
ORIGINAL RESEARCH
published: 05 March 2021

doi: 10.3389/frsc.2021.629940

Frontiers in Sustainable Cities | www.frontiersin.org 1 March 2021 | Volume 3 | Article 629940

Edited by:

Paolo Santi,

Massachusetts Institute of

Technology, United States

Reviewed by:

Humberto Torres Marques-Neto,

Pontifícia Universidade Católica de

Minas Gerais, Brazil

Dimitri Thomopulos,

University of Pisa, Italy

*Correspondence:

Ali Cheshmehzangi

ali.cheshmehzangi@nottingham.edu.cn

Specialty section:

This article was submitted to

Urban Transportation Systems and

Mobility,

a section of the journal

Frontiers in Sustainable Cities

Received: 16 November 2020

Accepted: 02 February 2021

Published: 05 March 2021

Citation:

Cheshmehzangi A and Pourroostaei

Ardakani S (2021) Urban Traffic

Optimization Based on Modeling

Analysis of Sector-Based Time

Variable: The Case of Simulated

Ningbo, China.

Front. Sustain. Cities 3:629940.

doi: 10.3389/frsc.2021.629940

Urban Traffic Optimization Based on
Modeling Analysis of Sector-Based
Time Variable: The Case of Simulated
Ningbo, China

Ali Cheshmehzangi 1,2* and Saeid Pourroostaei Ardakani 2,3

1Department of Architecture and Built Environment, The University of Nottingham Ningbo, Ningbo, China, 2 The Network for

Education and Research on Peace and Sustainability (NERPS), Hiroshima University, Hiroshima, Japan, 3 School of

Computer Sciences, The University of Nottingham Ningbo, Ningbo, China

This paper studies the important factor of sector-based time variable, which is critical to

urban mobility patterns in an urban environment. In particular, this study analyzes urban

traffic optimization based on modeling analysis of a simulated urban environment. In

doing so, we develop and assess the urban traffic model based on three key components

of agents, urban map, and mobility pattern. We develop an urban sample based on a

medium-to-large city in China, which is represented by Manhattan grid pattern layout.

By developing a homogeneous urban layout, we distribute the urban blocks of various

sectors across the sample model. Through simulation studies, we model urban traffic

based on “conventional operation hours” and “proposed operation hours” of all sectors.

This urban traffic model is used to study the impact of the proposed approach on urban

traffic based on two measured metrics of end-to-end delay (ETE) and Agent queue count

(AQC). By suggesting a new sector-based time variable, we then evaluate the urban traffic

model based on multiple active agent ratio. The findings from this simulation uncover the

importance of sector-based time variable in optimizing urban traffic.

Keywords: urban traffic, traffic optimization, urban modeling, time variable, sector-based, simulation, end-to-end

delay (ETE), Agent queue count (AQC)

HIGHLIGHTS

- This paper studies the important factor of sector-based time variable for urban traffic analysis
and optimization through computational modeling and scenario analysis of multiple active
agent ratio;

- This study analyzes urban traffic optimization based on modeling analysis of a simulated
urban environment;

- This study proposes urban traffic optimization based on two measured metrics of end-to-end
delay (ETE) and Agent queue count (AQC);

- The findings from this simulation uncover the importance of sector-based time variable in
optimizing urban traffic.

INTRODUCTION

Globally, urban traffic is recognized as one of the main challenges of cities and city environments.
But equally, both globally and locally, our cities need urban transportation systems. However,
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this specific need has many challenges of its own (Rodrigue,
2020), which also affects cities and other urban systems
of cities. With the expansion of cities and the increase
of urban development, cities face intensified urban traffic
issues. Some of these issues are occurred due to rapid urban
transformation (Zeng et al., 2019), and some are due to low-
quality infrastructure, inconsistent urban planning approaches,
or poor management of traffic controls. Hence, we can argue
urban traffic is somehow seen as a by-product of the urbanization
process, often tangled with the overarching factors of urban
change, land-use change, and urban redevelopment. Examples
of these are changes in urban layouts or densities, such as from
low-rise to high-rise transformation (Cheshmehzangi, 2018), or
changes in land uses through modes of urban redevelopment,
infill development, etc. The nexus between such changes and
growing urban traffic is seen in many contexts, which could
ultimately lead to optimization of urban land use allocation from
multiple perspectives, location-based information or networked-
based location sensing (Campbell et al., 2006), mobility sensing
(Hemminki et al., 2013), space-time analysis (Pan and Lai, 2019),
spatial simulation (Silveira and Dentinho, 2018), etc.

In urban planning and design, the knowledge that could be
gained from such analyses could lead to integrated solutions
(Cheshmehzangi, 2016) or optimized models of urban systems,
urban operations, and urban management. Hence, optimizing
urban traffic could help us to overcome some of the main
challenges associated with urban transportation. In doing so, the
aim is to see how such optimization could be achieved through
specific methods or examples of modeling and simulation.
This study, however, is not an exact optimization through
mathematical modelings, such as PageRank model, algorithm-
based model, decomposition model, stochastic traffic model,
etc. Instead, the results obtained here help to optimize urban
traffic flow based on the sector-based time variable through
computational modeling of a simulated case, which is not done
before. This approach enables us to consider temporal and
spatial factors as part of urban mobility modeling through
applicable computational techniques. In this regard, the findings
indicate a qualitative indication of the goodness of the solution,
which could also be tested and quantitatively assessed in
future research.

