmel
et al., 2016). The monitoring objectives are often set to provide
the information necessary for water quality management, for
example to meet legislative targets, mitigate immediate threats
to human health, or improve long-term biodiversity and eco-
system quality (Bartram and Ballance, 1996). As summarised
by Strobl and Robillard (2008), monitoring programs must be
designed with consideration given to the type of water body
and classification system, capabilities of the existing network and
pressures and risks associated with that water body. Amonitoring
network can then be designed by selecting (i) The variables to be
monitored, (ii) the spatial arrangement and density of sampling

sites, and (iii) the frequency of measurements to fulfil monitoring
objectives (Bartram and Ballance, 1996; Strobl and Robillard,
2008).

Jiang et al. (2020) highlighted how the quantitative design of
an optimal WQMN is very challenging. Defining the sampling
frequency when designing a water quality monitoring network
has a key role in determining the efficiency of the network,
affecting both data quality and operation costs.

When defining the sampling frequency a range of
consideration should be addressed (Table 1).

The selection of the sampling frequency is influenced by the
purpose of theWQMN. The need for different level of accuracy in
representing the water quality changes according to the purpose
of the WQMN: a network designed for routine water quality
cheques will not need the same accuracy of a network that is
created for water quality forecast or for identification of sources
of pollution.

The sampling frequency changes with the type of parameters
that are selected to be monitored in the WQMN. Different
water quality parameters are affected by different external
factors (i.e., tide, rainfall, solar radiation), hence defining a
unique sampling frequency for the whole monitoring network is
not ideal.

By sampling too frequently the obtained information is
redundant and expensive furthermore will contain noise, while
if the frequency is too low the collected data will represent an
inaccurate water quality pattern (Skeffington et al., 2015).

Approaches to Selection of Sampling
Frequency
There are two main approaches when designing monitoring
frequency for a water quality monitoring network: the low
frequency and the high frequency approach. The low frequency
approach can be useful when the intended outcome of the
monitoring network is to characterise water quality over a long
period to detect seasonal variation or long-term trends. In
these cases, the recommended sampling frequencies range from
monthly to tri-monthly or even half-yearly (Zhou, 1996; Naddeo
et al., 2007; Guigues et al., 2013; Liu et al., 2013; Khalil et al.,
2014). In small study areas or small rivers, a low frequency
approach is not a suitable approach since discharges and
atmospheric events cause more sudden changes in water quality.
In literature, continuous high frequency monitoring strategies
are suggested for small study areas, without providing statistical
explanation to the chosen monitoring frequency (Anvari et al.,
2009; Chen and Han, 2018).

According to Nguyen et al. (2019) qualitative criteria were
used in literature to identify the monitoring frequencies based
on the knowledge or requirements of stakeholders or adapted
from existing regulations as well as quantitative methods such as
confidence interval (CI), entropy, analysis of variance (ANOVA),
and hierarchical cluster analysis (HCA).

Table 2 summarises the optimisation approaches used in
both low and high frequency monitoring studies and the
conclusions drawn in each study in relation to actual vs. optimum
data frequency.
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In this paper three statistical approaches have been used
to define a procedure to establish the appropriate sampling
frequency for water quality parameters to be used when designing
a high frequency monitoring quality network.

The first approach aims at finding the minimum sampling
frequency for each water quality parameter to quantify the
Nyquist frequency and supposed minimum sampling rate for
determination of periodic fluctuations, proposed by Zhou (1996)
and Khalil and Ouarda (2009).

The second approach proposed by da Silva et al. (2019)
is used to determine reasonable frequencies to monitor water
quality determinants and for each frequency evaluate the loss of
information using the spectral analysis. It also used to determine
the optimum sampling frequency in cases where there is no
constant periodicity in the water quality parameter time series.

Lastly, to overcome the limits of the spectral analysis, a
spectrogram is computed using Wavelet analysis (Torrence
and Compo, 1998). This third approach completes the spectral
analysis by adding information both the time and the frequency
domain. The detailed methods for these are described in the
next section.

