
Frontiers in Sustainability 01 frontiersin.org

Forecasting US data center CO2 
emissions using AI models: 
emissions reduction strategies 
and policy recommendations
Rohan Jha 1*, Rishabh Jha 2 and Mazhar Islam 3

1 Cinco Ranch High School, Katy, TX, United States, 2 Rodger and Ellen Beck Junior High School, Katy, 
TX, United States, 3 College of Business, Loyola University New Orleans, New Orleans, LA, 
United States

Data centers are poised for unprecedented growth due to a revolution in Artificial 
Intelligence (AI), rise in cryptocurrency mining, and increasing cloud demand for 
data storage. A sizable portion of the data centers’ growth will occur in the US, 
requiring a tremendous amount of power. Our hypothesis is that the expansion 
of data centers will contribute to an increase in US CO2 emissions. To estimate 
CO2 emissions, we applied three forecasted power demands for data centers and 
applied 56 NREL (National Renewable Energy Laboratory) power mixes and policy 
scenario cases using 11 AI models. Among these, the linear regression model yielded 
the most accurate predictions with the highest R-square. We found that overall 
CO2 emissions in the US could increase up to 0.4–1.9% due to expansion of data 
centers by 2030. This increase represents ~3–14% of CO2 emissions from the US 
power sector by 2030. Using the state-level power mix forecasts for 2030 among 
increasing CO2 emission scenarios, we predict that Virginia’s power mix will maintain 
emissions in line with the US average, while the Texas, Illinois, and Washington’s 
power mix are expected to reduce emissions due to greater renewables in their 
power mix in 2030. However, Illinois and Washington may face challenges due 
to their limited power resource availability. In contrast, New York and California’s 
power mix may increase CO2 emissions due to higher natural gas in their power 
mix in 2030. The highest variability in data center CO2 emissions stems from AI-
driven demand and improvements in data center efficiency and is followed by the 
power mix. To reduce CO2 emissions from data centers, we offer pathways such 
as reducing power consumption, improving power mix with renewable sources, 
and using hydrogen in power plants. We propose focusing on New Mexico and 
Colorado for data centers to minimize CO2 emissions. Finally, we highlight a set 
of federal policies supplemented by states to facilitate CO2 emission reductions 
across energy, emissions, waste, R&D, and grid infrastructure.
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1 Introduction

Data centers are vital for Artificial Intelligence (AI), cloud computing, and cryptocurrency 
mining. AI is transforming various sectors by enabling early healthcare diagnoses, personalized 
education, and autonomous vehicles. It also supports interactive communication, and other 
applications (Elahi et al., 2023). This transformative technology has significantly enhanced 
convenience and efficiency, making it one of the defining innovations of the 21st century. From 
2017 and 2022, AI applications grew rapidly doubling in demand (Chui, 2022). For instance, 
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Google leverages AI to refine its search algorithms. Facebook, 
YouTube, and Amazon utilize AI to track user activities and 
personalize content, videos, and products. These advancements offer 
tremendous value to users but have a hidden cost. Data centers now 
consume more power, which could sharply raise CO2 emissions. This 
growing environmental impact is a pressing challenge. In this paper, 
we estimate data center CO2 emissions in the US by 2030 and propose 
strategies and policies to reduce them.

Along with AI, data center servers perform two other key critical 
tasks namely cloud storage and cryptocurrency mining. Clouds allow 
users to store data online instead of on physical hard drives. This 
makes data sharing through the internet fast and seamless (Islam et al., 
2023). This also provides accessibility and reliability for users in 
accessing data. Cloud computing is also used for big data, where 
companies have access to user data and can provide users personalized 
results (Amazon, 2024). Like AI, cloud requires significant energy, 
greater than the entire airline industry energy consumes (Monserrate, 
2022). Its market size is expected to grow at an annual growth rate of 
~20% until 2030 (Grad view research, 2023).

Similarly, cryptocurrency is an innovative digital asset that enables 
fast and secure transfer of digital money over the internet. This is 
extremely fast and cheap transactions, and incredible security making 
it very difficult to hack accounts (Tambe and Jain, 2024). Like cloud 
and AI, cryptocurrency is also growing at a fast pace. The number of 
users has grown by more than 100 times in 7  years (Best, 2023). 
However, its high energy consumption means profits are viable only 
with cheap energy. The energy demand from both large data centers 
supporting cloud services and crypto mining contributes significantly 
to rising CO2 emissions.

The rise in CO2 emissions from data centers is widely acknowledged. 
This paper explores four key research questions about CO2 emissions 
from data centers and other waste. (i) What are the projected CO2 
emissions in the US by 2030 under different power demands, power 
mixes, and policy scenarios? What are the main drivers of these trends 

and will data center emissions grow exponentially? (ii) How do the 
different power mixes of US states with data centers affect CO2 
emissions? (iii) Which US states are best suitable for hosting data 
centers to minimize emissions? What strategies and policies can help 
mitigate these emissions? and (iv) What is the impact of growing data 
centers on electronic waste and water consumption? These questions 
test the hypothesis that CO2 emissions will rise due to the rapid growth 
of data centers. They also seek ways to curb emissions through targeted 
measures. We  leveraged three forecasted power demands for data 
centers and applied 56 NREL power mixes and policy scenario cases 
using 11 AI models. Finally, we selected a linear regression model to 
respond to these research questions and thus the inherent assumptions 
with linear regression model stay with the conclusion. The paper begins 
with an overview of data centers and a literature review. The 
methodology section covers data collection and model development, 
selection, and validation. The results section presents findings, and 
finally the conclusion along with next steps is in the discussion section.

2 Data center background and 
literature review

2.1 Data center and its power demand

Data centers are composed of servers, storage, cooling systems, IT 
systems, and networking (Cisco, 2024). This is pictorially represented 
in Figure 1. The servers are the backbone of data centers enabling 
them to perform the operations. The cabling allows the data to 
be transmitted efficiently, and the storage keeps all the data in one 
place. The cooling systems prevent overheating in the facility and on 
chips. The network connects all parts together. All these parts of the 
data centers require energy to run.