Furthermore, we see growing attention, as well as growing
demand, to study how urban traffic is optimized, revised, and
refined through processes of planning, modeling, and simulation.
This study aims to respond to this emerging demand through
a simulated case. The study, therefore, contributes to urban
sustainability measures from the perspectives of transportation
and urban traffic modeling. These are achieved by evaluating
a context, modeling a simple—and yet effective—variable for
further simulation and analysis. The results of this study then
contribute mainly to broader areas of urban traffic research, and
more specifically from the consideration of planning, modeling,
and sustainability streams.

In accordance with the urban transportation systems, cities
and city environments often require new planning strategies,
guidelines, and regulations to optimize daily operations. Our
urban networks operate so intensely through the fluidity of

the transportation system that one cannot simply separate it
from the other urban systems. Existing research also proves
urban network is both physical and functional (Camagni
and Salone, 1993; Cheng et al., 2013) beyond just the
infrastructure systems and including other key functional
parameters of connectivity, mobility, activities, socio-spatial, and
socio-economic opportunities, etc. Hence, the transportation
system could be regarded as one of the primary urban systems
as well as the one that influences or affects others. In the field
of transportation system analysis, it is important to evaluate
the transportation network in simulation models, which can
be done through a microsimulation approach (Miller et al.,
2002). This is feasible through sample modeling examples or
simulation studies, which represent the conditions of the city
environments. Optimization of traffic flow has for long been
one of the focus areas of research in urban traffic modeling
and analysis. To respond to this overarching stream of research,
this study, through a simulated case, provides a computer-based
urban traffic model that could be assessed based on a neglected
variable, i.e., sector-based time variable. By simulation the urban
traffic model in scenarios, the study then contributes to urban
traffic modeling research. The findings will give offer insight into
three specific areas of land-use planning, urbanmanagement, and
urban traffic modeling.

The available models of urban travel behavior suggest a
variety of aspects such as temporal, spatial, and even socio-
spatial considerations, which are widely applied in urban
microsimulation studies (Arentze and Timmermans, 2000;Miller
et al., 2002). To name a few practical examples, such modeling
approaches help to develop travel models (Bradley and Bowman,
1998), provide a better understanding of daily operations and
activities, such as travel plans (Miller et al., 2002) and travel
demands (Goulias and Kitamura, 1992), or develop simulation-
based scenarios for the optimization of traffic flow andmovement
dynamics (Axhausen, 1990). The city’s network of transportation
also influences many factors from land pricing to land use
decision making, as well as other major aspects of urban mobility
and urban layout planning. The planning and design of urban
blocks are very much dependent on how urban transportation
networks are developed, how they connect to the larger context
of urban systems, and how they operate for daily uses, businesses,
and all other urban sectors.

There have been many studies focusing on optimization
of transportation systems, and particularly from multiple
perspectives of urban traffic (Gao et al., 2016; Jovanović
et al., 2017). However, no study has looked at urban traffic
optimization from the perspective of the sector-based time
variable. This important variable could be seen from a multi-
sectoral approach, which verifies different operational hours
and different peak hours, too. This approach requires a
comprehensive consideration of a complex urban context with
specific parameters, as well as factors of “agent,” “urbanmap,” and
“mobility pattern,” which are related to multiple sectors across
all urban systems of the city. This study addresses these in a
holistic modeling approach of a simulated urban context example
including a variety of urban systems and urban sectors, with
specified operational hours.

Frontiers in Sustainable Cities | www.frontiersin.org 2 March 2021 | Volume 3 | Article 629940

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Cheshmehzangi and Pourroostaei Ardakani Urban Traffic Optimization

Given that the optimization approach through the simulation
model is a result through a holistic understanding of the complex
urban context, planners, and decision-makers could be informed
of the results to take into consideration dimensions of temporal
and spatial and generate optimized urban mobility patterns
rather than the reinvention of socio-spatial configurations of
the city. Such an approach would help us to decide on time-
use variables, as well as mobility patterns to/from certain
destinations in the city. These travel plans and mobility patterns
are important to urban traffic optimization plans and decision
making for planning practices and city management levels. To
develop such a model, it is necessary to put together a holistic
understanding of city operations and urban functionalities,
built environment characteristics of a city model, and agent-
based mobility patterns across a sample city study. In doing
so, this study aims to evaluate the important role of a sector-
based time variable to simulate and evaluate it impacts on
urban traffic. The findings from this study, embedded in an
optimized scenario, would help the development of optimal
city operations, mixed-use land use planning, and distributed
activities and mobility patterns across the city. The study uses
computational techniques, and not mathematical modeling, to
conduct this simulation. In doing so, it provides solutions to
(1) optimize urban traffic flow based on sector-based time
variable, and (2) maximize the better use of temporal and spatial
factors for land use planning and integrated solutions for urban
mobility enhancement.

