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Building Volume Per Capita (BVPC - cubic meters of building per person) is presented

as a proxy measure of economic inequality and a direct measure of housing inequality.

Sustainable development goal 10 (SDG 10: reduced inequalities) is synergic for achieving

SDG 11 on sustainable cities and communities. Access to safe and affordable housing,

transport systems, and public spaces are some of the targets of SDG 11 that mostly link

with reducing inequalities. The Habitat III New Urban Agenda sets equal access to urban

spaces, infrastructures and basic services as crucial for developing sustainable cities.

Earth Observation (EO) data including remotely sensed satellite data, airborne data, and

model outputs, in combination with demographic, and other statistical data, have been

gaining importance for monitoring progress of the SDGs. High spatial resolution building

footprint data derived from aerial photographs, stereo imagery, and LIDAR data, obtained

for the cities of California, between 2010 and 2015, were used in this study. These

measures of building volume were rasterized and juxtaposed with (divided by) a variety

of demographic data including vector-based census data of 2015 and LandScan raster

data of population counts of 2015. The National Landcover dataset of 2011 was used

to characterize the land cover variability of the cities. Using these datasets, the spatial

pattern and distribution of BVPC for nine cities in California were studied. The results

showed that BVPC was inversely related with intensity of development, and positively

related with median household income within cities. A BV-GINI was also developed to

characterize the variability of the BVPC at the census tract level and the pixel level. This

measure of income inequality, housing and population density is objective and easily

executable. It can be used in other cities and countries and may help overcome lack of

data in SDG indicators.

Keywords: EO of SDGs, inequality, building volume, spatially explicit GINI proxy, SDG 10

INTRODUCTION

The Sustainable Development Goals (SDGs), adopted by 193 member countries of the United
Nations Development Programme (UNDP) (2015), attempt to capture and respond in sufficient
detail to the suite of global civilizational challenges. One of the greatest challenges facing the current
civilization is rapid urbanization. Urban population trends indicate that humanity will increasingly
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be living in cities. Overcrowding and congestion in dwelling
units in cities affect the well-being of individuals. Because of the
absence of private space, household members often suffer from
stress, and develop other social and behavioral problems (Cox,
2016). Besides, the spread of infectious diseases, including asthma
and other respiratory diseases (e.g., COVID 19), as well as, mental
illness and anxiety are more rampant in overcrowded households
(Solari and Mare, 2012). The household crowding problem is
often associated with neighborhoods where the working class
and immigrant population live. Thus, it is also a reflection of
income inequality.

Therefore, various other sectoral goals such as poverty
reduction (SDG 1), quality education (SDG 4), clean water
and sanitation (SDG 6), access to energy (SDG 7) economic
growth (SDG 8) and reduction in inequality (SDG 10) need be
framed at city scale and contribute to SDG 11 on sustainable
cities. However, inequalities at city scale limit the benefits of
such sustainability progresses to a limited portion of a city’s
population, defeating the purpose of an urban environment that
exists to facilitate access to services andmeans of well-being. This
is reflected by some of the targets of SDG 1, which explicitly
refer to inequalities, such as target 11.1 to ensure access for all
to adequate, safe and affordable housing, among others.

There are 17 SDGs that are associated with 169 targets and
232 indicators (UNSTATS, 2019). Making valid and objective
measurements of the 232 indicators represents a significant
problem for both scientists and policy makers. In this vein,
satellite observations produce objective information at different
spatial resolutions and territorial scales.

In the United States, overcrowding is estimated in the
American Community Surveys as the number of people living
in a dwelling unit per room, or Persons per room (PPR).
Overcrowding is generally defined as a household (people living
in a housing unit) having more than one person per room in a
dwelling unit; and severe overcrowding is more than 1.5 persons
per room. While the ACS’s PPR data are useful, it also has
potential problems. Since the ACS surveys only a fraction of the
population, the PPR data can only be released at the scale of
the census tract. Thus, it has limited spatial resolution. The PPR
measurement also suffers from imprecise temporal resolution
and measurement of physical space. The PPR ignores the fact
that rooms vary in size. Therefore, a 100 and 200 square-meter
one-bedroom apartment, when occupied by one person, are
considered as comparable units (Reddy and Leslie, 2015).

