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Optimal investment strategies for
decarbonizing the Indian private
road transport sector

Nandita Saraf and Yogendra Shastri*

Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India

The Indian government’s COP26 emission reduction target has led to explore

strategies to decarbonize India’s private road transport sector. Adoption of novel

vehicle options such as E85, electric, and CNG vehicles and strong network

of public transportation are expected to reduce the emissions significantly.

A system dynamics model for India’s private road transport sector has been

developed previously. This study expands that model by incorporating the

dynamics between public and private road transportation and uses it to

identify strategy for optimal incentive allocation for novel vehicle adoption to

minimize the GHG emissions. The idea of epsilon-constraint method for multi

objective optimization has been used in this work. The results suggested a

trade o� between investment in incentives and reduction in GHG emissions.

Incentivization strategy prioritized electric cars and two-wheelers, as well as

charging/CNG stations, to discourage the adoption of petrol vehicles till CNG

infrastructurewas established. TheminimumGHGemissions achievedwas 535.5

Mt CO2e by 2050 with an investment of 137.74 trillion Indian Rupee when public

transportation was not considered. Upon considering public transportation, the

minimum GHG emissions further reduced to 464.5 Mt CO2e by 2050 with

reduced investment of 128.25 trillion Indian Rupee, indicating greater emission

reduction benefits per unit investment. However, beyond a certain threshold,

increase in public transportation resulted in increased incentive investment due

to a feedback e�ect. This necessitates incorporating dynamic analysis into policy

strategy. Other strategies such as carbon tax and renewable share in electricity

grid proves very e�ective in reducing GHG emissions as well as incentive

investments. However, despite reducing emissions COP26 emission target for

2030wasmissed by 34%. Banning the purchase of new petrol and diesel vehicles,

alongwith restrictions on the use of existing petrol and diesel vehicles, could help

bridge this gap.
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1 Introduction

Decarbonization of the Indian transport sector is essential if India is to achieve its target

of becoming a net zero country by 2070. According to Bansal et al. (2021), the transport

demand in India has already surged from 1,700 billion pkm (passenger-kilometers) in

2005 to 3,833 billion pkm in 2020. The road transport sector alone accounted for 62.5%

of passenger transport demand in 2020 (Kamboj et al., 2022). It was responsible for 87%

of the total transport energy demand and 92% of the transport sector’s greenhouse gas

(GHG) emissions in 2020 (Kamboj et al., 2022). These numbers are projected to rise
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due to increasing demand for private vehicles, including cars and

two-wheelers. The four-wheeler ownership is expected to grow

nine-fold, while two-wheeler ownership will reach saturation as

income levels rise in the next three decades (Kamboj et al., 2022).

Consequently, the passenger modal share of cars and two-wheelers

is anticipated to rise from 38% in 2020 to 66% in 2050.

Novel vehicle options, such as E85 [driven on 85% of ethanol

in 15% of petrol (gasoline)], electric, and compressed natural gas

(CNG) vehicles, are being promoted to reduce carbon intensity of

private transport sector. However, their adoption remains very low.

In 2022, CNG car sales accounted for 11% of the total sales, up from

5% in 2020, whereas electric and hybrid car sales made up just 2%

of total sales in 2022, compared to 0.2% in 2020 (Statista, 2023).

Notable obstacles to their mass adoption include higher purchase

prices compared to conventional vehicles (Dixit and Singh, 2022;

Hema and Venkatarangan, 2022) and lack of sufficient refueling

stations (Dwivedi, 2020; Ashok et al., 2022).

The Indian government has been providing financial assistance

to encourage the adoption of novel vehicle options through

various policies. One notable initiative is the Faster Adoption and

Manufacturing of Electric Vehicles (FAME) scheme, which offers

INR (Indian Rupees) 15,000/kWh incentives, with a maximum

cap of 40% of the electric vehicle’s purchase price (Govt of India,

2015). State governments also provide subsidies and tax waivers

for electric vehicles while supporting charging infrastructure

with capital subsidies, property tax exemptions, and electricity

cost coverage during construction (Bureau, 2019). Additionally,

the Sustainable Alternative Towards Affordable Transportation

(SATAT) scheme provides financial assistance of INR 40 Million

per 4,800 kg compressed biogas (CBG) produced per day, with

a plant capacity of 12,000 cubic meters CBG per day (IOCL,

2023). The government has allocated funds of INR 1,200 Billion

for city gas distribution infrastructure (Ministry of Petroleum and

Natural Gas, Government of India, 2023). It also offers subsidies

for E85 vehicles, including export subsidies of INR 300 Million

for converting surplus sugar into ethanol (The Times Of India,

2021).