STATE OF THE ART

As part of urban traffic simulation studies, urban traffic modeling
is a common analytical approach to assess and optimize vehicle-
based studies (Amadio et al., 2018), urban traffic flow (Ledoux,
1997), urban traffic control system (Boillot et al., 2006) or
prediction (De Oliveira and Camponogara, 2007), mode choice
behavior (Garcia-Aunon et al., 2019), urban traffic networks (Li
et al., 2016), etc. Some studies also utilize combined modeling
analyses, such as the development of a nexus between traffic
flow and urban networks (Gartner and Stamatiadis, 2002),
or mathematical methods (Wang et al., 2006), multi-agent
methods (Ou et al., 2000), multi-objective methods (Tang and
Wang, 2007), prediction methods (Nigarnjanagool and Dia,
2005), network-based studies (Schadschneider et al., 2005),
integrated methods (Li and Zhao, 2008), etc. In the last 10
years, in particular, urban traffic modeling and optimization
studies have become more popular. For instance, published
scholarly work is increased by almost six times, comparing
2009 and 2019 published research papers. More importantly,
as many cities are growing by size and population, urban
traffic studies have gained more popularity through multiple
practical needs, policy reforms, regulatory perspectives, business-
oriented analysis, impact assessment, and planning strategies.
These studies have significantly contributed to major factors
of efficient traffic modeling (Borg and Scerri, 2015), real-time
system optimization (Yang and Jayakrishnan, 2015), recognition
of various climate impacts by traffic (Golkhale and Pandian,

2007; Xie et al., 2013; Chang et al., 2019), and urban traffic
congestion patterns (Karim et al., 2017), or those that suggest
urban planning strategies and performative solutions. It is
important to note there is growing research in developing
countries or associated with cities facing rapid urbanization
or urbanizing trends. The results could also help toward
the development of pathways for sustainable urban mobility
planning, or studies that could be influential on decision-
making processes.

Among the existing research, “GIS-based” and “Fuzzy
modeling” (Shafabakhsh et al., 2017) are popular in urban
modeling. Also, associated with simulation-based studies,
“Manhattan Mobility Model,” also known as “Manhattan-
like” or “Manhattan Grid” (MG) modeling (Harri et al.,
2007) is also gaining popularity in urban traffic or urban
network research. Through the grid block typology and
layout (inclusive of road networks), this method is a well-
established urban mobility modeling approach for vehicular
ad-hoc networks (VANET) (Martinez et al., 2008). Developed
in computer science and applied in city studies, this method
helps to create networks and vehicles/agents, which could
then provide a simulation-based model of the traffic flow
and predictive mobility patterns. This method is utilized for
simulation analysis of urban networks and mobility patterns,
those that can then help to optimize urban planning methods
from an array of perspectives. The simulation could help
with urban layout configuration, traffic flow optimization,
physical infrastructure and planning, transportation planning,
and demand-based transportation.

Out of all studies on urban traffic modeling, none has so
far addressed the important parameter of “sector-based time
variable.” This is a research gap, which provides suggestions
for future planning and management of the cities and
city environments. The sector-based analysis in urban traffic
modeling is common from the perspectives of source-based
analysis (Paraschiv and Paraschiv, 2019), stakeholder-analysis
(Shi et al., 2020), urban freight management (Holguin-Veras
et al., 2018), and other examples that look into explicit sectors.
Nevertheless, these examples mostly look into one specific sector
or in a combination with other factors, such as pollution, traffic
congestion, etc. There are some new studies that look into
temporal variations (Sahin et al., 2020), but none considers time
variable from the sector-based approach. This study aims to
address this research gap from a modeling analysis approach.
Hence, it is proposed to develop an all-inclusive scenario of the
sector-based urban context, which includes a range of sectors.
This is then placed in an MG model, with the integration
of the time variable. This is assessed from two sets of time
variables, one that is the current working hours as scenario
A, and the other as the proposed working hours as scenario
B. This is developed by taking into consideration the full
perspective of sectors, and sample-based approach to multiple
sectors of a simulated urban environment. In doing so, we are
able to provide a comparative analysis of both scenarios through
urban traffic modeling. The results would help to develop
novel urban management knowledge from a sector-based time
variable approach.
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RESEARCH DESIGN: MULTI-PHASE
APPROACH TO URBAN TRAFFIC
MODELING

The project is conducted in three phases: (1) defining the
complex urban context; (2) modeling urban traffic; and (3)
simulating urban traffic based on sector-based time variable
(Figure 1). In this simulation study, the case of research is
simplified to address the needs of research investigation and
result from analysis. Hence, it is based on a real scenario with
given data of the City of Ningbo, China. This is a representative
of medium-to-large scale city, with an average urban density
and urban traffic situation. The city has expanded vastly in the
last 30 years, which is a similar situation to many developing
cities around the world. Its mid-range urban density of 840
people per km2 provides a common scenario of mid-to-high
urban density. Car ownership is estimated at around 60%
of the population. The city also has a good range of public
transportation of multiple modes, three major business districts,
several districts, and a high-level of housing areas. With these
common urban characteristics, Ningbo is recognized as a case
study, which is also a representative of many developing or
growing cities.