MATERIALS AND METHODS

Study Area
The historic Floating Harbour is at the heart of Bristol’s city
centre (Figure 1). Constructed in the 19th Century to rival
Liverpool’s shipping capabilities, the harbour is a large standing
body of water retained by systems of locks. The harbour has
evolved to be the setting for many recreational activities, notably
paddle boarding and river cruises, while swimming in the
harbour is not advised due to poor water quality. The old
warehouses and shipping infrastructure have been transformed,
regenerating the area as a tourist attraction and recreational area
with museums, restaurants, and bars. Furthermore, the annual
harbour festival each July brings influxes of visitors and residents
to the harbour for demonstrations on the water, traditional
sailing vessels, and street performances. The water quality in
the harbour is therefore of value not just to the health of the
ecosystem, but also to the city’s heritage, tourism businesses and
the value of adjacent properties.

It is primarily fed by the River Avon, which has most
input into background water quality in the harbour. The
Avon’s catchment drains a large portion of the south west of
England, taking in tributaries from the Cotswolds, Salisbury
Plain and The Mendips before reaching Bristol, therefore having
a number of potential polluting sources upstream including
the sewage treatment works at Saltford and Keynsham and
catchment runoffs (Bristol City Council, 2006). The Avon
is tidal, hence the harbour experiences some limited saline
intrusion through lock operations and spring tide, from the
upstream and downstream locks. Henceforth in this study the
harbour is compared to transitional waters or river systems
where appropriate.

Also, at times of high flow and high tide, Mylne’s culvert
which transports the Bristol Frome beneath the harbour to the
Avon new cut can become tidally locked, causing discharge

into the harbour. This is the primary source of contamination
at times of heavy rainfall. Other inputs include surface water
and highway drains, which can negatively impact water quality,
particularly during heavy rain after a dry spell. Much of the
drainage in Bristol remains combined, hence there are three
combined sewage overflows in the area, which according to
Bristol City Council (2013) discharge infrequently. There are
also moored boats at several locations—owners are required to
follow proper waste discharge protocol, yet it is possible illegal
disposal of sewage and grey water is taking place. Other minimal
sources of pollution may include urile contamination from
sewer rats or faecal contamination from water-bird populations.
Lastly, the harbour is periodically scoured via the opening
of locks at both ends of the harbour to prevent silt build-
up at the Cumberland Basin. The scouring operations cause
a drop in the water level in the harbour and resuspension of
settled solids.

Historical Manual Sampled Datasets
Water quality in the Floating Harbour is currently monitored by
grab sampling managed by Bristol City Council, with records
of total coliforms, E-coli and Faecal streptococci beginning
April 1994. The breadth of data has increased since then,
with temperature, pH, conductivity and dissolved oxygen (DO)
being measured since February 2004 and salinity, phosphates
and presumptive Enterococci being available since 2010 (Bristol
City Council, 2010). Today, the council operates the lab-
based approach to measure the above-mentioned parameters
at 9 sites across the Harbour. As shown in Figure 1, five
sites are sampled weekly with the remaining four are sampled
monthly (Bristol City Council, 2019). As discussed above, this
may not be adequate to capture short-term trends and is
economically inefficient. In response, Chen and Han (2018)
successfully implemented a high-frequencyWSN in Bristol using
the city’s smart infrastructure to allow remote connection and
visualisation of results.

Site Selection for High Frequency
Monitoring
Three sites are chosen for high frequency monitoring within
the main body of the harbour, as shown in Figure 1. These
were chosen to cover a wide area and varying water depth
and land use, although location was also determined by
accessibility and security of sensor equipment. At Site 1 –
Baltic Wharf - (Figure 2A), the sensor was deployed adjacent
to an impoundment pontoon, near the downstream lock. This
is one of the wider and deeper regions of the harbour, with
occasional sea water intrusions. The water quality in this area
is also influenced by boat traffic and land use including a
mix of residential and food and drink businesses. There are
also recreational facilities including a caravan site and water
sports centre on the southern shore. Site 2 – Watershed -
(Figure 2B) is located off a jetty in the heart of the harbourside.
This site is likely to be more influenced by discharges from
boats at the jetty and is within a popular region of Bristol,
particularly in the summer for the harbour festival and outdoor
concerts. The sensor at Site 3 – Feeder Canal - (Figure 2C)
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TABLE 2 | Sampling frequency optimisation approaches used in literature.

References Purpose of the

monitoring

network

Method used Dataset

sampling

frequency

Sampling locations Dataset time scale Determined optimum

sampling frequency

Zhou (1996) Groundwater

monitoring for a

pumping station

Nyquist frequency 15 days 4 Two 2-year long

datasets

Monthly

Naddeo et al.