There are three types of data centers: enterprise, co-location, and 
hyperscale. First, enterprise data centers are owned and operated by 
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Schematic of data centers based on energy consumption.
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a single company. Second, co-location centers rent space to house 
servers and hardware in a shared energy and cooling environment. 
Third, hyperscale data centers are rapidly scaling up their operations 
to meet vast computing needs, including those companies such as 
Amazon, AWS, Google, and others. The co-location and hyperscale 
data centers account for 60–70% of the data center load (Strubell 
et al., 2019).

Data centers typically use only 40% of their electricity demand for 
computing and this requires continuous power supply for a base load. 
Of the remaining 60% used for non-computing usage, ~40% goes for 
heating, ventilation, and air conditioning (HVAC), and ~ 20% is for 
power supply systems, fans and drivers of the IT equipment 
(Monserrate, 2022). Computation is needed at two levels namely 
training the AI model and its subsequent use. Cryptocurrencies also 
need power at two stages: the first involves proof of work or stake 
known as mining and the second involves adding blocks of 
transactions to a blockchain by solving complex cryptographic puzzles 
(EIA, 2024). The energy used in training an OpenAI’s GPT-4 model 
could have powered 50 American homes for 100 years (Economist, 
2024). Historically, as Moore’s law predicted, chip sizes shrank, 
became faster and consumed less power. However, the situation has 
reversed with AI. First, it takes only 4 months to double in 
computational demand, which significantly increases power 
consumption. The AI model complexity does not help either. For 
example, the GPT-1 needed 1.7 MWh to train a model, GPT-3 needed 
1,287 MWh, and GPT-4 needs 51,773 MWh (EIA, 2024).

The power demand for subsequent use is significant as well. Due 
to the rise of AI, cloud, and crypto, the Boston Consulting Group 
(BCG) (Tarasov, 2024) estimates that the amount of data centers 
needed will grow annually at a rate of ~15–20% until 2030. By then, 
power consumption will exceed five times the total US power used in 
2022, the year ChatGPT was created. AI fuels this growth. The 
prominence and rapid adoption of AI cause the amount of data 
contained by data centers to grow at a much faster rate since AI stores 
and processes a lot more data. For example, a ChatGPT search takes 
up 10 times as much data as a Google search (Goldman Sachs, 2024). 
Training a handful of artificial intelligence models can emit over 
626,000 pounds of carbon dioxide, which is equivalent to nearly five-
times the lifetime emissions of the average American car (Hao, 2020). 
Moreover, data center growth is much greater in the US. Currently, 
the US has around 50% of the world’s data centers, whereas just 3 
years ago, the US had only one-third (Statista, 2023). Thus, in the 
absence of proportional growth of renewable sources, this can lead to 
a lot of fossil fuels being burned to run these centers. Consequently, 
this will in turn cause worsened carbon emissions. These emissions 
will trap the sun’s heat in the atmosphere resulting in increased global 
warming. This trend would hinder the Biden Administration goals of 
carbon free electricity by 2035 (National Climate Task Force, 2024). 
Therefore, the expansion of power needed to operate these data 
centers will need to be responsibly organized, or else the environment 
will struggle.

2.2 Literature review on data center impact 
on environment

Various researchers have investigated and learned about the 
environmental impact of data centers, and how they would solve this 

issue. Data centers use more than 1% of global energy consumption 
(Masanet et al., 2020). This is expected to increase as much as 8% in 
2030 (Anders et al., 2015). Regardless of improvements in energy 
efficiency, aggregate energy usage has been increasing in the last 
15 years (Bashir et al., 2023). Moreover, efficiency improvements have 
slowed down significantly in recent years (Taylor, 2024).

Masanet et  al. (2020) examined the overall environmental 
impact and key trends for data centers. They reported that increasing 
demand in terms of storage, IP traffic, data center workload and base 
servers is growing at a much faster rate than energy efficiency gains 
from power usage effectiveness, server power intensity, and other 
metrics. Monserrate (2022) explored how cloud computing emits 
substantial carbon emissions primarily through data centers. They 
found staggering results. For example, one data center takes up the 
same amount of energy as around 50,000 homes. In addition, they 
found that most of the energy is not even used for computation but 
is instead consumed by cooling systems and backup systems. This 
highlights that the potential for the power efficiency of these centers 
can be  vastly improved. Shehabi et  al. (2011) analyzed how 
greenhouse gas emissions from the increasing amount of data 
centers can be reduced. They found that they could reduce the power 
requirements by recycling energy through economizers. In addition, 
they suggested that these companies should consider the geographic 
location and efficiency to further lessen the power used. The paper 
primarily considers energy efficiency to reduce emissions. Similarly, 
Doland (2024) examined how to reduce the carbon footprint of data 
centers by improving their infrastructure. They found that using 
solid state drives and optimizing servers can make the centers more 
energy efficient, thereby reducing the carbon footprint. Beyond 
improving energy efficiency, the carbon footprint of data centers can 
be reduced by using renewable energy to power them. Huisingh 
et al. (2014) examined this approach and found that using renewable 
energy is one of the most viable ways to reduce carbon emissions, 
although some infrastructure such as power grids are recommended, 
and societal change is necessary. Wilson (2023) investigated how 
renewable resources can benefit the emissions problem caused by 
data centers. He  found that using fuel cells, hydropower, wind 
energy, or using solar panels can reduce data centers’ 
carbon footprint.

3 Methodology

The scope of this paper is limited to CO2 emissions from data 
centers in the US. Accordingly, we estimate CO2 emissions from US 
data centers using their power demand. Although some of the insights 
could be  applicable beyond the US, this is outside the scope of 
this paper.

In this section, we explain how we estimate CO2 emissions for 
different power demands, power mixes, and policy scenarios by 
offering a systematic approach for estimation, validation, selection, 
and forecasting of CO2 emissions from data centers. First, we describe 
the process of collecting input data for forecasted power demand and 
mix. Next, we outline how various AI methods were applied using 
historical data. Then, we validate model’s predicted forecasts and select 
the most suitable model for forecasting. Finally, we  present the 
forecasting method and conclude by highlighting the criteria used for 
selecting optimal locations for data centers. A simple schematic of 
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energy supply to CO2 emissions, electronic waste and water 
consumption along with applications is presented in Figure 2.