Phase 1: Defining the Complex Urban
Context
In phase 1 of the study, it is essential to develop a simulated but
complex urban context with its programmed parameters of field
size, sector distribution, population, and sector-based operational
working hours. By programming these specific parameters, the
aim is to make the simulated model to be as close as possible to
the real-life context, but in a simplified form that could evaluate
the results from sector-based time variable. The simulated
urban environment comprises of the following characteristics
and details:

• The field size of 5 km× 5 km (Total: 25 km2) in a grid pattern
layout of homogenized 400m × 400m block size and 100m
wide street layout across the field;

• A sector-based analysis for their random distribution across
the field, including a selection of eight defined sectors located
in the urban context;

• An overall population of 21,000 people (based on the
given urban density from sample study), with half of them,
recognized as active agents who commute to/from their
workplaces daily, an average of 5 return trips a week;

• A rage of sector-based operational working hours is
introduced in an orderly manner to reflect on the real
situation of working hours in this defined urban context.

In order to define our grid pattern layout, a MG is selected. This
method is used to simulate the context in a homogeneous layout
(Figure 2), which is then more applicable for the simulation-
based modeling of the whole area of 21,000 population. The
number of people in this sample zone of 5 km × 5 km is
calculated by considering the urban density of 840 people/km2,
which is a representational density figure for medium-to-large

scale cities of under 10 million population. This gives us a total
figure of 21,000 people for an area of 25 km2. This approach of
MG also defines the boundaries and represents a common grid
layout in many developing cities.

This urban sample gives us an area of 100 urban blocks,
considering the urban block configuration and road network
layout of 400m wide and 100m, respectively. In a square-shaped
layout, this means a total of 10 urban blocks in rows and 10 urban
blocks in columns. In a city with mid-range car ownership (based
on a real sample case study), we calculate the total residential
urban blocks at 88% of the whole city area. Hence, in the urban
sample here, 12 of the 100 urban blocks are dedicated to non-
residential land uses. This is based on the sample of 100 blocks,
and 12% of non-residential typologies (i.e., based on varied
functionalities) in this specific configuration. In doing so, we
address the common urban typology distribution of residential
and non-residential urban blocks across the sample model of
this study.

In the next step, the model provides samples of multiple
sectors of an urban environment, including eight defined sectors.
These sectors are: (1) Education, (2) Healthcare (such as
Clinic and hospital), (3) Banking (separated from finance), (4)
Government, (5) Finance (Commercial), (6) Retail and shops,
(7) Safety and Security, and (8) Others. For education buildings,
the list includes schools (private and public), colleges, and
universities. For healthcare, we refer to clinics, hospitals, and
healthcare units of various sorts at small and large scales. For
banking and finance, the list mainly includes banks or similar
types of finance-based services. For government buildings,
we refer to any building that includes government houses,
council buildings, district governmental buildings, tax offices,
courthouses, and police stations. For finance and commercial,
the list mainly includes financial buildings/towers. For retail,
we refer to a range of shopping units, retail podiums, shopping
centers and facilities, restaurants, cafés, and places that are
generally considered as retail facilities. For safety and security
buildings, the list mostly includes police stations, fire stations,
and community security buildings, etc. For others, the list
includes mainly urban parks, open spaces (apart from streets and
sidewalks), and public squares, mostly defined as public realms
of the city. In addition, the larger part of the city are residential
buildings, which commonly includes housing compounded
of various types, from low-rise to high-rise compounds and
residential units. In addition, the category of public buildings
includes typical public buildings, such as libraries, galleries,
museums, etc.

Considering the variety of land-uses and different sectors in
the urban area, the study’s model is assumed the transportation
sector is integrated into the urban layout. All eight sectors
are located within the 12% non-residential urban land uses,
comprised of the following land-uses or sectors, based on the
conditions of the city example:

• 2% for education (a minimum of 2 full urban blocks); the city
example includes one university and one school block;

• 1% for healthcare (a minimum of 1 full urban block); the city
example includes one community hospital;
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FIGURE 1 | Flow chart of research design in three phases (source: the authors).

FIGURE 2 | Selected Manhattan Grid, with 400m × 400m blocks and 100m road network layout in between urban blocks (source: the authors).

• 0.5% for banking and 0.5% for Finance (1 combined urban
block); the city example includes a combined urban block of
banking and financial buildings as a representative of these
sectors in the urban land-use;

• 4% for Retail and shops (a minimum of 4 full urban
blocks); the city example includes a set of mixed
retail units, shopping center, entertainment units, and
restaurants/cafés;

Frontiers in Sustainable Cities | www.frontiersin.org 5 March 2021 | Volume 3 | Article 629940

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Cheshmehzangi and Pourroostaei Ardakani Urban Traffic Optimization

• 0.5% for government buildings and 0.5% for safety and
security (1 combined urban block); the city example includes a
combined urban block of governmental offices, police stations,
and a tax office;

• 1% for public buildings (a minimum of 1 full urban block);
the city example includes a combined block of museum and
library within the case study example;

• 2% for others, such as public parks (a minimum of 2 full
urban blocks); the city example includes public squares, public
facilities, and a community urban park.