(2007)

Implementation of

the WFD

Comparison of the

environmental

status of the river

based on

macro-index level

(MIL) and

Mann–Kendall test

Monthly 6 48 months dataset Monthly

Anvari et al. (2009) River water quality

modelling

Qualitative

approach

15min 21 No information 15 min

Liu et al. (2013) Routine river water

quality monitoring

system

Water pollution

index deviation

ratio comparison

(WPI DRC)

Monthly 17 4 years datasets Every 2–3 months

Guigues et al.

(2013)

Long-term

Environmental

Research

Monitoring

Analysis of

variance (ANOVA)

3 months 15 and 26 Two datasets with total

length of 18 months

Every 6 months but

continuous

measurements are

needed to get more

accurate results

Khalil et al. (2014) Assessment of

ambient water

quality status

Confidence

interval around the

annual mean

Monthly 23 36 years dataset Between 4 and 12

samples per year

depending on the

variable.

Biweekly data would be

needed to get more

accurate results

Chen and Han

(2018)

Surface water

quality monitoring

Qualitative

approach

5min 3 3 months 5 min

da Silva et al.

(2019)

River water quality

long term

monitoring

Spectral analysis Hourly 85 10 years Different sampling

frequency according to

the size of the

catchment

was deployed at the entrance of the Avon Feeder Canal into
the harbour. The channel is much narrower and shallower at
this location and boat traffic more limited. Featured land use
adjacent to this site that could impact the water quality is
Temple Meads train station and several industrial properties,
hence runoff in this region could be more contaminated
than downstream.

Data Collection
The data used in this study was collected using three EXO2
water quality sondes from YSI Inc. These are multiparameter
sondes equipped with up to seven sensors capable of measuring
a wide range of variables (YSI, 2019), found to be largely
successful in the field by other researchers (Snazelle, 2015;
Snyder et al., 2018). For the purposes of this study, turbidity,
fDOM (fluorescent dissolved organic matter, a surrogate for
dissolved organic content), conductivity, temperature, and
dissolved oxygen (DO) were considered sufficient to capture
changes in the harbour due to weather, pollutant, and
tidal stimuli.

Data from the three monitoring sites were collected
continuously between 2018 and 2020, with occasional
interruptions due to calibration of the sensors, loss of battery
and sensor’s failures. At each site, data was taken every 5min
(0.0033Hz), with the aim of finding an adequate monitoring
frequency lower than this for each variable. The three datasets
obtained from the data collection are presented in Table 3.

Frequency Analysis
Many signals within water quality parameters exhibit cyclic
variability. These are commonly found to have annual, weekly,
or diurnal variation. For example, DO and temperature
commonly exhibit diurnal variability whereas a location
immediately downstream of a dam or sewage treatment
plant may exhibit weekly cycles due to reduced water and
power usage at weekends (Khalil and Ouarda, 2009). Given
this, adequately representing the periodicity of signals of
water quality parameters could reflect the worst and best
values on the required scale (diurnally, seasonally etc.).
Hence, sampling frequency is a very important aspect of
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FIGURE 1 | Bristol City Council sampling sites (Bristol City Council, 2019; Ordnance Survey, 2019) and monitoring stations used in this study.

FIGURE 2 | Sensor deployment sites. (A) Baltic Wharf. (B) Watershed. (C) Feeder Canal.

water quality monitoring networks. The following subsections
describe the three quantitative methods that have been
used in this paper to define a procedure to establish the
appropriate sampling frequency for water quality parameters
to be used when designing a high frequency monitoring
quality network.

Harmonic Analysis
Zhou (1996) defines the minimum sampling frequency
to achieve this in terms of harmonic analysis. A
historical time series can be transformed using Fast
Fourier Transform (FFT) from the time domain into
frequency domain.
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TABLE 3 | Dataset characteristics.