3.1 Data center power demand and mix

The power demand for data centers has a significant uncertainty. 
We thus used low, mid, and high cases using data from Electric Power 
Research Institute (EPRI) (Aljbour et al., 2024) and BCG (Lee, 2024). 
The range of power demand accounts for uncertainty with AI 
application demand, internet traffic, storage demand, computation 
intensity, and efficiency gains in computational and 
non-computational aspects of data centers. We used the low case 
considering moderate AI growth and limited efficiency gain (Aljbour 
et al., 2024) or high AI growth with alternative technology to reduce 
power demand. The low case considers a 5% annual growth rate in 
data centers’ power demand. The mid and high cases of this analysis 
are based on BCG (Lee, 2024). BCG’s low and high estimates of data 
centers power demand growth are 15 and 20% annually, respectively. 
They are considered as mid and high cases of power demand for data 
centers in this paper. BCG’s estimates are based on bottom up and 
top-down estimates of rapidly growing data center power 
consumption driven by AI, high performance computing and 
traditional business computing. This also aligns with the global data 
center capacity increase annually as ~20% (McKinsey, 2024). The 
launch of ChatGPT has been a monumental event and the generative 
AI can grow exponentially. In that case, the power demand growth 
rate from data centers could be  even higher. BCG assumes that 
efficiency gain will not be able to overcome increasing power demand 
due to higher AI Model complexity and applicability. They based 
their statement on historical evidence of steam engines where 
technological progress increased a resource’s efficiency, but the lower 
relative cost promoted increased demand for the resource. In the case 
of AI, we could relate with our experience of increased usages of AI 

tool with its availability. For example, we use ChatGPT for mundane 
tasks such as drafting an email.

3.2 Input data to build a model

We have independent variables such as power demand and power 
mix, and the dependent variable is CO2 emissions. These models used 
quarterly historical power mix data from the Carnegie Mellon 
University’s emission index website (CMU, 2024). Descriptive 
statistics and correlation metrics are presented in Tables 1, 2, 
respectively. We use this historical data to develop a model to predict 
CO2 emissions for the forecasted power demand and mix.

3.3 CO2 emissions estimation models

We developed 11 AI models to forecast power sector CO2 
emissions using quarterly historical power demand, power mix, and 
emissions data between 2001 and 2022 in Python. These 11 models 
allow for comprehensive versatility, wide usage in regression tasks, and 
the ability to handle diverse types to select the best-predictive power. 
They are from these four groups: Regression models, ensemble-based 
models, non-linear models, and iterative algorithms. They help in 
finding the best models to estimate CO2 emissions from data centers.

Linear regression models include:

 • Linear regression: This linear regression model assumes a linear 
relationship between independent (input) variables and the 
dependent (target) variable.

 • Elastic net regression: This linear regression model combines 
both Lasso and Ridge regression techniques to tackle 
multicollinearity and feature selection. It includes both Lasso and 
Ridge penalties.
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FIGURE 2

Schematic of power supply to CO2 emissions, electronic waste, and water consumption in data centers along with applications.
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 • Ridge regression: This linear regression model adds an L2 
regularization term to the loss function to prevent overfitting by 
penalizing large coefficients.

 • Lasso regression: This linear regression model adds an L1 
regularization term to the loss function, encouraging sparsity by 
driving some coefficients to zero, effectively performing 
feature selection.

 • Huber regression: This linear regression model is less sensitive to 
outliers compared to standard linear regression. It leverages a 
combination of squared and absolute loss based on the size of 
the error.

Ensemble-based models are the following:

 • Random Forest: An ensemble technique builds multiple decision 
trees (usually trained on different subsets of data) and averages 
their predictions to improve accuracy and reduce overfitting.

 • Gradient Boosting: An ensemble method builds sequential 
decision trees, with each new tree attempting to correct the errors 
of the previous ones. It is commonly used for both regression and 
classification tasks.

 • AdaBoost (Adaptive Boosting): An ensemble technique 
combines weak learners (often decision trees) by giving more 
weight to difficult-to-predict instances in each iteration.

 • Non-linear models covered in this study include:
 • Decision Tree: A non-linear model splits the data into subsets based 

on feature values, creating a tree-like structure to make forecasts.
 • K-Nearest Neighbors (KNN): A non-parametric model forecasts 

the value of a target by averaging or using the most common 
value of the k-nearest data points (neighbors).

Iterative algorithm considered is Orthogonal Matching Pursuit 
(OMP): A greedy algorithm used for feature selection in linear 
models. It iteratively selects the most important feature that explains 
the residuals (errors) of the current model.

3.4 CO2 emissions estimation model 
selection

We first estimate CO2 emissions using 11 AI models using Python. 
We then select a model based on its forecast capability. We developed 
models using 80% of randomly selected data points and retained the 
remaining 20% data to validate their forecast capability. Using the 
developed models using 80% of data sets, we  estimated the CO2 
emissions and compared them with actual data in Figure 3. We found 
that the linear regression equation has the best prediction capability 
and also the highest R-square. The linear regression model predicted 
estimates were within 1% of the actual data. It is noteworthy to mention 
that the validation data set includes data from 2004, 2009, 2015, and 
2023. This validation was tested for different splitting of data between 
model building and validation such as 2/3rd for building the model 
and 1/3rd for validation. They yielded the same result. Thus, the 
acceptable validation provided confidence in the developed regression 
equation to forecast CO2 emissions from the power sector. Also, the 
inherent linear nature of relationships between the power mix and 
emissions makes regression effective. Finally, we developed a linear 
regression model using 95% of data and kept 5% randomly selected 
data for testing. The final model also forecasted the actual emissions 
within 1% error margin. Coal, natural gas, nuclear & hydro, renewable, 
and others are statistically significant variables with p < ~0.05. The 
output of the regression has a multiple R as 0.99, an R square as 0.996, 
an adjusted R square as 0.996, and a standard error as 6.49. The 
resulting regression equation for the US power sector CO2 emissions is:

 

( )
( )

2   
  24.997 0.975

0.495 0.127
0.140 1.26

CO Emissions fromUS Power Sector
million metric tons Coal

Nat Gas Nuclear Hydro
Renewable Other

= + ∗
+ ∗ − ∗ +
− ∗ + ∗

 (1)

In Equation 1, coal, natural gas, renewable, nuclear & hydro and 
others are in billion kilowatt-hr. Other contains the remaining sources 

TABLE 1 Descriptive statistics for dependent and independent variables.