Increased use of public transport options such as buses, metros,

and local trains is also expected to reduce GHG emissions. This

can be due to shared mobility, which takes some vehicles off the

road, thereby reducing fuel consumption, or less travel time taken

by on-road vehicles due to reduced traffic. The Indian government

has recently made substantial investments in the construction

and operation of metro lines to address road congestion and

reduce transport emissions in Tier I and Tier II cities. The budget

allocation for Indian metro rail projects increased from INR 156.3

Billion in 2022–23 to INR 195.2 Billion in 2023–24 (The Economic

Times, 2023b). Metro rail is already operational in 16 cities across

India, with the Delhi Metro being the largest in terms of the length

of the lines. As of November 2023, India boasts 895 kilometers

of operational metro lines, facilitating an annual ridership of

2.63 Billion people across the country (World Resources Institute,

2023).

While these incentives and investments are encouraging,

ensuring the maximum benefit from these actions is challenging.

Several shortcomings of the current approach of deciding

incentives can be identified. Firstly, the number of sectors are

many, covering a variety of conventional and novel vehicle options.

The different vehicle sectors, namely two wheelers and four

wheelers, must also be noted here. Secondly, the incentives are

decided by different agencies of the government, possibility without

taking a holistic view of their interactions. Moreover, since the

investments are not one time and instead over a longer time

horizon, the time depended structuring of the incentives adds

another layer of complexity. The optimum level of incentive may

have to be modulated as a function of multiple factors. Finally,

the complex underlying dynamics in the transport sector such as

the gaps in supply and demand of various fuels such as petrol,

diesel, and ethanol, impact of insufficient refueling stations on

respective vehicle adoption, cost parity in ICE and EVs, reduction

in driving of private vehicles due to strong network of public

transportation, and evolving consumer preferences will be affecting

the adoption of novel vehicles. The dynamics of the system,

combined with the incentivization strategy for novel vehicles, can

have either a positive or a negative impact on their adoption,

and consequently, on the reduction of GHG emissions in the

transport sector. Therefore, it is also important to account for

the dynamics of the transport sector to ensure efficient utilization

of financial resources. The current strategy for distribution of

incentives doesn’t lacks a clear plan for how these incentives

might be adjusted to respond to the evolving dynamics of the

system.

Hence, this study formulates and solves a dynamic optimization

model utilizing a system dynamics (SD) model developed by Saraf

and Shastri (2023) to determine the optimal incentive strategy for

novel vehicle options. First, the system dynamics model developed

by Saraf and Shastri (2023) is modified to include the expansion in

metro transportation and its impact on usage of private vehicles.

The modified system dynamics model is incorporated into the

optimization model to identify how the optimal incentive strategy

gets affected by inclusion of public transportation.

The key novel contribution of this work is the development

of an integrated framework that combines dynamics of the

transport sector with the optimization model to determine optimal

investment strategies. The results of this analysis provide specific

inputs on the relative prioritization of various vehicle options,

while capturing their interactions. This has not been reported for

the Indian private transport sector. All the studies reported in

literature have been done for only some vehicle options, and do

not capture aspects such as consumer preferences, environmental

performance of the vehicle, fuel price dynamics, impact of lack

of infrastructure and related factors on consumer selection. The

framework presented here, therefore, will be a valuable decision-

making tool for various stakeholders, including the government.

Such a framework is not currently available in the Indian context.

The structure of this paper is as follows. Section 2 reviews

the literature on the effect of incentives on vehicle adoption.