Hence, with the goal of developing a more objective measure
of overcrowding and understanding its link to income inequality
and intensity of development, we present the idea of Building
Volume Per Capita (BVPC) as a spatially explicit measure
of human living conditions. Because of the easy availability
of Building height data for some of the cities in California,
United States, we carry out our analysis in these cities. Building
volume in m3 is building height times building footprint (area
in m2). Interest in utilizing building volume information for
scientific inquiry is growing. LIDARmeasures of building volume
have been used to inform high spatial resolution population
estimates (Ko Ko Lwin, 2011; Lu et al., 2011; Xie et al., 2015;
Zhao et al., 2017). IKONOS-2 ortho image and LIDAR data
have been used in conjunction to construct 3D city models and

subsequently quantify urban population (Tomás et al., 2016).
The BVPC we present here takes a step back in terms of
spatial aggregation and presents a moderate spatial resolution
characterization of “roominess” of housing experience with the
implicit assumption that the more affluent enjoy more building
volume per person.

This measure blends with several of the SDGs, which are
implicit for achieving SDG 111 (SDG 11, Developing sustainable
cities and communities). BVPC is measured by using remotely
sensed data in conjunction with census population data and land
cover data. BVPC captures the average “space” people have in
their local neighborhoods. This is undoubtedly compromised as
a measure in commercial and industrial areas which is why we
focus on residential areas. This measure also helps to overcome
the drawbacks of the census measures of overcrowding such
as PPR. A BV-GINI was also developed to explore the level of
income or wealth dispersion represented by BVPC at the census
tract level and the pixel level. Governments such as Poland are
currently using GINI coefficients as one of the indicators of SDG
10 (Statistics Poland, 2020).

We were unable to find any previous work in which Building
Volume per capita was used as a measure of the SDGs. So, this
paper is a pioneering effort to explore the utility of BVPC for
the SDG. However, the concept of using Volume per capita as
a measure of residential space was put forward by Reddy and
Leslie in their 2015 paper. They had highlighted the advantages of
using Volume per capita (VPC) as a measure of residential space
as it provides higher spatial detail, which could be aggregated to
various scales of analysis, and quantifies actual residential space
in cubic footage.

We believe Earth Observation (EO) can be used in a variety
of ways to contribute to the assessment of both the state and
dynamics of SDG 11. This preliminary analysis explores the use
of Building Volume Per Capita (BVPC) as an indirect measure of
income and income inequality and a direct measure of housing
inequality. Existing building footprint datasets such as the Global
Human Settlement Layer (Global Human Settlement - Home -
European Commission, 2016) are increasingly being attributed
with building height information which creates the opportunity
for using BVPC for counties/regions for which verifiable building
footprint data are available.

MATERIALS AND METHODS

Detailed building footprint data with building heights allows for
unprecedented spatial characterization of variation in amount
of building volume people actually live with. Using just the
area of the buildings to get m2/person might make sense in
homogeneous regions where most of the residential buildings
are single-family houses. However, many urban environments,
including slums, have multi-story structures. By using m3 per
person we have an Earth Observation metric of how much
space people have to actually live in. Different sources of Earth
Observation data were used in this analysis to portray BVPC as

1United Nations. Sustainable Development Goals, Goal 11. Sustainable

Development Knowledge Platform. Available online at: https://

sustainabledevelopment.un.org/sdg11 (accessed March 26, 2020).
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FIGURE 1 | Flow chart of GIS Processing.

a measure of housing and income inequality, corresponding to
SDG 10 and relevant for SDG 11.

There are undoubtedly important questions as to what the

most appropriate spatial scale of analysis for understanding this
variability is. We present an analysis at two spatial “resolutions”:

the census tract and 500 × 500m grid cell. This work results in

two datasets at coarser spatial resolution than the higher spatial
resolution building footprint data it was derived from (Figure 1).

These two datasets can be juxtaposed with population, income
data, and land cover data.

Building footprint data available for nine cities in California
were used in this analysis. Building footprint data in shapefile
format for Los Angeles County were available from “Los Angeles
County GIS Data Portal” (Los Angeles County GIS Data Portal,

2016). The building footprint data including building height in
feet, area and parcel number were captured from stereo imagery
as part of the LARIAC2 Project (2008 acquisition) and was
updated as part of the LARIAC4 (2014) imagery acquisition. The
data were made available to the public on November 1, 2016.