Datasets Characteristics

Date No. of

data

points

Location Range of values

From To Conductivity (µS/cm) fDOM (RFU) ODO (mg/L) Turbidity Temperature

2018 Datasets 22/08/2018 16/11/2018 24739 Baltic Wharf 3150.4–780.3 18.97–16.76 8.99–6.6 18.26–1 20.302–15.635

Watershed 2145.5–445.1 31.14–16.12 9.9–6.63 56.26–3.2 20.007–7.851

Feeder Canal 1411.8–472 29.91–14.46 8.82–6.71 58.01–3.73 19.765–11.181

2019 Datasets 23/07/2019 23/09/2019 17812 Baltic Wharf 3248.4–705.9 25.67–14.95 9.36–5.22 14.11–0.74 22.919–16.613

Watershed 1889.9–54.6 25.9–14.25 8.7–6.02 61.31–5.22 22.73–16.231

Feeder Canal 1860.2–600.4 27.55–14.63 8.08–6.39 70.53–4.48 22.704–17.569

2020 Datasets 15/11/2019 25/03/2020 36866 Baltic Wharf 772.9–328.5 46.99–24.38 11.8–9.68 29.58–1.46 9.742–6.08

Watershed 551.6–309.1 43.09–21.93 12.17–10.23 44.83–4.95 10.164–6.308

Feeder Canal 490.3–302.8 49.15–21.55 13.14–10.38 92.05–4.89 10.208–6.044

The Fast Fourier Transform is an algorithm that computes the
discrete Fourier transform which is obtained by decomposing a
sequence of values into components of different frequencies.

The FFT amplitude spectra equation is defined as:

y
[

k
]

=
N−1
∑

n=0

e−2πj knN x [n] (1)

For a timeseries sampled at a given constant interval 1t,
harmonics can be observed at frequencies from 0 to 1/(21t),
where the frequency 1/(21t) is known as Nyquist frequency (fn).
The Nyquist frequency is the minimum sampling frequency that
will allow to truly represent a signal. Thus, fn gives the minimum
sampling frequency required (Khalil and Ouarda, 2009). Any
harmonics at higher frequencies than fn fold into the signal to
appear at lower frequencies. This is known as aliasing and can
be avoided by selecting a sufficient minimum sampling rate to
capture the highest frequency significant periodic fluctuations in
the signal. For a signal with a frequency of the highest significant
harmonic fH, the minimum sampling frequency to avoid aliasing
fS,min = 2fH (Rorabaugh, 1986; Zhou, 1996).

In this paper, the frequencies fH− and fS,min are obtained
for each signal using Python. The first step is to determine if
there is a trend in the data. If a trend is detected it should
be removed before obtaining the frequency amplitude spectra
using the fast Fourier transform. From the amplitude spectra, the
highest frequency harmonics are identified to find the minimum
required sampling rate.

Spectral Analysis—Power Spectral Density
Decomposing the timeseries into a sum of weighted sinusoids
allows to assess the frequency content of the signal analysed.
Powerful tools such as spectral analysis allow to determine the
importance of each frequency. The water quality parameter signal
can be concentrated in some narrow frequency band, or it may be
spread across a broad range of frequencies.

da Silva et al. (2019) in their study used spectral analysis
to evaluate the representativeness of water quality sampling
frequencies for different catchments. In particular, the
representation of the spectral coefficients of a signal as a
function of frequency results in a graph of frequency densities,
which is also called Power Spectral Density (PSD).

The purpose of computing PSD analysis is to see how the
frequency content of the signal varies with the frequency and
how, after a certain frequency, the PSD reach a steady point. This
means that after a certain point with an increase in the frequency
there won’t be an increase in the information collected.

In this study the PSD has been computed with the Welch’s
method according to Otis and Solomon (1991).

Welch’s method (also called the periodogram averaging
method) for estimating power spectra is carried out by dividing
the time signal into successive segments or blocks, forming the
periodogram for each block, and averaging. The computation is
described in the following steps:

1) The data sequence is divided into K segments:

x [0] , x [1] , . . . ., x[N − 1] (2)

Segment 1 : x [0] , x [1] , . . . ., x[M− 1] (3)

Segment 2 : x [S] , x [S+ 1] , . . . ., x[M+ S− 1]

Segment K : x [N−M] , x [N−M+ 1] , . . . , x[N− 1]

where: M= Number of points in each segment
S= Number of points to shift between each segment
K= Number of segments.
2) The windowed discrete Fourier transform is computed for

each segment at a frequency

v = i/M with− (M/2− 1) ≤ i ≤ M/2

3) For each segment, the modified periodogram value [Pk(f )]
is obtained from the discrete Fourier Transform:
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Pk (v) =
1

W
|Xk (v)|2 (4)

Where:

W =
M

∑

m=0

w2 [m] (5)

m =
(

k− 1
)

S, . . . ,M +
(

k− 1
)

S− 1

w[m] = the window function.