Section 3 briefly summarizes the system dynamics model

previously developed. Section 4 describes the optimization problem

formulation based on the existing system dynamics model. Section

5 describes the inclusion of metro transportation in the SD model

and modifications in the optimization problem. Section 6 presents

the results for all the optimization problems and provides insights

obtained from the results. The paper concludes with Section 7.
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2 Literature review

Several studies have examined the effectiveness of financial

incentives in promoting EV adoption in different countries,

including Norway (Mersky et al., 2016; Wu and Kontou, 2022),

the United States (Jenn et al., 2013), and China (Wu et al.,

2021). In a study conducted in the United States, direct purchase

rebates were found to significantly increase new battery-operated

EV registrations, with approximately 8% increase per thousand

dollars of incentive offered (Clinton and Steinberg, 2019). A survey

in Greece revealed that 35% of respondents expressed willingness

to purchase an electric car if incentives were provided (Mpoi

et al., 2023). The authors recommended installing fast chargers,

particularly in residential buildings and workplaces. Similarly,

a survey conducted in Norway indicated that 84% of battery-

operated EV owners considered purchase tax and VAT exemptions

crucial for their EV purchase (Bjerkan et al., 2016). A study

conducted in Portugal employed market simulations to compare

the adoption of EVs with internal combustion engine vehicles,

showing that financial incentives effectively promoted EV adoption

and led to a 60% reduction in well-to-wheel emissions per kilometer

(Santarromana et al., 2020).

Incentive allocation strategy is often modeled as an

optimization problem. A nonlinear mixed integer mathematical

model was proposed by Wu and Kontou (2022) to optimize

the investment allocation between purchase incentive and

charging infrastructure investment to induce EV adoption in US

market and achieve the emission reduction target. Two vehicle

systems were studied, namely, gasoline and electric. Consumer

demand for a particular vehicle option was modeled as logistic

function considering the purchase and operational cost of vehicle,

availability of charging stations, social exposure or word-of-mouth

effect of EVs, purchase incentives, etc. The objective function

was to minimize the total cost of the vehicle while achieving the

emission reduction target. Purchase and infrastructure incentives

were the decision variables. Results showed that incentives hit

the upper bound during the initial phase of simulation, however

as the electric vehicle stocks started to increase on road, social

exposure or word-of-mouth effect of EVs led to increased demand

for EVs resulting in reduction in incentives. Option of home

charging availability and electricity prices significantly affected the

incentive trend. Nie et al. (2016) have developed an optimization

to optimize the design of incentive policy for electric vehicle

adoption in China. Consumer vehicle choice model was developed

assuming the consumers’ willingness to buy EV would depend on

the purchase price of EV, range anxiety, charging station density,

and the income of the consumer. The problem minimized the

total system cost which was the sum of fuel cost, carbon emission

cost, and investment on charging stations. The optimal policy set

the investment priority to building charging stations. The result

suggested that the charging stations should be built up to the

level that allowed full accessibility as soon as possible. In contrast,

providing purchase subsidy, which was a widely used policy, did

not seem to be cost efficient. A bilevel optimization problem was

solved by Falbo et al. (2022) to design optimal public incentive

policy to assist consumers using fossil fuel vehicles to switch

to electric vehicles. Italian governors have signed an agreement

which allows policymakers to temporarily stop the circulation of

polluting vehicles (traffic ban) to reduce the PM10 concentration.

Policymakers were modeled to minimize the total cost of incentive,

hospitalization cost due to increased air pollution and traffic ban

cost, while consumer was modeled to minimize the individual cost

of vehicle ownership. The resulted showed that with the adoption

of electric vehicles, the expected traffic bans decreased, so as the

policy maker optimal cost function, while the optimal incentive

trend increased. If the purchase price of electric vehicle increased,

more incentive had to be provided to increase its adoption and

reduce the traffic ban.

In the Indian context, a study conducted by Lam and Mercure

in 2021 analyzed the Indian passenger car segment from 2016 to

2050 to assess the effectiveness of the policy mix for achieving

decarbonization goals. The evaluated policies included vehicle

tax rebates, registration tax rebates, fuel tax, EV subsidies, fuel

economy standards, and EV mandates. The study encompassed

various types of passenger cars, such as petrol, diesel, CNG, electric,

flex-fuel (ethanol-driven), and hybrid vehicles. The study’s findings

revealed that the impact of financial incentives on EVs was limited

in India, mainly due to the low market share of EVs and hybrid

cars, which accounted for less than 0.1% of the total vehicle stock in

2016. However, the study found that the EV mandate policy was

more effective than financial incentives. According to the study,

EV mandate alone could reduce over 1,000 million tonnes CO2e

by 2050. Moreover, combining EV mandates with fuel economy

standards could reduce approximately 3,000 million tonne CO2e

compared to a scenario without any policy intervention. A static

panel data regression model was developed by Dwivedi et al. (2024)