The building footprint data for San Francisco were derived
from the City and County of San Francisco, Department of
Technology, Digital Services Division, San Francisco Enterprise
Geographic Information Systems Program (SFGIS) in a
geodatabase format2. The data were created in May 2017. The

2City and County of San Francisco. Building Footprints (File Geodatabase Format),

DataSF. Available online at: https://data.sfgov.org/Housing-and-Buildings/

Building-Footprints-File-Geodatabase-Format-/asx6-3trm (accessed March

26, 2020).
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building footprints were collapsed from a former 3D building
model provided by Pictometry of 2010. The “hgt_MAXcm”
column depicting LIDAR derived height surface grid in
centimeters were used.

The building footprint data for the rest of the cities of
California, namely, Bakersfield, Del Mar, Fresno, Fullerton,
Modesto, Sacramento, and Santa Barbara were obtained in
shapefile format from Microsoft Building Footprint data
(Microsoft Building Footprint)3. In March 2017, Microsoft
released the first set of building footprint data containing
approximately 9.8 million high quality building footprint data
with heights in 44 US states. The height data in meters were
created from very high-resolution aerial photography captures
by Microsoft, and the height attribute was interpolated from a
digital terrain model derived from the same data. The footprints
were digitized in 2015 from imagery captures of 2014 and 2015.
In June 2018, a second dataset containing 125 million computer-
generated building footprints for all 50 states was released by
Microsoft. The data were in “Geographic” projection.

LandScan population grid data for the year 2015 was available
from Oak Ridge National Laboratory, under contract with the
United States Department of Energy4. LandScan is developed
by using remote sensing techniques within a multivariate
dasymetric modeling framework to distribute the best available
demographic (Census) data, and geographic data, and are
tailored to match the data conditions and geographical nature of
each individual country or region. The spatial resolution of the
data is approximately 1 km (30” x 30”), and it represents ambient
population (average over 24 h) distribution. Each pixel in the
LandScan data demonstrates population count or the number
of people per cell. The data are referenced in “Geographic”
projection or latitude/longitude (WGS84) coordinates.

The Census tract Median Household Income in the past
12 months (in 2015 inflation-adjusted dollars) and the Total
population of 2015 were derived from U.S. Census Bureau,
2011-2015 American Community Survey 5-year estimates, and
downloaded from the U.S. Census Bureau, American Fact Finder
website (U.S. Census Bureau, 2010).

The shapefiles for the state, counties, and Census Tracts for
all of U.S. were downloaded from the Tiger/Line shapefile, U.S.
Census Bureau (U.S. Census Bureau, 2010). The shapefile for
the state of California was selected and then intersected with the
county and census tract shapefiles of the U.S. to isolate the ones
for California.

The building footprint polygons of the nine cities in California
were converted into North America Lambert Conformal Conic
projection. The building height data of Los Angeles were
converted from feet to meters. For each of the nine cities, spot
checks of building heights were done in Google Earth and using
other information. Heights and geographic coordinates of the
tallest buildings in each of the nine cities were gathered from the

3Microsoft Building Footprint Data - OpenStreetMap Wiki Available online

at: https://wiki.openstreetmap.org/wiki/Microsoft_Building_Footprint_Data

(accessed March 26, 2020).
4Oak Ridge National Laboratory, Home | LandScanTMAvailable online at: https://

landscan.ornl.gov/ (accessed March 26, 2020).

web. The geographic coordinates were used to check the location
and building height in Google Earth. The same check was
applied on the shapefiles. Some of the building footprint polygons
which looked erroneous, for example, a very high building in
a residential area, were removed. Moreover, all the building
footprint polygons which had their height as zero, were removed.
The largest set of building footprint data were available for Los
Angeles, and about 2% of the data had the building heights as
zero. These were mostly polygons with topological errors, such
as having a polygon within a polygon, or overlapping polygons.
These polygons were deleted. For DelMar, about 57% of the
building footprint data had missing height information. Instead
of providing an average height value based on the neighboring
buildings, the polygons were deleted. For the rest of the 7 cities,
there were no missing height data. These were the steps taken
to rectify the freely downloaded building footprint data for the
cities. Next, using the height in meters column for the building
footprint polygons, and the “polygon to raster” tool in ArcGIS,
one-meter building volume grids were created.