Mean Median Standard deviation Minimum Maximum Count

Coal, billion kilowatt-hr 379 413 117 142 545 92

Natural Gas, billion kilowatt-hr 285 274 102 125 566 92

Nuclear plus hydro, billion kilowatt-hr 265 265 11 240 289 92

Other, billion kilowatt-hr 17 12 10 7 45 92

Renewable, billion kilowatt-hr 72 55 52 17 201 92

CO2 emissions, million metric tons 513,995 536,444 97,612 316,300 698,664 92

TABLE 2 Correlation metrics for dependent and independent variables.

Coal Natural gas Nuclear plus hydro Other Renewable CO2 emissions

Coal 1.00

Natural Gas (0.74) 1.00

Nuclear plus hydro 0.04 0.20 1.00

Other 0.71 (0.68) (0.14) 1.00

Renewable (0.95) 0.82 (0.04) (0.69) 1.00

CO2 emissions 0.95 (0.50) 0.12 0.65 (0.85) 1.00
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used in a generation. The details of regression Equation 1 are presented 
in Table 3. It is noteworthy to mention that Equation 1 is applicable in 
the range of power-mix and power demand, the regression model is 
developed. Based on Equation 1, if only renewable energy sources are 
used, the emissions will be negative, that is not realistic. This is a 
significant limitation, but that situation is very unlikely. Realistically, 
the power mix will be across existing sources and will increase CO2 
emissions. Thus, we focused on estimation of emissions where CO2 
emissions are increased in this paper.

3.5 Model validation and usability

Similar to this study, prior works also utilized regression analysis 
to estimate emissions (Keerthana et al., 2023; Jha and Jha, 2024). Jha 

and Jha (2024) used a linear regression equation similar to Equation 1 
to assess how the US is progressing with its set goal for power sector 
emission reduction. In addition to statistical validation of the 
regression Equation 1 and being the best among AI models, the linear 
regression equation in emissions forecast is in alignment with NREL 
(Gagnon et al., 2023). We finally validate the CO2 emissions of ~0.6% 
of total US greenhouse emissions from data centers for 2022 with 
literature. This is in line with the bottom-up estimated emissions for 
2021 of ~0.5% (Siddik et al., 2021). The small difference is attributed 
to a difference in year, and approximation and methodology in these 
two methodologies.

Linear regression provides a linear equation, which is easy to 
interpret, and works well with known relationship as the case herein. 
This is less prone to overfitting but cannot handle outliers well. The 
present problem does not have drastic variations in the power 
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FIGURE 3

Actual and forecast quarterly US power sector CO2 emissions based on linear regression and other AI models with model R-squares. The data set 
includes data from 2004, 2009, 2015, and 2023. The solid line is a 45-degree line. Equations for the linear, Elastic, Ridge, Lasso regression are the same 
and thus only linear regression prediction is shown.

TABLE 3 Statistical details of the regression Equation 1 for emissions from US power sector.

Variable Coefficient (Std. Error) t Stat P-value

Intercept 24.997 (20.212) 1.236739 0.219714

Coal, megawatt-hr 0.975 (0.020) 48.62676 3.07E-62

Natural Gas, megawatt-hr 0.495 (0.014) 35.16144 3.18E-51

Nuclear plus Hydro, megawatt-hr −0.127 (0.678) −1.8713 0.06487

Other, megawatt-hr 1.264 (0.106) 11.90025 1.5E-19

Renewable, megawatt-hr −0.140 (0.052) −2.67538 0.00901

R-squared 0.996

Adjusted R-squared 0.996

Number of observations 88 (used only ~95% of data)
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demand. Algorithms like Random forecast and gradient boosting 
excel in complex, non-linear relationships, but at a cost of increase 
computational cost and interpretability challenges. These two are also 
prone to overfitting but handle outliers well. Thus, a linear regression 
is a reasonable choice for the present problem.

3.6 CO2 emissions forecast

We used Equation 1 to estimate power sector CO2 emissions 
forecast for a power mix and power demand. We sourced the base 
case power demand and mix data from the reference case Energy 
Information Administration (EIA) 2023 outlook (EIA, 2023). This 
assumes the growth rates as 0.4% for population, 1.9% for non-labor 
productivity, 0.4% for nonfarm employment, 1.7% for real disposal 
income, and 1.4% for GDP. Other assumptions are documented in 
the outlook (EIA, 2023). Using the base case power demand and 
power mix data in Equation 1, we estimate base case power sector 
CO2 emissions. We added a particular data center power demand and 
its power mixes using NREL scenarios (Gagnon et al., 2023) to the 
base case EIA power demand and mix data to estimate independent 
variables for Equation 1. In another words, we split the data center 
power demand using the power mix to estimate data center 
generation from different sources. We  then use the regression 
Equation 1 to estimate power sector CO2 emissions for base case plus 
data centers. The difference in CO2 emissions with data centers and 
the base case power sector CO2 emissions provides the CO2 emissions 
from data centers. We  present a simple schematic to estimate 
emissions in Figure 4 and based on the availability of data, we used 
2022 as a base year. We used low, mid, and high data center power 
demand forecasts and 56 NREL scenarios (Gagnon et al., 2023) to 
estimate CO2 emissions from data centers for 168 different cases. This 
helps in generating a range of emissions. NREL generates power 
mixes based on cost of resources and their availability for different 
policy scenarios.

 • Power mix: The NREL generates power mixes by considering 
natural gas price, renewable energy cost, and renewable resource 

availability. Three natural gas prices used are reference case gas 
prices where the low natural gas price driven by high oil & gas 
resource and technology, and high natural gas price driven by low 
oil & gas resource and technology. There are two renewable 
resource cases. The low case assumes a limited supply for wind 
and PV, and 50% reduction in other renewable energy supply. 
The reference case uses the NREL’s Regional Energy deployment 
system model (Ho et  al., 2021). Several cost situations are 
considered such as conservative and advanced batter and CCUS 
cost and performance. They also used direct air capture 
constraints on its electricity usages to capture CO2.

 • Policy scenarios: The NREL forecasts consider three policy 
scenarios: (i) progression of current policy of September 2023 to 
continue, (ii) 95% carbon free power by 2050, and (iii) carbon 
free electricity by 2035 (100% by 2035). The current policy and 
95% carbon free power by 2050 generate similar power mixes and 
thus resulting in similar results. They did not explicitly use a 
particular policy for cases (ii) and (iii).