Out of the above 12 blocks (12% of 100 represented blocks),
two blocks are under the category of “others” mainly used for
leisure activities, such as for parks, green corridors, etc. In total,
10 blocks (or 10% of total urban area) include urban businesses
require travel to and from workplaces across all eight sectors. The
remaining two blocks (2% of total urban area) are excluded as
they do not require travel to sector-based businesses for daily
operations and travels. This also simplifies the model with a
10% distribution of non-residential target or destination travel
patterns in compared with 88% of residential blocks, and 2% to
be recognized as void.

The distribution is demonstrated in Figure 3.
Each of these eight sectors is given a range of working hours

(or operational hours) and peak hours as shown in Table 1. The
peak hours are divided into morning peak hours and afternoon
peak hours, representing the travel times to/from workplaces for
at least five working days a week (Monday–Friday).

In the next step, the model is given proposed hours different
from the earlier operational hours. This includes a range
of diverse operational hours, which also means a range of
different peak hours. In doing so, the study simulates the varied
operational hours including two sets of new peak hours, meaning
that peak hours across all eight sectors are no longer in the same
or similar range. This reflects on the main objective of this study,
which is to develop a hypothesis about urban traffic optimization
based on modeling of multiple time variables driven from a
comprehensive sector-based consideration (Figure 4).

Phase 2: Modeling Urban Traffic
The urban traffic model is comprised of three components: (1)
agents, (2) urban map, and (3) mobility pattern.

First, an agent is modeled as a mobile object that moves
through a set of pre-defined roads provided by the urban map.
This is implemented in two forms: active and inactive. An active
agent leaves a residential region to reach a business sector at a
particular time in the morning and return to the same residential
area in the evening after the sector operation hours. This has a
substantial impact on urban traffic. Active agents are assigned
to business sectors according to a business allocation pattern.
Based on the eight categories of sectors, these businesses are
clustered into five business categories including (1) education,
(2) government and security, (3) retail and shopping, (4) health,
and (5) banking and finance. Each business sector cluster is
allocated by a distribution weight (Education 20%, Healthcare
10%, Banking 10%, Government: 10%, Retail, and shops: 40%,
and Public Buildings 10%) based on an urban environment

model which is used in Ningbo city, China. This adds to a total
of 100% for the business categories, which are then distributed
in our simulated urban model. An inactive agent is allocated to
no business sector, whereas it only is assigned by a residential
address. This has no impact on urban traffic as inactive agents use
particular paths (e.g., public transportation lines or pedestrian
zones) to move throughout the city. This means active agents are
only included to model urban traffic. This is specifically modeled
to address the sector-based time variable argument of this study.

Second, an urbanmap is modeled according to aMetropolitan
Grid (M-Grid), Manhattan model (Martinez et al., 2008). This
model provides a grid infrastructure of blocks, comprised
of street network configuration (Sheikh-Mohammadzadeh
and Rajabi, 2013) and junctions/intersections (Ortigosa and
Menendez, 2014). The blocks are assigned by a residential or
business role according to a random block distribution pattern.
For this, there are 12 and 88%, respectively, for non-residential
and residential blocks, respectively. According to Ningbo urban
environment model, 10 out of 12 non-residential blocks are
marked as business blocks with an impact on urban traffic. The
roads are modeled by two-lane, through which the agents move
to reach their residential or business blocks. Each road and block
is assigned by a row and column ID according to its location on
the grid map. This will be discussed further in the next section.

Third, agents’ mobility pattern is modeled by a set of
particular parameters including start time, road selection, and
mobility. Each active agent starts a work-journey from the
residential region and moves at a constant speed to the allocated
business sector. It selects a pre-defined shortest path to reach
the business sector using an array of the assigned road/lane
IDs. Dijikstra’s algorithm (Dijikstra, 1959) is used to find the
shortest path between the residential region and the business
sector for each active agent’s trip. This models a directed graph
and forms the shortest path in which road IDs are repeatedly
added if they minimize the path length in total. To avoid
accidents, each agent keeps a clear radius distance around
while moving. An active agent stops moving when reaching
a clear radius of any around. Active agents use their private
vehicles to travel throughout the urban area. The proportion
of the active agents to all available ones (including who stay
at the residential area, use public transportations, or walk) is
defined according to an experimental parameter which will be
discussed below.

This urban traffic model is used to study the impact of the
proposed approach on urban traffic. For this, two metrics are
measured as below:

• End-to-End delay (ETE): This is measured as an average value
for active agents when they start driving from the residential
region until they reach the allocated business sectors and
similarly fromwhen they leave their business sectors until they
arrive home. ETE is influenced by traffic congestion caused
by active agents’ vehicles, mobility patterns, urban traffic
management protocols, and path availability. This has the
potential to impact the performance of business sectors. Late
arrival would result in potential reductions in productivity,
functionality, and output of the business sectors.
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FIGURE 3 | Representation of 100 urban blocks in the urban sample, with 88% residential land use and 12% non-residential across eight sectors (source: the

authors).