The census tract shapefile of California was overlaid on the
one-meter building volume rasters, and the “zonal statistics as
table” tool in ArcGIS was implemented to extract the “sum
of building volume” for the census tracts covering each of the
nine cities. Subsequently, the total population of each of the
corresponding census tracts was divided by sum of building
volume to derive building volume per capita (Figure 2).

Land cover variability within these nine cities is significant.
We extracted the dominant or majority landcover from the5,
National Land Cover Dataset (USGS, NLCD) 2011 database as
an additional characterization of the census tract data (USGS,
National Land Cover Database). The NLCD 2011 dataset is
a 30m resolution raster data derived from Landsat imagery.
Most census tracts were characterized as having Developed
- High Intensity, Medium Intensity, Low Intensity, or Open
Space. The “Developed, Open Space” class typically captured
exurban areas characterized by low density development (Sutton
et al., 2006). Those areas with a majority of “Developed, High
Intensity” were typical of downtown central business districts
with a large fraction of commercial buildings. We did simple
linear regressions using median household income to predict
BVPC at the tract level only for those census tracts characterized
by NLCD as “Developed – Medium, Low, or Open Space”
because the High Intensity tracts were primarily commercial and
industrial sites.

The second method of analysis was to compute the BVPC
at the 500m by 500m pixel level. For this, it was necessary
to calculate the sum of building volume and population within
those grids. The global LandScan population grid which is
originally available at 30 arcsecond resolution was resampled
to 15 arcsecond resolution, each pixel representing an area of
∼500m by 500m. Further, a box polygon was used to clip out
the extent of California from the global dataset. A 500m by
500m fishnet polygon was created out of the LandScan grid.

5United States Geological Survey (USGS). National Land Cover Database.

Available online at: https://www.usgs.gov/centers/eros/science/national-land-

cover-database?qt-science_center_objects=0 (accessed March 26, 2020).
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FIGURE 2 | Inset of Raw Building Volume Data for a single census tract representing Redondo Beach and Marina Del Rey in Los Angeles.

Then the polygon fishnet was overlaid on the LandScan grid of
California to extract the population count values within each
pixel using the zonal statistics tool in ArcGIS. Again, the same
fishnet was overlaid on the building volume rasters to get the sum
of the building volume grids within each 500m by 500m pixel.
The BVPC was then calculated by dividing the sum of building
volume by the population within each 500m by 500m pixel. The
census tract boundaries which were used to define each of the
9 cities were dissolved and overlaid on the fishnet polygon to
separate out each of the 9 cities.

RESULTS

Aggregate Statistics
Six of the 9 cities had an aggregate BVPC of between 950 and
1,085 m3 per person. These six cities varied in total population
size over an order of magnitude (roughly 100,000 to 1.4 million).
The other three cities had much lower aggregate BVPC values
(Los Angeles – 396, San Francisco – 478, and Del Mar –
586) (Table 1). These three cities constituted three of the four
most populous cities. These three cities were all large and, on
the coast, which may contain an explanation for some of this
variability (Sutton, 2003). The BVPC for those census tracts
with a majority NLCD value of High Intensity Development

varied substantially but were almost always in excess of 1,000
m3 per person. Three of the cities had no tracts dominated by
High Intensity Development and three of them had less than
four tracts with that characterization. The BVPC for census
tracts characterized as Medium Intensity Development (the most
common characterization of census tracts in this study) showed
the same pattern of six cities with an average around 1,000 m3

per person and the same other three cities with lower values
(350, 519, and 408) for San Francisco, Del Mar, and Los Angeles,
respectively. Note that Los Angeles dominates this dataset in
that it represents 1,313 of the 2,335 census tracts evaluated.
The BVPC for the Low Intensity Development tracts did not
systematically vary from those of the Medium Intensity tracts.
In some cities the values were higher, in others lower; however,
for the most part the BVPC values went up as Development
Intensity went down. This trend continued with BVPC going
up generally for those census tracts dominated by “Developed
Open Space.”

City Assessments
For each city we mapped the BVPC per tract and the BVPC per
500m x 500m raster cell. The raster cell analysis provided greater
detail as to the spatial variability of BVPC; however, we don’t have
corresponding income information at that spatial resolution. In
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TABLE 1 | Aggregate Statistics for Census Tracts of All 9 Cities.