4) Averaging the periodogram values, the Welch’s estimate of the
PSD will be obtained:

Sx(v) =
1

K

K
∑

k=1

Pk(v) (6)

In other words, the PSD it’s just an average of periodograms
across time and describe how the power of a signal is distributed
over frequency.

After obtaining the power spectral density for each parameter
at each monitoring station, the worst-case scenario has been
analysed. The curve containing the lowest power for each
frequency has been selected and the accumulation curve of the
PSD has been calculated:

Ĩ (v) =
∫ v

0
min(Sx(v′))dv′ (7)

After the accumulation, the values have been replaced by relative
values (percentage of the total accumulated in each curve) to
normalise all the curves.

These curves have been used to determine the sampling
intervals for each cumulated density. In each of these curves
the frequency values corresponding to the cumulated PSD were
extracted from 10 to 90% in increments of 10% and elbow
points were found using the Kneedle Python library. The Kneedle
algorithm detects those beneficial data points that identify the
maximum curvature and capture the levelling off effect. These
points are called “knees” and they are calculated in discrete
data sets based on the mathematical definition of curvature for
continuous functions (Satopää et al., 2011).

This algorithm has been used to detect the point on the PSD
curve after which the amount of information collected increases
at a slower rate.

Wavelet Analysis
The Wavelet transforms are mathematical techniques that use
analysing functions, localised in space, called wavelets. Unlike
the Fourier transform, that can only give precise information on
the frequency spectrum of the signal, wavelet analysis can give
information on both time and frequency; it sacrifices frequency
precision but gains temporal information.

Choosing between different wavelet shape it’s possible to find
the one that fits best with the feature of the signal that will
be analysed.

For the purpose of this paper, the Morlet wavelet has been
selected as “mother wavelet” and it’s defined as:

ψ (t) = exp−
t2

2 cos (5t) (8)

The Continuous Wavelet Transform (CWT) can be described by
the following equation:

cwt (τ , s) =
1

√
|s|

∫ +∞

−∞
x(t)ψ

(

t− τ

s

)

dt

where : τ = translation, s = scale,ψ (t) = mother wavelet,
(

t − τ

s

)

= scale factor.

The scale factor corresponds to how much a signal is scaled in
time and it is inversely proportional to frequency. This means
that the higher the scale, the finer the scale discretion.

The different wavelets in scales and time are shifted along the
entire signal and multiplied by its sampling interval to obtain
physical significances, resulting in coefficients that are a function
of wavelet scales and shift parameters.

In this study we applied the CWT to the non-stationary signal
and we visualised the resulting coefficient in a scalogram using
the Waipy Python library based on Torrence and Compo (1998).

RESULTS

Nyquist Frequencies
The frequency analysis applied to the time series of temperature,
dissolved oxygen (ODO), and fDOM has shown that the
sampling interval to adequately characterise the water body
should be at least 6 h (see Figure 3).

The water temperature sampling intervals resulted as 12 and
6 h intervals were expected since water temperature vary in
response to diurnal and seasonal changes in solar radiation.

Similar results are obtained for the dissolved oxygen since it
is highly dependent on temperature and salinity. In the Floating
Harbour dissolved oxygen is mainly affected by temperature
changes since levels of salinity are quite low compared to sea
water so the effect of changes in salinity on dissolved oxygen
is negligible.

The dissolved organic matter is measuring the fDOM
(fluorescent dissolved organic matter), a fraction of CDOM
that fluoresces when it absorbs light of a certain spectrum.
The CDOM (coloured dissolved organic matter) is a naturally
occurring dissolved matter that absorbs UV light in water. It is
usually material that is released from the breakdown of plant
material. The observed values for fDOM in the Floating Harbour
vary significantly in the three different sites due to different

Frontiers in Sustainable Cities | www.frontiersin.org 8 January 2022 | Volume 3 | Article 791595

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Coraggio et al. Water Quality Sampling Frequency Analysis

FIGURE 3 | Fast Fourier transform signal for the monitored parameters at 3 different locations. The marked peaks represent the minimum sampling frequencies. The

values of the minimum sampling frequency marked on the plots are shown in the table.

landscape characteristics, also showing a diurnal change due to
the important influence of solar radiation on the measurements.