TABLE 1 | Sample of multiple sectors, operational hours, and peak hours (source: the Authors).

Sector Working hours Morning peak hour Afternoon peak hour

Education 9.00 a.m.−5.00 p.m. 7.30 a.m.−9.00 a.m. 5.00 p.m.−6.30 p.m.

Healthcare/clinic 8.30 a.m.−6.00 p.m. 7.30 a.m.−9.00 a.m. 6.00 p.m.−7.00 p.m.

Banking 8.30 a.m.−5.30 p.m. 7.00 a.m.−8.30 a.m. 5.30 p.m.−6.30 p.m.

Government 8.30 a.m.−6.00 p.m. 7.00 a.m.−8.30 a.m. 5.00 p.m.−6.30 p.m.

Finance/commercial 8.00 a.m.−5.00 p.m. 6.30 a.m.−8.00 a.m. 5.00 p.m.−6.30 p.m.

Retail and shops 10.00 a.m.−6.00 p.m. 8.30 a.m.−9.30 a.m. 6.00 p.m.−7.00 p.m.

Safety and security 24 h 7.00 a.m.−9.00 a.m. 5.30 p.m.−6.30 p.m.

Others 9.00 a.m.−5.00 p.m. 7.00 a.m.−9.00 a.m. 5.30 p.m.−6.30 p.m.

• Agent queue count (AQC): This calculates as the average
number of active agents who wait in traffic queues at junctions
or road’s bottlenecks waiting to access the business sector. This
is used to study traffic congestion which is caused by active
agents. AQC is positively correlated to ETE as increased ACQ
would enhance ETE.

Phase 3: Simulating Urban Traffic Based on
Sector-Based Time Variable
A simulation technique used in this research study is to model
urban traffic according to the business sectors’ operation hours,
conventional, and proposed. This approach gives us a variability,
which could help with a comparative analysis of multiple

scenarios. A real implementation is, therefore, to study the
impact of the sectors’ operational hours on urban traffic, which
is expensive and risky. This needs additional coordination and
great resources to implement traffic modeling scenarios in a
real urban area. For this, simulation is often used to study
the performance and functionality of urban traffic modeling.
OMNET++ (2020) is a discrete event simulator, which has
an open-source framework called INET (2020) to support
agent mobility and urban traffic modeling. Figure 5 shows the
experimental parameter sweep plan according to the scenarios,
simulation parameters, and active agent ratio.

This research study simulates urban traffic modeling
according to two scenarios: business sectors’ conventional
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FIGURE 4 | Summary of multiple sectors, operational hours, peak hours, and proposed hours of operations (source: the authors).

(scenario A) and proposed operation hours (scenario B). For
both scenarios, the simulation seeds are implemented using
the same simulation parameters including an urban area
map, agent number (both active and inactive), and mobility
pattern. Table 2 summarizes the simulation parameters used
to set-up the simulation seeds and implement the urban traffic
modeling scenarios.

According to sector distribution pattern, 12 blocks are
randomly allocated in the grid map, of which 10 blocks are
business sectors. Available active agents are calculated based on
the active agent ratio withmultiple variables (20, 40, 60, and 80%)
and are assigned to the business sectors according to the business
allocation pattern. For example, 4,200 active agents are allocated
to the business sectors (education 840, healthcare 420, banking
420, government 420, retail and shops 1,680, and public buildings
420) if the simulation is set-up with 20% active agent ratio.
Yet, agents (21,000) are randomly distributed to the residential
blocks. Random allocation allows us to study the impact of the
proposed operation hours on urban traffic in an average form
per each simulation seed. A maximum population is set for each
residential block (as 300 agents) to achieve an acceptable level of
load balancing.

Each agent selects a road to move through if this is assigned
by the road ID(s). It leaves the residential block to work at
allocated start time in the morning and returns home when the
sector’s operation time is over. A private timer is assigned to each
agent. This measures time until the agent reaches the target or
destination. This is described as the time from source to target,
which is shown across multiple sectors and randomly across

various locales of the sample urban model. Moreover, each agent
keeps clear a radius of 2m around to avoid an accident. Each
junction is assigned by a 60-s traffic light to manage urban traffic
(US Department of Transportation, 2020). These parameters and
ranges are proposed in the main research model of the study.

To observe the results of the simulations according to agent
count changes, an active agent variable is defined. By this, each
simulation scenario is given by four proportions of all available
agents, 20, 40, 60, and 80%, as active agents. Active agents move
through the map roads with their private cars at a constant speed
of 10 m/s. The simulations include inactive agents to study urban
traffic as they are programmed to stay home, walk, or travel with
public transportation via dedicated paths.

Moreover, this simulation measures ETE for each active agent
as the average value of the private timer. For this, external delays
such as parking access are not included. AQC is computed as
the average result of the maximum number of active agents,
which are queued in traffic congestions during either onward or
return journey.

Simulation Data Validity
Data validity is key for quantitative/statistical data collection
and analysis -mainly simulation. This addresses the accuracy
and trustworthiness of experiments aiming to determine whether
the approach is able to accurately model approach/data
according to real-world applications. However, this suffers
from internal and external threats. The former focuses on the
risks of simulated data/model validities (i.e., sample validity),
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FIGURE 5 | Parameters sweep plan (source: the authors).