City Total Pop Building Volume BVPC # Tracts BVPC dev high BVPC dev med BVPC dev low BVPC dev OS

Fullerton 110,389 116,680,956 1,057 21 n/a 1,007 2,195* 1,198*

Santa Barbara 168,474 164,945,403 979 35 n/a 816 996 1,780

Modesto 338,507 330,731,107 977 62 3,453* 1,020 1,196* 562*

Bakersfield 534,934 531,038,394 993 90 7,840* 1,080 n/a n/a

Fresno 643,481 694,800,722 1,080 141 1,765* 1,045 1,387 1,134*

San Francisco 873,902 417,567,835 478 202 956 350 126* 7,438*

Del Mar 992,745 581,966,567 586 178 n/a 519 670 974

Sacramento 1,309,060 1,418,959,504 1,084 293 6,352 1,028 1,244 n/a

Los Angeles 5,802,672 2,299,363,866 396 1,313 8,171 408 330 497

All cities 10,774,164 6,556,054,354 608 2,335 1,407 735 711 1,123

*For n < 4 census tracts.

FIGURE 3 | Census tract and raster cell representation of BVPC for Del Mar, California.

addition, we characterized the mean and variability of the BVPC
for those tracts according to their NLCD majorities. We also ran
a simple linear regression using only those tracts with NLCD
classes that are predominantly residential in character (e.g.,
Medium Intensity Development, Low Density Development, and
Open Space Development).

Our assessment of Del Mar, California (just north of San
Diego, California) included many municipalities totaling a
population of 992,745. The mean BVPC for the 178 census tracts
in Del Mar was 586 m3/person with a median of 543 m3/person,
a minimum value of 67.5 m3/person and a maximum of 1,482
m3/person. The raster representation of BVPC had 5,167 cells
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with a mean BVPC value of 2,317 m3/person and a median of
487 m3/person. Not surprisingly this distribution skewed toward
a few higher values and had a much higher variability of BVPC
values ranging from 0 (where there were no buildings – and
usually no population) to over a million m3/person in sparsely
populated areas with very low ambient populations. There were
993 raster cells with a building volume of zero that accounted
for an ambient population of 64,500 (roughly 7% of the total
population) (Figure 3). We conducted a regression usingMedian
Household Income of the census tract as the independent variable
to predict the BVPC as the dependent variable. The idea is that
median household income variability within the city is a measure
of economic inequality in that city and that BVPC will correlate
with that measure. We found a significant positive correlation
between BVPC and median household income for all of the nine
cities we studied. For Del Mar the regression equation was BVPC
= 258 + 0.004 ∗ MedHHInc with an R2 = 0.21. This regression
suggests that each additional $1,000 of household income in
Del Mar “buys” an additional 4 m3/person of BVPC. A figure
characterizing the assessment of each of the other eight cities can
be found in the Supplementary Material (Figures S1–S8).

Gini Coefficients Based on Building
Volume and Median Household Income
The GINI coefficient is an established measure of economic
inequality that is typically determined using a Lorenz curve of
cumulative percentage of population plotted against cumulative
percentage of income or wealth (Lorenz, 1905; Elvidge et al.,
2012). We used the Lorenz curve methodology to derive
a Building Volume GINI coefficient (BV-GINI). This was
accomplished for both the raster and vector representations
of the nine cities. For the raster data we sorted the value
attribute table by cumulative building volume and built a Lorenz
curve with the associated cumulative population. We calculated
two BV-GINI coefficients by using the zero value cells in
one version and excluding the zero value cells in the second

(Figure 4). We also derived a BV-GINI coefficient using the
tract data. We sorted the attribute table of the census tract
shapefile by building volume and then plotted cumulative percent
population vs. cumulative percent building volume to calculate a
BV-GINI coefficient.

We also explored using median household income as
a proxy measure of the traditional GINI coefficient. This
is problematic because the median statistic can obscure
much of the data variability and aggregates over a variable
sized area for a population of roughly five thousand
people. Nonetheless, we sorted the attribute table of
the census tract shapefile by median household income
(medHHinc) and calculated a similar GINI Coefficient
(Table 2).