It is noteworthy to mention that the estimation of emissions from 
data centers is based on the difference in emissions for power sector 
with and without data centers. This is a significant assumption but 
applied in this paper in the absence of the granular historical and 
forecast data for data centers. Thus, this should be stated or removed 
in future studies.

3.7 Selection of data center location to 
minimize CO2 emissions

We identified five factors necessary for suitable data center 
locations to reduce emissions. These factors are (i) renewable energy, 
(ii) base load using natural gas or renewable sources, (iii) grid stability, 
(iv) energy storage, and (v) government policy. Along with energy 
sources, we need to focus on grid, storage, and policy. The ability of 
the local energy grid to handle fluctuations in power demand without 
disruptions, sufficient capacity for energy storage, such as battery 
systems, to balance intermittent renewable sources, and supportive 
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state-level policies that incentivize renewable energy usage, emissions 
reduction, and sustainable infrastructure development. Due to 
variability and data availability, we limited the analysis to state-level 
granularity and identified states that are likely to support these factors 
in the future.

4 Results

This section first establishes the power demand for data centers. 
Next, we estimate CO2 emissions for this power demand using the 
base case power mix for increasing CO2 emissions from data center 
cases. Following that, we assess the impact of power demand, power 
mixes, and policy scenarios on CO2 emissions. We then introduce the 
state-level power mix granularity to refine our emissions estimates 
based on regional energy sources to assess the state-level impact. 
Finally, we also highlight suitable states for data centers and additional 
environmental challenges caused by data centers, such as electronic 
waste and water consumption.

4.1 Data center power demand

In this sub-section, we first present the power demand due to 
data centers. There is a significant uncertainty in power demand 
due to data centers and we thus provide low, mid, and high case 
power demand. We present increasing power demand due to data 
centers for low, mid, and high cases in Figure 5. In the low case, the 
data center demand increases up to ~200TWh by 2030. To put this 
in context, 226TWh is the annual electricity consumption of a 
medium size European country such as Spain in 2023 and ~ 1% of 
global electricity demand (Enerdata, 2024). The current power 
demand due to data centers of ~130TWh will increase to 400TWh 
for the mid case and goes up to ~560TWh by 2030 with a CAGR of 
20% high case. 400TWh is the annual power demand of South 
Korea or Mexico (Enerdata, 2024). 560TWh is the annual power 

demand of counties like Canada in 2023 (Enerdata, 2024). The 
power demand due to data centers increases and is driven by 
increasing usages of AI, crypto mining, and cloud application. A 
significant difference in forecasted power demand is the extent of 
uptake in AI demand and efficiency gain. The wider range covers a 
range of possibilities in the future and highlights their impact in 
subsequent paragraphs.

4.2 Data centers CO2 emissions for 
different power demands

We present CO2 emissions for low, mid, and high cases of power 
demand from data centers considering the EIA forecasted power 
mix (EIA, 2023) in Figure  6. Currently, power for data centers 
mostly comes from the grid, and thus the overall power mix will 
impact data center emissions. We  first observe that the CO2 
emissions trend for all three power demand cases is similar in 
Figure 5. First, the curves have a similar trend since they use the 
same power mix. But for all three cases, the profile is not 
monotonically increasing, though the power demand in these cases 
increases. This is due to the variation in the power mix with time, 
particularly increasing contribution of renewable resources. By 
2030, the CO2 emissions due to data centers are estimated to be in 
between 23 and 66 million metric tons of CO2 for the low and high 
cases, respectively. They are equivalent to 3.9 and 11.3% of 
emissions due to the US power demand and 0.5 and 1.6% of the 
total US emissions in 2030. This range is due to a variation in power 
demand alone, which is driven by adoption of AI and technological 
advancements. This estimate suggests that around 1% of US 
emissions will be from data centers if we use the currently forecasted 
power mix. We subsequently present the recent emissions increase 
for select companies such as Google, Microsoft, Meta, and Amazon 
focusing on data centers in Table 4. All these companies increased 
their emissions by 30–100% in the last 3 years and are expected to 
grow in the future (Meta, 2024).
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4.3 Data centers CO2 emissions for 
different power mixes and demands, and 
policy scenarios

We estimate CO2 emissions for 56 cases of power mix and policy 
variations, as outlined in NREL (Gagnon et  al., 2023), for three 
different data center power demands and considered only increased 
CO2 emissions cases. However, we present the key cases to highlight 
factors driving emissions from data centers such as current policy 
and carbon free power by 2035 (100% by 2035). For each policy 
scenario and power demand, we  show low, mid, and high CO2 
emissions in Figure 7. The mid case corresponds to the mid case 
power mix of the particular policy scenario estimated by NREL 
(Gagnon et al., 2023) considering central or medial values of all input 
variables. However, the high and low represent the highest and lowest 
CO2 emissions for several power mixes for a particular policy 
scenario and power demand. In Figure 7, we found that the emissions 
from data centers vary between 3–14% of the 2030 power sector 
emissions. That is equivalent to 0.4–1.9% of the total US emissions 
in 2030.

The variability in the power demand has the highest impact on 
emissions. For the mid case with the current policy, the emissions vary 
from 16 to 58 CO2 million metric tons due to the power demand range 
between 192 and 559 TWh. The power demand variation is ~3 times. 
The variability in emissions due to a power mix change is significant 
as well. For the mid case, emissions range between 33 and 58 million 
metric tons for the current policy case. When only renewable 
resources are used, there will not be increased emissions from data 
centers. But this is a highly unlikely situation.

For the power mix, the low case corresponds to low renewable 
cost and availability of renewable resources in the future leading to a 
greater renewable contribution in the power mix. In contrast, the high 
case corresponds to high renewable cost or reduced availability of 
renewable resources leading to higher fossil-based resources in the 
power mix. The variation between the current policy and 100% by 
2035 is not significant and for the mid case it varies between 40 and 

41 CO2 million metric tons since the power mix difference is minimal 
for these two cases.

Across cases, the low and mid cases of the two policy scenarios 
have nearly similar emissions since low case corresponds to low 
renewable cost resulting in a similar power mix and the same is the 
case for the mid case. However, the high case corresponds to the high 
renewable cost, and this results in high coal usages for the current 
policy leading to a difference.