TABLE 2 | Simulation set-up parameters (source: the authors).

Parameter Range Parameter Range Parameter Range

Field size 5 km × 5 km Total Agent Count 21,000 Urban Map M-Grid

Business sector density 10% Max population per each residential block 300 Clear radius 2 m

Active agent ratio 20, 40, 60, and 80% Urban Block size 400m × 400m Road width 100 m

Residential address allocation Random Accident, obstacle and noise Disabled Simulation initialization delay 100 s

Repetition 200 Mobility speed 10 m/s Sector address allocation random

Traffic light timer 60 s Business allocation pattern Education 20%, Healthcare 10%, Banking 10%, Government:

10%, Retail and shops: 40%, and Public Building 10%.

whereas the latter addresses the data generalization threats (i.e.,
population validity).

Random sampling and power statistical analysis are two
techniques that are usually used to tackle data validity threats.
This simulation utilizes random sector and agent distribution
models to address sample variation. For this, a two-level sample
variation scheme is set up to take account of the random samples
according to their dependencies: (1) urban sectors are randomly
assigned to the urban blocks and (2) agents are randomly
distributed between the urban sectors. This provides a variation
sample range of (Agent × Sector). Yet, statistical power analysis
(Epitools, 2020) was used to determine the necessary repetitions
as the simulations are set up according to an average scenario.

This technique is used in experimental design to calculate
the number of repetitions (sample size) using the population
standard deviation and according to a given confidence degree.
We run the experiments 20 times (sample size) and measured
them with the standard deviation of ETE and AQC. The greatest
standard deviation is used to calculate the minimum number of
required repetitions as it shows the widest confidence interval. In
doing so, 200 is the minimum number of required repetitions to
achieve 90% confidence using the assumed population standard
deviation. Although the simulation results offer benefits to other
cities ad urban areas in the scale of this case study (Ningbo city),
the validity of this simulation still suffers from the threats of
simulation model’s factors such as the fixed number of urban
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sectors and business allocation pattern. Hence, new simulation
models to support the cities and urban areas with different
agent populations, urban modeling, and mobility pattern will be
addressed as future work.

OPTIMIZATION RESULTS AND
COMPARISON

Main Results From the Simulation Studies
This section evaluates the impact of the working hours on urban
traffic using simulation. For this, ETE and AQC are measured
according to both the proposed and convectional hour scenarios.
The same simulation seeds are utilized to compare and study the
impact of both scenarios on urban traffic according to Figure 5.

End-to-end delay (ETE) measures the average delay during
active actors’ journeys when they leave the residential area to
the allocated business sectors and return to home after work.
This excludes working hours, whereas only includes the private
timer values when actors are moving in the streets. ETE is highly
influenced by a number of parameters especially urban traffic and
mobility patterns.

According to Figure 6 below, ETE is reduced when the
simulation is set-up according to the proposed hours. The
proposed approach roughly reduces ETE from 45 to 58% as
compared to the conventional working hours. Indeed, ETE is
reduced for the proposed approach if the number of active agents
that impact urban traffic is increased. ETE is reduced because
the proposed hours move the traffic peak hours into other slots.
The variability in sector-based time factor also suggests a better
mobility pattern, which could be translated from the urban
traffic optimization scenario planning. This approach divides
the active agents into different groups which move into target
blocks according to the new postponed peak hours. The results
vary according to the increase of active agent ratio. But in all
four scenarios, we see a substantial decrease in ETE rates in the
proposed model, by nearly half of the conventional model.

Agent queue count (AQC) is measured as the average number
of active agents who wait in traffic queues. This is positively
correlated with urban traffic and highly impact ETE.

As Figure 7 shows, the average number of active agents who
wait in queues is significantly increased for conventional hours
as compared with proposed ones. This is because a greater
number of active agents leave their source blocks to targets
during the conventional peak hours. However, the “proposed
hours” approach divides active agents into a number of groups
according to their specified business sectors. In doing so, the
number of moving active agents is reduced and consequently,
traffic congestion is decreased significantly. As the findings of
this simulation study indicate, the proposed approach reduces the
urban traffic, in terms of AQC, by a range of 45–60% as compared
to the conventional approach. The reduced travel time as a result
of reduced traffic is a major finding of sector-based time variable
analysis. Therefore, the length of traffic queues is reduced using
the proposed hours especially if the number of active agents is
increased and the urban area becomes crowded.

Discussions on Urban Traffic Optimization
As shown in Figures 6, 7, the proposed model reduces ETE and
AQC that results in decreased urban traffic. Indeed, the proposed
approach suggests an optimal urban traffic model for cities of
mid-to-high urban densities. The urban modeling according to
the actual situation of urban parcels of the City of Ningbo in
China, provides us with a simulation example, which could test
the important sector-based time variable. This simulation is,
therefore, conducted based on the calculation of the proposed
hours which are according to a realistic scenario of an urban
context and with a particular technique. For this, urban context
is modeled using a number of key parameters including agents,
mobility pattern and urban map. All these three parameters
have a high impact on urban traffic. This means, urban traffic is
increased if the number of agents which move throughout the
area is enhanced. Various mobility patterns also would impact
on urban traffic and result in increased traffic congestions. For
example, traffic queue length is increased if agents repeatedly
move through random roads with no target to reach. Urban
traffic is increased if urban map provides on sufficient roads
according to the active agent count.