DISCUSSION

Within Country Measures of Inequality
Lack of data is one limiting factor, together with lack of
quantified policy targets, for the implementation of the SDGs.
Globally, we lack data for 68% of SDG indicators (United Nations
Environment Programme (UNEP), 2019), while progress toward
3 of the 17 goals cannot be assessed and monitored in the EU due
to lack of data (Eurostat, 2020). While the contribution of Earth
Observation (EO) to space-based environmental monitoring
services is being (partially) explored through, for example, the
EU Copernicus programme (Copernicus, 2020), EO is still
underused for developing indicators for the SDGs. Furthermore,
while contributions toward the goals should be measured at
different scales of analysis, most effort is made for monitoring
country progress, while contributions from business, citizens
and municipalities is not highlighted. This study shows the
importance of EO data in studying the SDGs. The building
footprint data, the LandScan population data, and the National
Landcover Dataset, are all remotely sensed EO data, which have
been made available for free download. Because the methods are

FIGURE 4 | Lorenz curves for raster and vector representations of Del Mar, California.

Frontiers in Sustainable Cities | www.frontiersin.org 7 July 2020 | Volume 2 | Article 37

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Ghosh et al. Building Volume Per Capita (BVPC)

TABLE 2 | GINI coefficients of BV and Median Household Income.

City Raster GINI w/‘0’s Raster GINI no ‘0’s # Cells # Tracts Tracts GINI BV Tracts GINI medHHinc

Fullerton 0.177 0.162 302 21 0.154 0.097

Santa Barbara 0.076 0.044 655 35 0.202 0.223

Modesto 0.331 0.204 4,411 62 0.244 0.084

Bakersfield 0.253 0.182 7,994 90 0.199 0.251

Fresno 0.220 0.174 3,554 141 0.203 0.292

San Francisco 0.200 0.154 1,940 202 0.361 0.238

Del Mar 0.335 0.289 5,167 178 0.196 0.196

Sacramento 0.242 0.169 7,148 293 0.188 0.230

Los Angeles 0.304 0.263 20,140 1,313 0.406 0.246

systematic, obtainable in a uniform and objective manner, and
relatively low cost – we hope that more of the EO data will be
used to study the Sustainable Development Goals (SDGs).

Inequality is increasingly recognized as not only a social
justice issue but as a significant obstacle to achieving economic
efficiency (Giridharadas, 2018); in addition, economic inequality
is recognized as contributing to undesirable public health
outcomes (Leigh et al., 2011). Although the evidence regarding
many of the effects of economic inequality is inconsistent (Lynch
et al., 2004), themajority (∼70%) of findings suggest that negative
consequences are the dominant effect of economic inequality
(Wilkinson and Pickett, 2006). Here we measure BVPC as an
absolute figure attributed to both census tracts and 500m x 500m
grid cells as well as the distribution of these values measured
across nine metropolitan areas as determined via a Lorenz
curve construction.

For all the 9 cities studied in this paper, Median Household
income was seen to be a significant predictor (significance level
< 0.0001) of BVPC. The highest R2 was 0.4 for Bakersfield. The
low R2 for the cities can be attributed to the high variability in
the BVPC data. Nonetheless, it does not belittle the hypothesis
that Median Household Income has a significant relationship
with BVPC. Therefore, people with lower income in cities cannot
afford bigger spaces and are left with small volumes of space per
capita. This has a domino effect on individuals and families, and
all the disadvantages slow down the progress toward achieving
the goal of sustainable cities.

The average size of a single-family home in the U.S. today is
2,600 square feet (∼241 m2). If we assume roughly 3 meters of
elevation (8 ft plus some attic space) for the living space, then an
average US home is roughly 720 m3 of building volume. Average
household size in the U.S. in 2018 is roughly 2.5 people. Building
Volume per person (BVPC) for single family households would
then be roughly 290 m3/person or roughly 1,000 square feet per
person. Building Volume per capita is a relatively recent idea as
a useful measure of residential space. Persons per room (PPR)
and Volume per capita (VPC) have been demonstrated to be
correlated to one another in the United States and VPC values
between 1,020 ft3/person (28.9 m3/person) and 29,926 ft3/person
(847 m3/person) with a median value of 8,242 ft3/person (233
m3/person) were measured by Reddy and Leslie for areas in
Baltimore (Reddy and Leslie, 2015). The Reddy and Leslie study,

which examined Baltimore at the block and block group level,
concluded that the wealth of residents and small family size leads
to large amounts of residential living space per person.