to access the effectiveness of various consumer oriented state-

level EV promotional incentive policy. Monetary support purchase

subsidies, scrapping incentives, exemption of road tax, etc. can

assist in overcoming the high initial cost of EV. Based on the spatial

EV distribution analysis for 2022 across the studied states in India,

the promotional incentive policy structure for Delhi was identified

as the most effective with about 11.36% electric vehicle market

diffusion statistics (Dwivedi et al., 2024).

The review identified the following knowledge gaps:

• Studies focusing on designing of optimal incentive strategies

for novel vehicle options and their impact on adoption has not

been explored for the Indian context.

• Studies in the Indian context have explored the potential

barriers and impacts of incentives on adoption for EVs.

However, inclusion of other vehicle options such as E85 and

CNG as well as respective incentive options can alter the

adoption trend. Therefore, it is important to account for all

available transport options in the system.

• The transport sector is highly dynamic, with fluctuating fuel

prices, expanding refueling infrastructure, advancing charging

technologies, shifting consumer environmental awareness,

rising per capita income, and increasing travel demand. These

factors influence the effectiveness of incentives for adoption

of novel vehicle options. Consequently, incentives must be

thoughtfully designed to account for these evolving dynamics.

• Public transport has not been included in prior literature

on the adoption of novel vehicles in the Indian context.
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Development of a strong network of public transport can

increase the convenience in traveling and decrease the travel

cost of consumers. This can result in shifting of consumers

from private vehicle to public transportation thereby reducing

the usage and purchase of private vehicles. Thus, the impact

of development of public transportation on private vehicle

adoption and incentive strategy has not been explored.

The work has tried to fill these research gaps by developing

an optimization model to identify the optimal incentive strategy

for allocation of investment between purchase and infrastructure

incentives for novel vehicles. The system dynamics model for

private road transport sector in India, developed previously by

Saraf and Shastri (2023), was expanded to include the metro

transportation and modeled the impact of its development on

metro ridership and private vehicle usage. The system dynamics

model was used as a constraint in the optimization model to ensure

that optimal incentive strategy should align with the dynamics

of the transport sector for efficient utilization of investment in

reduction of GHG emissions.

Since understanding the underlying SD model is critical, the

next section briefly summarizes it.

3 Overview of system dynamics model

A system dynamics model has been developed by Saraf and

Shastri (2023, 2024) to analyze the adoption patterns of various

vehicle options in India over 30 years from 2020 to 2050. The

model focuses explicitly on private vehicle ownership, including

cars and two-wheelers. It incorporates inputs such as annual

demand for cars and two-wheelers, their respective travel demands,

vehicle performance and purchase prices, life cycle emissions, and

infrastructure development rates.

The causal loop diagram of the model is shown in Figure 1.

The model is divided into five sections corresponding to each

vehicle option: petrol, diesel, E85, EV, and CNG/CBG (compressed

biogas). The demand for cars is divided among these five options,

while the demand for two-wheelers is divided among petrol, E85,

and EV. A multinominal logit model determines the purchase

probability for all options available in each category (cars and two-

wheelers) at each time step. The logit model considers the annual

cost of ownership and the consumers’ environmental awareness

as the contributing factors. The awareness about the environment

is captured through annual greenhouse gas emissions from the

vehicle, considering the life cycle perspective. Higher ownership

cost and higher GHG emissions decreases the probability of

purchase. The logit model details are included in Saraf and Shastri

(2024).

The ownership cost of a vehicle is the sum of the

annualized vehicle purchase price, annual fuel expenses, and

annual maintenance costs. Vehicle fuel expenses are influenced

by fuel prices, which, in turn, are affected by fuel demand

and supply. Higher fuel demand increases fuel prices, whereas

higher fuel supply lowers the prices. The model captures these

dynamics for petrol, diesel, and ethanol (E85). The production of

ethanol, using molasses and lignocellulosic biomass as feedstock,

is also considered in the model. As production capacity expands,

experience in process technology improves, leading to a reduction

in production costs. Reduced production costs increase profits,

which, in turn, drive further increases in production capacity,

creating positive feedback loops.