The simulation is conducted according to a particular
scenario, which forms by the urban traffic modeling parameters
(seeTable 2), Metropolitan Grid (M-Grid)Manhattanmodel and
four proportions of active agents to study the scalability and
performance of the simulation. According to power statistical
analysis, this study is repeated 200 times to achieve a confidence
of 90% for the simulation results. The experiments are setup
according to various proportions of active agents including
20, 40, 60, and 80%. This allows us to study the impact of
proposed approach on urban traffic especially when the number
of moving agents is increased and urban area becomes crowded.
A same city map is used by all the experiments which are
implemented according to same simulation seeds. Simulation
seeds are generated using the simulation parameters summarized
in Table 2. However, a random distribution model is used for
both residential and business sector address allocation. Yet,
each residential block is allocated by random agent IDs with a
maximum of 300. This allows us to study the performance of the
proposed hours when the location of agents changes. Indeed, this
provides us a more accurate evaluation of the proposed approach
functionality and/or ability to reduce urban traffic when active
agents establish various shortest path between residential and
business sectors to move.

The optimized model of proposed hours provides important
information that the optimization of urban traffic under the
simulated scenario is possible by the adjustment in sector-based
time variable. This adjustment, although minimal, plays a major
part in multiple factors associated with mobility patterns between
two travel nodes of source and target. Hence, the results show
significant reductions urban traffic particularly in terms of in
ETE and AQC. This is because the active agents avoid moving
throughout the urban area at same time and make bottlenecks
and traffic congestions. However, the proposed hours allow the
active agents to be classified according to business sectors and
move through the roads only during the allocated hours. By this,
each group of active agents, for example education, start a trip
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FIGURE 6 | ETE for conventional (Scenario A) and proposed (Scenario B) hours (source: the authors).
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FIGURE 7 | AQC for conventional (Scenario A) and proposed (Scenario B) hours (source: the authors).

and move through the roads only during its allocated time slot.
Hence, the number of active agents that move throughout the
urban area is rapidly decreased. This would result in decreased
urban traffic.

CONCLUSIONS AND FUTURE RESEARCH
OUTLOOK

Within this simulation study, it was supported how sector-based
time variable could be used to optimize urban traffic in cities and
to/from business destinations. By changing the operation hours
and proposing for new peak hours across multiple sectors of the

city, the argument of time variables was implemented and applied
in this case study example. The findings allowed us to uncover
how the sector-based time variable could be utilized for future
urban planning and city management scenarios. Hence, we do
not necessarily need to reinvent urban environments but could
optimize the urban systems, and in particular, the operational
attribute of urban systems.

To maximize the potential of urban traffic optimization, three
main components of agents, urban map, and mobility pattern
could inform urban planning and city management decision
making. The reduction of traffic flow is feasible through a
sector-based time variable. Based on the comparison of two
models of conventional and proposed operation hours, two
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measured metrics of end-to-end delay (ETE) and agent queue
count (AQC) indicate significant reductions in the simulated
models. These findings suggest that the time variable is vital to
mobility patterns in city environments, particularly those regular
travel routes, which we make to and from workplaces. Through
this valuable comparative analysis, we could also suggest a
potential alteration in working hours, time-place variables,
location-based work travels, urban mobility reduction, and even
new socio-economic opportunities.

By reflecting on the methodology and findings of this study,
we also suggest future research pathways that could emerge from
this new perspective to urban traffic studies. The improvements
to future research studies include the consideration of data-
driven urban modeling, which utilizes a larger scale of the city
area, as well as the consideration of mixed land use, variable
transportation modes, and demographic changes in the urban
environments. While we develop a model close to a real case
situation, it is feasible that with the availability of relevant
big data, we could develop more scenarios of urban traffic
optimization. One result of big data use would be to reflect on
more parameters and associated variables. In doing so, further
parameters and variables could affect the daily mobility patterns
and behaviors, and ultimately could provide alternative scenarios
of agent-based travel simulation analysis. Consequently, we
could develop several more comparative studies, which are even
more important to urban planning decision-making and urban
traffic cases.

Finally, the collective use of agents, urban map, and mobility
patterns were found to be important to the accuracy of simulation
study; use of individual paramours, particularly land use data
or travel behaviors, may lead to incorrect results that are not
holistic enough for the study of urban traffic optimization.
Hence, this study adds to the larger body of urban traffic

studies demonstrating, in particular, the impact of sector-based
time variable for estimating and evaluating travel patterns of
multiple scenarios. Furthermore, the results are very useful for
potential urban design analysis, urban management suggestions,
and sector-based readjustments in cities and city environments.
Future research work could include larger scale analysis and
the use of big data for urban traffic modeling, simulation,
and optimization.
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