Our study was summarized at the tract level and the
500m x 500m raster cell level. We included varying degrees
of non-residential buildings in our assessment of building
volume. The reasons our estimates of BVPC were significantly
higher than those of Reddy and Leslie probably include the
differing nature of historical development in California and
Baltimore and the inclusion of more commercial structures in
our study. Our measures for Los Angeles, San Francisco, and
Del Mar were very similar to those in Baltimore which may be
attributable to geographic characteristics such as being relatively
large cities on the coasts. This sort of work is in its infancy
because the technology (e.g., LIDAR, Satellite imagery, high
spatial resolution demographic information, and volunteered
geographic information) has only recently made this kind of
data and information available. In fact, availability of such
building footprint data, which can be freely downloadable is
still very limited, and high-resolution building footprint data
from IKONOS or LIDAR are cost prohibitive. Moreover, in
working with the building footprint data we came across missing
data, and other data errors. Income data are mostly available
to the lowest administrative boundaries and in this study, we
used the data available at the Census tract level. If income
data were available at a higher spatial resolution, say, 500m by
500m grids we could have carried out the regression analysis
of income and BVPC at the pixel level. However, since it is
not available, we could present only a pictorial representation
of BVPC at the pixel level. Nighttime light satellite images have
been used as a proxy for income in several studies (Ghosh et al.,
2010, 2013; Henderson et al., 2012; Mellander et al., 2015; Hu
and Yao, 2019). We could use the VIIRS nighttime lights as
a proxy for income in forthcoming studies. Nevertheless, the
relationships found between household income and BVPC, and
BVPC and intensities of development are interesting enough to
encourage more explorations. Future research by many scholars
will likely shed light on the utility of measures like this and
the ideal spatial scale for measuring them with the purpose of
establishing objective measures of a valid proxy for the broad idea
of “inequality.” We believe this may be a useful, spatially explicit,
and valid way to characterize “inequality” within a country.
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Of course, there is another side to the inequality question that
addresses differences between countries.

Between Country Measures of Inequality
Several of SDGs lend themselves to having indicators associated
with ideas of BVPC and BV-GINI. Arguably, SDG 3 Good
Health and Well-being, SDG 10 Reduced Inequalities, and SDG
11 Sustainable Cities and Communities are informed by such
concepts and might even benefit from using these measures
as contributing indicators. SDG indicator 11.1.1 “proportion
of urban population living in slums, informal settlements or
inadequate housing” lends itself to EOmeasurement (Kuffer et al.,
2018). BVPC may be a useful contribution to monitoring and
assessing progress on this indicator. The viability of mapping
and monitoring slums from space has developed substantially
in the last decade and there is promise that this development
will continue (Goldblatt et al., 2016; Kuffer et al., 2016).
Nonetheless, challenges remain because urban areas (let alone
slums) are spatially complex both in terms of form, function,
and spectral characteristics (Powell et al., 2007; Lilford et al.,
2019). This complexity raises key questions about what the
appropriate spatial scales of measurement are to measure and
assess what phenomena or concepts relevant to policies such as
the Sustainable Development Goals.

What Is the Appropriate Spatial Scale of
Analysis?
There are many reasons to develop spatially explicit
representations of policy relevant phenomena such as those
identified by the SDGs. Nonetheless, the spatial and temporal
resolution appropriate to myriad policy interventions can vary
dramatically. Epidemiologists can need specific building and
address level information whereas identifying neighborhoods
with inadequate housing could require information at much
coarser spatial resolution. There is growing consensus that pixels
rather than polygons will likely be the preferred format for
mapping and monitoring phenomena that will be derived from
ecological models (Blei et al., 2018); nonetheless, the raster vs.
vector and related spatial resolution questions will likely never
be resolved definitively. This is particularly true in light of the
vector nature of the growing quantity of data generated by social
media and volunteered geographic information.

In this study, we found BVPC measured at the 500m x
500m pixel level to more accurately represent what we knew
to be true about the cities in California that we were familiar
with. We examined the “reasonableness” of several buildings
in these towns for their height and areal extent. Wealthy
areas such as Palos Verdes in Los Angeles and Montecito in
Santa Barbara had high BVPC values that were dampened
when represented by census tracts. Low BVPC areas like Isla
Vista in Santa Barbara and central Los Angeles were identified
by both raster and vector representation because they were
often in the most densely populated areas of the cities and
thus had smaller census tracts. We are not convinced that
the BV-GINI measured at this scale captures something valid
or meaningful about inequality in our cities. Los Angeles was
identified as the city with the highest BV-GINI derived from