4.4 Impact on data centers CO2 emissions 
using power mixes of states with data 
centers like Virginia, Texas, California, 
New York, Washington, and Illinois

Using the NREL’s 56 forecasted scenarios (Gagnon et al., 2023), 
we  estimate emissions using state-level power mixes for states 
containing a large number of data centers such as Virginia, Texas, 
California, New York, Washington, and Illinois. In this case, we use 
the state-level power mix for the national level aggregate power mix 
to use Equation 1 while estimating the impact of a particular state-
level power mix on CO2 emissions and consider only cases with 
increased CO2 emissions. We divide these states into three categories 
compared to the estimate using the US power mix: (i) the power mix 
will reduce emissions, (ii) the power mix will keep emissions similar 
to US average, (iii) the power mix will increase emissions.

States like Texas, Illinois, and Washington fall into the first category 
due to significant renewable resources to the power mix in 2030. 
However, only Texas seems to have surplus power for data centers usages 
in 2030 (Gagnon et al., 2023). The highest among all scenarios for the 
Texas power mix increases the US power CO2 emissions by only 2.2%, 
which is 0.4% of the total US emissions. This is much lower than 
estimated using the US average power mix. The lower case has minimal 
increased emissions due to abundance of renewable resources for power. 
Virginia is in the second category. We found the highest CO2 emissions 
is 15.7% of the US power emissions, which is 2.2% of the total US 
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emissions. This is slightly higher than the estimate based on the average 
US power mix, but the low case emissions are lower because Virginia 
does not use coal, and with a high natural gas price, they are predicted to 
use mostly renewables in 2030 (Gagnon et al., 2023). New York and 
California fall into the third category. Using their power mixes, CO2 
emissions from data centers will be higher than estimates based on the 
US average power mix due to their reliance on natural gas in 2030 
(Gagnon et al., 2023). California imports ~90% of gas from New Mexico, 
Texas, Colorado, and Oklahoma using several pipelines such as 
Northwest Pipeline, Kern River Pipeline, Transwestern Pipeline, El Paso 
Pipeline, Ruby Pipeline, Mojave Pipeline, and Tuscarora (Natural Gas 
and California, 2024). Similarly, New York state also imports gas from 
neighboring Pennsylvania Marcelus, Gulf Coast, Western Canada, and 
other regions using pipelines such as Algonquin, Spectra, Rockway, 
Millenium, and others. Given it is easier to transport gas than renewable 
energy sources, these two states may continue to use natural gas resulting 
in higher emissions from data centers (Natural Gas | Department of 
Public Service, 2024). California and New York also do not seem to have 
surplus power in 2030 (Gagnon et al., 2023). These states have plans to 
reduce emissions, but they need further efforts and renewable resources. 
Thus, an effective solution to reduce emissions is to reduce power 
demand by efficient computing and cooling. When only renewable 

resources are used, there will not be increased CO2 emissions from data 
centers. The next step should be the application of renewable resources 
where cost and technology or availability are key factors. Notably, the 
data center companies have capital to spend and thus the cost should not 
be impactful for them. Instead, the availability of renewable resources is 
the critical driver to reduce emissions.

4.5 Selection of suitable US states for data 
centers in the future

Cleaner data centers need availability of cleaner power, base load 
using natural gas or nuclear to balance intermittent renewable supply, 
grid stability, energy storage, and government policy. The intersection 
of renewable power and base load offers a suitable location for data 
centers such as Texas, New Mexico, Colorado, and North Dakota.

Texas is a suitable location for data centers based on the 
availability of wind, solar, and natural gas. Similarly, New Mexico and 
Colorado have solar and natural gas, and North Dakota has wind and 
natural gas. Solar potential is in the South-West USA across 
California, Arizona, New Mexico, and a part of Texas (EIA Solar, 
2024). Wind potential is in the middle of the US from North to South 

TABLE 4 CO2 emissions for select companies with data centers (Gstatic, 2024; Microsoft, 2024; Meta, 2024; Amazon, 2024).

Companies Number of data 
centers in 2023

2019 Emissions, 
million metric ton of 

CO2

2023 Emissions, 
million metric ton of 

CO2

% increase

Google 40 9.7 14.3 47

Microsoft 200 12 15.5 29

Meta 24 4.3 8.6* 100

Amazon 125 51.2 68.8 34

*Data is for 2022 since 2023 data is not available.
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across Texas, Kansas, Wyoming, North and South Dakota (EIA Wind, 
2024). Natural gas with proximity to shale basins and nuclear can 
offer the base load. Abundance of shale gas is across Texas through 
Barnett, Eagle Ford, Haynesville-Bossier and Permian basins, North 
Dakota using Bakken basin, and significantly in Pennsylvania and 
Ohio using Appalachian basin with some in Colorado and New 
Mexico (UT Library, 2011). Nuclear is across the East coast and in 
Illinois (NRC, 2020). With respect to grid stability, energy storage, 
and government policy, all these states are investing in energy storage, 
but North Dakota may be  lagging. States like Colorado and New 
Mexico are aggressively pursuing renewable energy targets and Texas 
and North Dakota have a more balanced approach. The Texas grid is 
vulnerable due to its independence, but other grids are connected to 
other ISO (independent system operators). Thus, Colorado and New 
Mexico could be  a better alternative for data centers to reduce 
emissions. Both states have supporting power mixes in 2030 (Gagnon 
et al., 2023), but do not seem to have much generation. Thus, the data 
center companies need to invest and generate more power in the 
future in these states.

4.6 Data center electronic waste and water 
consumption

Apart from CO2 emissions, data centers generate other 
environmental wastes such as e-waste and consume water (Figure 2). 
Typical data center servers, storage, network equipment have a life of 
3–5 years (Shehabi et  al., 2016). Frequent servers and equipment 
updates lead to a vast accumulation of obsolete hardware. Data centers 
generate significant e-waste annually and are expected to increase in 
the future. This e-waste often contains hazardous materials like lead, 
mercury, and cadmium, which can contaminate the environment if 
not properly disposed of or recycled. Adopting circular economy 
principles (Hoosain et al., 2023; Velenturf and Purnell, 2021) such as 

recycling hardware components and optimizing cooling systems may 
help in reducing electronic waste.