In the case of EVs and CNG vehicles, the lack of sufficient

charging and gas-refilling stations poses a barrier to adoption.

This inconvenience is measured by comparing the actual number

of stations to the ideal number required for timely refueling

or charging. The inconvenience cost is quantified and added to

the ownership cost of these vehicles. Negative feedback loops

are established between vehicle stock, ideal number of refueling

stations, inconvenience cost, ownership cost, and vehicle demand.

The new demand for each option alters the respective vehicle stock,

which affects fuel demand for the next year. The simulations are

done at an annual time step.

The annual GHG emissions of a vehicle option include the

emissions during the operations stage and emissions during the

production of fuel or energy sources such as petrol, diesel, ethanol,

CNG, CBG, and electricity. For EVs, the GHG emissions during

the manufacture and recycling/disposal of the lithium-ion battery

are also considered. Four categories of consumers with different

relative importance for cost and GHG emissions are modeled (Saraf

and Shastri, 2024). Here, it is assumed that the distribution of

consumers among these different categories does not change with

time.

A detailed description of the model and the values for all the

model parameters are provided in Saraf and Shastri (2023, 2024).

The next section discusses the optimization model formulation

based on this SD model. It must be noted that this model does not

have public transport as an option.

4 Formulation 1: optimization model
without metro transportation

There are two different variations of this particular

optimization model formulation. In both cases, the decision

variables are annual investments across different vehicle technology

options and infrastructure considered in the SD model. The first

model minimizes the total investment over the simulation horizon

to achieve a specific GHG reduction target at a particular time in

the future. The second model, in contrast, minimizes the GHG

emission in 2050 from the private transport sector. In this model,

the total investment is not constrained. The second problem,

therefore, provides an optimistic view of how much GHG emission

reduction can be achieved, ignoring the financial constraints.

The vehicle incentives, delivered through annual tax discounts

throughout the vehicle’s service life, are aimed at lowering these

novel vehicles’ overall annual ownership costs. On the other hand,

infrastructure investments focus on promoting the development

of EV charging and CNG stations. These are one-time capital

investments during the construction of these infrastructures. The

infrastructure investment will reduce the inconvenience cost,

increasing its annual demand (Figure 1).

Figure 2 is a schematic representation of the interaction

between the optimization and the system dynamics model for
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FIGURE 1

The causal loop diagram of the system dynamics model, as presented in the study by Saraf and Shastri (2024), has been modified to incorporate

vehicle and infrastructure incentives. These incentive variables are highlighted in red color.

the model of incentive minimization. The investment decisions

are passed on to the SD model, which is simulated to determine

the GHG emissions. The GHG emissions are compared with the

target GHG emissions, and constraint satisfaction is checked. If

the constraint is not met, the optimization algorithm modifies the

decision variables (investments). Thus, the complete SD model

functions as a set of constraints for the optimization model. The

second model also has a similar strategy for GHG minimization.

Both formulations also include constraints on the rate at

which investment values can change. This is done to capture the

practicality of changing investment prioritization in a government

set-up. Generally, these decisions do not change drastically from

year to year. If such constraints are not enforced, then the profile of

investment decisionsmay be erratic and fluctuate rapidly. Although

mathematically it might be an optimal solution, it will have little

practical value. Therefore, enforcing this constraint results in a

solution with greater acceptability and a greater likelihood of

adoption. Investments for each type also have an upper bound.

Additionally, as explained later, specific constraints are added for

each of the two formulations. The optimization solver iteratively

accesses and simulates the SD model and changes the decision

variable values until the optimal solution is achieved.

The subsequent section gives the mathematical formulation for

the two variations of the formulation.

4.1 Problem 1: minimization of total
investment

The objective function to minimize the total investment over

the simulation horizon is given by Equation 1.

J = min

T∑

t=1

(

m∑

i=1

(zti × V t
i )+

n∑

j=1

ytj ) (1)

where, the simulation time step is denoted by the subscript

t, ranging from 1 to T, while the vehicle options are indicated

by the superscript i, with the number of options ranging

from 1 to m. Regarding refueling infrastructure, superscript j

is used, with options ranging from 1 to n. zti is the incentive

amount for ith vehicle option at time step t, V t
i is the vehicle

stock for ith vehicle option at time step t, and ytj is the

incentive for setting up of infrastructure for jth vehicle option at

time step t.