census tracts (0.406) and second highest defined from raster
cells (0.263). We are not sure that this resulted from the
sheer size of Los Angeles relative to the other cities. The
GINI values for all 9 cities are generally lower than GINI
coefficients derived for income. California has one of the
higher GINI coefficients in the U.S. for income at a value
of 0.490 (U.S. Census Bureau, 2010). There is no reason to
believe that absolute measures of BV-GINI will correspond with
income or wealth measures of GINI coefficient. Our results are
generally consistent with other studies and we were pleased
to see that BVPC did increase with decreasing intensity of
development. We were also pleased to find that BVPC did
positively correlate with median household income within cities.
This exploratory work has demonstrated that BVPC can be
measured at relatively fine spatial resolution and juxtaposed
with corresponding demographic information. We focused on
easily available building footprint data available for the cities of
California and tested our hypothesis. However, we hope future
research will cover a greater diversity of cities in a variety of
countries and shed more light on the variability and meaning
of these numbers throughout the world. This will of course
entail availability of such remotely sensed building footprint data,
population and land cover data becoming available for other
countries around the world. With the increasing availability of
global coverage of remotely sensed data, it is bound to happen
sooner than later.

CONCLUSIONS

We have measured building volume per capita at 500m x
500m and census tract levels of spatial resolution for 9 cities in
California. Our measurements are conciliant with other findings
that wealthy areas with smaller families tend to have more
building volume per person as might be expected. In addition,
within a given city, BVPC tended to increase as intensity of
development decreased (where Intensity of Development was
characterized by NLCD data from the USGS). BVPC also
positively and significantly corresponds with median household
income in each of the 9 cities. We characterized variability of
BVPC by constructing a Lorenz curve of cumulative percent
of population vs. cumulative percent of building volume to
produce a BV-GINI value for each city based on both tracts
and raster cells. Further research is needed to develop a
larger dataset of BV-GINI values for urban areas around
the world.

California is second only to Hawaii for having the status
of being the “most overcrowded” state. Two main contributing
factors are the high international migration rates and high
housing costs (Cox, 2016). BVPC, developed using EO
data, provides an accurate picture of living space, and
furnishes us with information regarding income inequality
and affordability of housing in cities. Moreover, BVPC can
be aggregated to any required spatial unit of analysis. BVPC
also helps to surmount the shortcomings associated with the
established methods in census, such as PPR as a method of
measuring overcrowding.
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It is projected that by 2050, about two-thirds of the world
population will be living in urban areas, and this will be
mostly in lower and lower-middle income countries. With
the increase of population density in cities, the problems
of overcrowding, income inequality, and affordable housing
will only be aggravated. In such circumstances, making
progress toward achieving the SDG 11 goals of making cities
“inclusive, safe, resilient and sustainable” requires an objective,
easily executable measure of income inequality, housing and
population density, which the BVPC can adequately provide.
With the greater availability of remotely sensed building height
data, and other associated EO data we see the possibility
of expanding the measure of BVPC to other cities, and
countries. While building height information is increasingly
being incorporated in Global Human Settlement layer (Global
Human Settlement - Home - European Commission, 2016),
extending the use of BVPC as an indicator or supplemental
indicator to the SDGs in other countries of the world would
require global coverage of Radar or Lidar based information to
develop high spatial resolution elevation models of buildings.
Studies have demonstrated that laser scatterometer satellites have
high correlations with LIDAR derived measures of urban built-
up volume (Mathews et al., 2019), and given that lidar data is
expensive, scatterometer data might provide a better alternative
for monitoring vertical growth and horizontal expansion of
cities across the world. Characterizing the 3-D nature of
urban form is increasingly recognized as a vital component
of understanding global environmental change (Mahtta et al.,
2019). The use of Seawinds radar data in conjunction with
nighttime satellite imagery has shed light on the aggregate
trajectory of urban form noting that cities in China tend
to be growing up, whereas cities in India are spreading out
(Frolking et al., 2013). This study is modeled on cities in a
developed country. However, we anticipate that researchers in
developing countries would be prompted to undertake similar
studies of understanding how BVPC varies both within a city
and between regions of the world as a logical next step in
understanding and monitoring many of the phenomena related
to the SDGs. With a clearer picture of the spatial distribution of
the disadvantaged pockets in a city it will undoubtedly be helpful
for government and other social agencies to direct resources to
such areas, and to monitor efforts related to sustainability and
social justice.
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