Data centers consume significant water at two stages, namely 
electricity generation and cooling (The Green Grid, 2011), as shown in 
Figure 2. Water consumption for electricity generation is 7.6 liters per 
kWh power and that for on-site water cooling is estimated to be 1.8 
liters per kWh of total data center site power usage except for closet and 
room data centers (Osibo and Adamo, 2023). Using these, we estimate 
water consumption for different power demands and are presented in 
Figure 8. The data center is currently using around 234 billion liters of 
water. 234 billion liters of water could supply about 8 million people’s 
(equivalent of New York City) daily water needs annually. Depending 
on the power demand, it is expected to grow to 3 to 4 times with water 
consumption as high as 1,006 billion liters resulting in a significant 
water consumption in the future in data centers by 2030. It is noteworthy 
that this is on-site water consumption and the water usage in electricity 
generation is around 3 times of the on-site usages. These estimates are 
in line with the previous estimation (Siddik et al., 2021). Google’s data 
centers in the U.S. used on-site over 3.3 billion gallons of water in 2019 
and another 1 billion gallons of water globally (Google Data Center 
Water Usages, 2023). For example, in states like Arizona and Nevada, 
data centers are often criticized for their high-water consumption, 
which exacerbates local water scarcity shortage (Tulsa, 2004).

5 Discussion

This section first summarizes the results of CO2 emissions from 
data centers by responding to key research questions established in the 
introduction section. Following that, we propose mitigation strategies 
to reduce CO2 emissions from data centers. We then share facilitating 
policies to address these issues. Finally, we conclude by outlining areas 
for future work to further refine and improve data center 
emissions management.
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5.1 Responses to research questions

This paper assessed CO2 emissions from data centers by leveraging 
forecasted data centers’ power demand (Aljbour et al., 2024; Lee, 
2024), power mix and policy scenarios (Gagnon et al., 2023), and 11 
AI models. We estimated the increased CO2 emissions for the US 
power sector to assess the impact of data centers using a regression 
equation, which has the best prediction capabilities among 11 models 
and highest R-square (CMU, 2024). Thus, the limitations and 
assumptions associated with the regression model may impact the 
results. The model outcome and associated analyses helped in 
answering four research questions as below:

 • CO2 emissions from data centers increase between up to ~0.4% 
and ~ 1.9% of the total US emissions by 2030. The highest 
variability in data center CO2 emissions stems from AI-driven 
demand and improvements in data center efficiency and is 
followed by the power mix. The lower ~0.4% is a result of scaling 
the currently forecasted power mix in 2030 and conservative AI 
application demand along with higher application of renewable 
resources for power. However, the emissions increase can be as 
high as ~1.9% when AI application demand is high, efficiency 
gain in chips is limited, cost for renewable is high and/or 
availability for renewables is limited. When only renewable 
resources are used for data center power demand, there will not 
be increased emissions from data centers. But this is a highly 
unlikely situation.

 • Using the state-level power mix forecast for 2030 for cases with 
increasing CO2 emissions from data centers, Virginia’s power mix 
is expected to keep emissions estimated in line with the US 
average power mix. Texas, Illinois, and Washington power mixes 
are expected to reduce CO2 emissions relative to the average US 
power mix with only Texas having surplus power. The New York 
and California power mixes may increase CO2 emissions relative 
to the average US power mix, and they do not have surplus power 
for data centers in 2030.

 • Based on five factors necessary for suitable data center locations 
to reduce emissions such as renewable energy, base load using 
natural gas or renewable sources, grid stability, energy storage, 
and policy, we found that Colorado and New Mexico could be a 
better alternative for data centers to reduce emissions. Both states 
have supporting power mixes in 2030 (Gagnon et al., 2023) but 
need to invest and generate more power in the future for 
data centers.

 • Along with CO2 emissions, the data center is using 234 billion 
liters of water currently and is expected to be as high as over 
1,000 billion liters of water by 2030. It also generates e-waste and 
adopting circular economy principles may be helpful.

It is noteworthy that the data centers need high capacity and 
reliability to maintain power for information technology (IT) and 
computing whereas renewable sources are not reliable. A practical 
solution could be  energy storage using batteries coupled with 
renewable power. Thus, our hypothesis is not fully correct that the 
data centers will increase emissions since it depends on the power 
mix. The situation with reduced or lower emissions, particularly with 
only renewable sources, is not captured in the results Equation 1 due 
to its inherent limitation of being applicable for historical power 

mixes. We thus focused on the situation with increased CO2 emissions 
from data centers. When only renewable resources are used, there will 
not be increased CO2 emissions from data centers. However, this is a 
highly unlikely situation. Other options to reduce emissions from data 
centers could include scalability, monitoring and analytics, and 
research & development.

5.2 Proposed mitigations to reduce CO2 
emissions

Based on the findings of the work, we propose the mitigation 
options for CO2 emissions namely improve power supply mix with a 
greater renewable content, reduce data center power demand, and 
carbon capture at generation, as shown in Figure 9.

First, we  should strive for clean power for data centers using 
renewable power sources such as solar and wind or hydrogen in the 
power mix for power plants. Some of the thought leaders are thinking 
along these lines. For example, Sam Altman from OpenAI (ChatGPT) 
is targeting solar energy as a solution for this problem (WSJ, 2024). 
Renewable sources come with limitations such as intermittent supply, 
need of energy storage, large land and environmental impact, 
transmission infrastructure, availability of raw materials, and supply 
chain constraint, recycle and waste management, and economic and 
policy uncertainty (Duarte and Fan, 2023; Osibo and Adamo, 2023). 
Solar and wind are intermittent by nature. Along with intermittent 
supply, this also impacts grid reliability and congestion. Thus, there is 
a need for large storage or onsite renewable resources (Duarte and 
Fan, 2023; Acun et al., 2023). Along with large land requirement for 
wind and solar, they also impact local biodiversity. Renewable sources 
also require critical materials like lithium, cobalt, and others, and 
these are concentrated in a few countries like China and Chile thereby 
posing supply-chain challenges. Finally, recycling of these materials is 
not fully established. While solar and wind energy are essential for 
transitioning to a cleaner energy future, their long-term viability is 
tied to overcoming these technological, environmental, and policy 
challenges. Solutions like improved energy storage, advanced grid 
management, and sustainable material sourcing are critical for scaling 
up renewable energy in the long term. The use of hydrogen in a power 
mix is promising (Hwang et al., 2023). However, we need further 
technological and commercial maturity to produce hydrogen using 
renewable resources before it can be applied.