For the turbidity measurements there is no constant
periodicity in the recorded time series, resulting in noisy
frequency spectrum. This shows that turbidity in the Floating
Harbour is not controlled by a cyclic phenomenon but by external
forces. It was unexpected that the scouring operations happening
in the harbour did not have an immediate effect on the turbidity
measurements. This might be because the sites chosen for the
deployment of sensors were not reached by the main flow during
scouring operations.

The conductivity signal doesn’t show frequency peaks but
the conductivity timeseries show a high correlation to the tide
affecting the Bristol Channel and River Avon. Concluding that
the tides are primarily responsible for the cyclic variation of
conductivity in the Floating Harbour, a monitoring frequency
must be high enough to capture the extreme levels of conductivity
caused by the tidal water entering the harbour. As very high tides
are not strictly periodic in time, the harmonic analysis is not
completely applicable.

Power Spectral Density Cumulation Plots
From the harmonic analysis it has been possible to find
the minimum required sampling frequency for some of the

parameters, but it has not been possible to verify which
frequencies have the highest density in the signal.

The PSD cumulation curve is the integration of the PSD
function. It allows us to assess at specific sampling frequencies
how representative would be the sampling and vice versa.
Figure 4 is an example of the percentage of signal that is
recorded at different frequencies for different parameters. The
curve represents the worst-case curve among the different
sampling locations. The PSD curves, after a certain frequency,
reach a steady point. This means that with an increase in
the frequency there won’t be an increase in the information
collected. Parameters that have recurrent paths (i.e., temperature,
conductivity, and dissolved oxygen) reach the steady point
quicker than the ones that don’t show strong periodicity.

Wavelet Transform
Timeseries give precise information on the amplitude of the
signal changing with time but don’t give information on the
frequency spectrum of the signal. The spectral analysis instead
can evaluate the size of the component of the frequencies but
gives no information on spatial duration. When it comes to
parameters that don’t have fixed fluctuations it’s important to
be able to link the time to the frequency domain in order to
understand their pattern. In the spectrograms obtained from
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FIGURE 4 | Cumulation PSD plots using the worst-case scenario dataset. The values for the points marked on the plots are shown in the table. The accumulated

frequency shows the quantity of information that will be collected with a specific sampling interval for a water quality parameter.

the Wavelet analysis, each wavelet measurement (the wavelet
transform corresponding to a fixed parameter) tells something
about the temporal extent of the signal, as well as something
about the frequency spectrum of the signal.

The scalograms containing the results of the Wavelet
transform (Figures 5, 6) display the frequency the period scale
on the y-axis, and their prevalence on the x-axis. The wavelet
scale (the power) is represented at the bottom of the plot. The
cone shaped line is the cone of impact (COI), an area where
the wavelet power spectra are distorted due to the influence
of the end points of finite-length signals. Peaks within these
regions have been reduced in magnitude (Torrence and Compo,
1998).

From Figure 5 it is possible to see that the sampling
frequency changes with time, in this case when peaks in the
conductivity timeseries occur the sampling frequency required
is higher compared to periods where the conductivity is stable.

Therefore, for conductivity measurements it is not accurate to
define one sampling frequency constant in time. The sampling
frequency should be linked to the tide measurements. A
low frequency/low tide—high frequency/high tide sampling
frequency should be defined. This sampling scheme will
better represent the conductivity peaks and avoid oversampling
in the time windows when the tide is not entering the
Floating Harbour.

Figure 6 shows how diurnal variation of water quality
parameter can easily be identified using Wavelet analysis. To
be able to catch the presence of daily pattern a high required
sampling frequency is needed according to the PSD analysis.

From the Wavelet analysis it’s possible to see that measuring
at a sampling frequency lower than the one suggested by the PSD
analysis, although will miss the daily variations, will still show
the overall trend creating a good compromise between sampling
frequency and information collected.
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FIGURE 5 | Wavelet analysis – conductivity.

DISCUSSION AND CONCLUSIONS

This study investigated the sampling frequency required to
communicate periodic fluctuations in various water quality
parameters and evaluated the benefit of recording data at higher
frequencies while considering external factors. The results can
be used to match sampling frequency with the purpose of
the monitoring programme so that the accuracy is adequate
to achieve the purpose. We consider three broad purposes
for monitoring: understanding long term baselines and trends,
understanding events and providing input to models and in
particular machine learning applications.

Using the time series of water quality data available in

Bristol Floating Harbour the frequency components of each
water quality parameter has been analysed to quantify the

Nyquist frequency and the supposed minimum sampling rate
for determination of periodic fluctuations, as proposed by
Zhou (1996) and Khalil and Ouarda (2009). For most of the
monitored water quality parameters it has been possible to
identify minimum frequencies that can be used in cases where
there are constraints on data storage and handling, providing
a means for robustly defending the sampling frequency in the
design of the WQMN.

Designing a WQMN with a frequency equal to the minimum
sampling frequency is useful if the network is set up for event
based monitoring. For this purpose there is no need to have a
real-time WQMN set up in advance and grab sampling would
perform well.

When designing a WQMN with the purpose of monitoring
long term trends and baselines the minimum sampling frequency
can also be used with the advantage of minimising data storage.

The minimum sampling frequency approach is not a suitable

choice if the purpose of the WQMN is providing input to
models, higher frequency data is needed to ensure the accuracy
of the model.

Using the PSD function, it has been possible to determine
which frequencies have the highest density in the signal,
therefore, how representative of the overall situation a particular
frequency will be. The PSD cumulation curve showed that
after a certain point, increasing the frequency does not
deliver an increase in information gained, allowing to find the
compromise between having enough data to fully characterise
the variability in water quality while not overwhelming the
databases. This point is identified by finding the maximum
curvature of the PSD cumulative function also called the
Knee point.
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FIGURE 6 | Wavelet analysis – temperature.

In this paper it is demonstrated that the frequency
corresponding to the PSD function knee point supports the
results obtained with harmonic analysis.

One of the main advantages of this method over the
harmonic analysis is that it has been possible to define
an optimum sampling frequency for parameters that do
not show periodicity such as conductivity and turbidity.
Although there is a mathematical function that defines the
optimum sampling frequency, when defining the optimum
frequency it is also important to consider the main purpose
of the monitoring network, financial resources and data
storage capabilities.

In particular, the results obtained with the PSD function give
precious information for designing a WQMN with the purpose
of collecting input data for machine learning models. In these
models having a high accuracy in the input data helps with
achieving a good overall performance of the model.

High frequency data comes with the need to have a real-
time monitoring network set up in specific locations, this puts
limits on the flexibility of the purpose of the network and on
the network itself. For this reason high frequency data collection
is less suitable for event based monitoring where flexibility
is important.

To have a complete understand of the optimum frequencies
obtained with the PSD analysis and to tailor them to the purpose
of the network it is important to look at the timeseries as well as
at the frequency spectra.

The problem of losing time localisation in the spectral analysis
is mitigated by the use of a wavelet analysis. TheWavelet analysis
gives information on both the amplitude of the signal and the
frequency spectrum. In this paper the spectrogram of the wavelet
analysis has been used qualitatively. Looking at the spectrograms
it is possible to gain extra information on parameters that do not
have constant periodicity and it is possible to better tailor the
frequency interval to the purpose of the sampling network.

Estimating sampling frequency according to the accuracy
needed in theWQMN, allows for the optimization of monitoring
methodologies and improvement in decision-making and
regulatory development. Quality-assurance protocols are
implemented by water-monitoring agencies to reduce overall
uncertainty; however, sampling precision estimations were
previously under-quantified or overlooked due to lack of high-
frequency data with which to compare sample estimates. Many
previous studies have noted the substantial errors that result
from sampling frequency that were not representative of the
actual water quality parameter trends; this was mostly due to lack
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of continuous and high frequency datasets (Jones et al., 2014;
Reynolds et al., 2016).

Although results of this study would provide the stakeholders
with the optimum sampling frequency needed to get most
accurate water quality trends, this may not be economically
feasible in long terms or for large-scale applications.
Understanding the marginal return on sampling effort will
lead to obtain more useful information and adjust sampling
strategy or frequency to balance effort and accuracy. Further
investigations flowing from these findings include:

- Exploring spatial variability of sampling locations and its effect
on sampling frequency.

- Understanding how the proposed techniques can be used for
event based monitoring and also investigating how to filter out
the effects of events on baseline water quality.

- Defining a statistical method to link the sampling frequency to
a specific WQMN purpose.

- Evaluating the impact of the sampling frequency on the noise
in the data. This could be done by comparing higher and lower
frequency datasets for the same parameter/period.
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