Second, we should reduce power demand driven by data centers 
using efficient computational technology, cooling mechanisms, and 
reducing back up demand. As mentioned earlier, cooling accounts 
for 40% of power and that can be reduced using liquid cooling such 
as direct-to-chip and immersion, AI-driven cooling optimization, 
renewable energy-driven cooling, and heat reuse. For liquid cooling, 
we  use liquid with higher heat capacity to cool chips and also 
submerge the servers into non-dielectric liquid. For AI-driven 
cooling, there are examples such as Google DeepMind which 
analyzes real-time data from sensors resulting in reduced power and 
autonomous HVAC which utilizes AI algorithms to reduce overall 
energy footprint. With high solar potential states such as Arizona 
and Nevada, Apple data centers are mostly powered by solar, and 
they also use solar for cooling applications. Application of waste heat 
for community and other purposes eventually reduces power 
demand. Another 40% of power goes into computation and storage. 
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This can be  reduced using energy-efficient hardware, improved 
power usage effectiveness, intelligent power management (Liu et al., 
2012), server lifecycle management, and effective cloud and edge 
computing. For energy efficient hardware, we should consolidate 
servers, use newer ARM-based processors, and adopt solid-state 
drivers. For improved power usage, we  should optimize power 
distribution to reduce power loss and use uninterruptible power 
suppliers thereby reducing loss due to power back-ups. For intelligent 
power management, we should use software to scale power based on 
real-time demand. We should manage server lifecycle effectively to 
reduce power and other electronic waste. For effective cloud and 
edge computing, we should migrate to cloud to take advantage of 
economy of scale and process data closer to source to reduce 
data transfer.

Third, recent advancements in carbon capture for both scale and 
technology at power plants could offer a solution (Tollefson, 2023; 
IEA, 2020). Currently, two large-scale CCUS facilities (Petra Nova 
Carbon Capture project and the Boundary Dam Carbon Capture 
project) are in operation in the power sector. Both are CCUS retrofits 
to existing coal-fired power plants (IEA, 2020).

5.3 Need for facilitating policies

NREL considered three book ends of policies while estimating the 
power mix. We used them to generate a range of estimates. However, 
they were generic and not specific in nature. Thus, we will present next 
how specific policies will help in reduction of emissions.

Facilitating policies will play a crucial role in reducing emissions 
from data centers and ensuring a more sustainable future for industry. 
To reduce emissions from data centers, we need supportive policies 
for energy, emissions, waste, R&D, and grid infrastructure. We need 
federal regulation and policy incentives along with the state’s support. 
Given the diversity across state in terms of the renewable resources, 
power mix, grid stability, and storage potential and plan, the state’s 

support with federal will be  important. For renewable energy, 
we should have standards for energy efficiency, incentives for energy 
efficient technologies and encourage renewable usage using tax 
incentives and minimum requirements. For emissions, we  should 
implement carbon tax or cap-and-trade and set limits for large data 
centers. For waste, we  should promote reuse, recycle, and 
refurbishment of hardware and implement ERP laws for life cycle 
management. We should promote R&D through grants for technology 
development, private-public partnership, and incentives for startups 
to reduce power demand for cooling, computation and improvement 
in grid reliability. We should offer incentives for grid modernization 
and energy storage through investment or tax credit. In addition, 
we should establish a certification program for data centers based on 
emissions and mandate reporting of emissions including third-party 
audit for transparency. These will help us in accomplishing reduced 
emissions from data centers in the near future and will be sustainable.

5.4 Limitations and future works

This work quantifies CO2 emissions from data centers and 
suggests mitigation options, including identifying suitable locations 
for minimizing emissions. However, this can be expanded greatly by 
removing assumptions and some of them are listed next.

 • Model: The current model is at the US level power sector and 
applicable in the range of power mixes used for developing the 
model. The historical power mix used all power resources. First, 
we should have more granular analysis at the state or county level, 
with specific historical and forecast data for the power demand 
and power mix without any limitations. Second, in the absence of 
granular data for data centers, the current methodology estimates 
the CO2 emissions for the power sector with and without data 
centers and the difference between these two cases is attributed 
to the data centers emissions. In the future, one could model only 
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data centers without considering other applications of power. 
Third, the selection of data center locations could be  further 
localized to optimize placement based on environmental, power 
demand & mix, and policy factors. Fourth, the model can also 
be  expanded to dynamically simulate policy changes such as 
carbon tax and renewable incentives. That is currently handled 
using the fixed NREL power mix.

 • Lifecycle emissions from data centers: The current work only 
highlights the CO2 emissions due to the power demand from data 
centers. Applications of AI and cloud computing improve 
efficiency and productivity, leading to a reduction in CO2 
emissions (Luers et  al., 2024). Some examples of reducing 
emissions using AI include predictive maintenance (Hamdan 
et al., 2024; Bello et al., 2024), efficient manufacturing systems 
(Mohammad et al., 2025) real-time power allocation, and load 
optimization (Biswas et al., 2024). These are significant factors. It 
is outside the scope of the current work and should 
be incorporated and addressed while estimating CO2 emissions 
from data centers in future research. Also, one should perform 
lifecycle emissions from data centers such as including server 
manufacturing, infrastructure set up and other (Kezhuo and 
Zhou, 2024).

 • Global expansion: The current analysis is restricted to the US 
only. Expanding the analysis to include global data center 
emissions and activities, along with a global policy framework for 
addressing emissions, would be valuable since emissions impact 
globally and are not restricted to regional boundaries.

 • Case studies example: The paper does not list real examples. The 
future work may analyze case studies examples to reduce 
emissions from data centers such as co-locating hyperscale data 
centers with renewable energy farms (Data centers on-site 
renewable energy, 2023).

 • Future technology impact on energy landscape: Future 
technologies may change the energy landscape such as quantum 
computing (Sood and Chauhan, 2024). They need to 
be considered while estimating emissions.
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