The limits on the rate of increase and decrease of vehicle

incentives are enforced through Equations 2, 3.

zti < p× zt−1
i ∀i, ∀t (2)

r × zt−1
i < zti ∀i, ∀t (3)

where, p represents the maximum increase in incentive over the

previous time step, while r represents the maximum decrease in

incentive over the previous time step. Similar constraints are also

enforced on the infrastructure investment and are represented by

Equations 4, 5.

ytj < u× yt−1
j ∀j, ∀t (4)

v× yt−1
j < ytj ∀j, ∀t (5)

where, u and v represent the maximum limit on the increase

and decrease of infrastructure investments in consecutive years.
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FIGURE 2

Schematic representation of the interaction between optimization and system dynamics model in minimizing the total incentive value while

achieving the GHG emission reduction target. The Red dashed box represents the system dynamics model, while the blue dashed box represents the

optimization model.

The estimation of GHG emission from the SD model

is expressed in Equation 6, and the constraint representing a

minimum reduction in GHG emission is expressed in Equation 7.

GHGt = g(ztiy
t
j ,α,β) ∀t (6)

GHGt̄ < q× GHGt̄
ref (7)

where, GHG emissions at time step t, denoted as GHGt , are

derived through a system dynamics simulation represented by

g(zti , y
t
j ,α,β). α and β are the variables and inputs of the SD model,

respectively. It is crucial to emphasize that the variables (i.e., α)

employed in the system dynamics model are simulated internally in

the SDmodel and are not a part of the optimization model. GHGT
ref

is the reference GHG emission at time step t̄.

4.2 Problem 2: minimization of GHG
emissions

This formulation is very similar to the previous one, with the

only difference being the objective function. Instead of investment

minimization, the objective function is GHGminimization in 2050.

Since GHG is now an objective, there is no constraint on its value.

The objective function is shown by Equation 8:

J = min(GHGt) (8)

The remaining constraints, except the one involving GHG

emissions, are same as those for problem 1.

The model developed and presented here is applied to the

Indian context. Details regarding this application are discussed in

the subsequent section.

4.3 Model parameterization for Indian
transport sector

As mentioned earlier, the Indian government has been

encouraging the adoption of novel vehicles by setting targets and

providing incentives through various policies. Regarding electric

vehicles, the FAME scheme offers an incentive of INR 15,000 per

unit of battery capacity for electric vehicles at the time of purchase

(Govt of India, 2015). Based on the average battery capacities of

electric cars and two-wheelers, this incentive amount corresponds

to 32% of the EV purchase price in 2022. Currently, no direct

incentives are proposed for the purchase prices of E85 and CNG

vehicles. The model, however, considers incentives for E85 and

CNG vehicles also as decision variables. To maintain consistency

among different variables, initial guess values for incentives for all

non-petrol and non-diesel vehicle options are set at 32% of their

purchase prices in 2022. Since the model simulations are done

on an annual time-step and the annual cost of ownership is the

factor governing vehicle purchase decision, the incentive is also

annualized over the vehicle’s service life. Purchase prices and service

life data for novel vehicle options are taken from Saraf and Shastri

(2023). Moreover, according to the FAME scheme, the maximum

incentive can reach up to 40% of the purchase price of an electric

vehicle (Govt of India, 2015). Based on this, the upper limit for

vehicle incentives is 40% of the vehicle’s purchase price. Note that

the upper limit and vehicle purchase price are also adjusted for
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inflation. The inflation rate is assumed to be 3.5% (Saraf and Shastri,

2023). This upper limit is also annualized in accordance with the

service life of the vehicle.

For promoting the development of charging infrastructure, the

Indian government provides support in the form of property tax

rebates, exemption from electricity costs during the construction

phase, and a subsidy on the capital cost of the station

(Moneycontrol, 2021). It is assumed that for every INR 500,000

subsidy, one charging station can be established (Moneycontrol,

2021). The charging station incentive for the first year is set at

INR 150 Million which results in the establishment of 300 charging

stations (Press Information Bureau, 2022). The upper limit on this

incentive is considered to be INR 1 Billion, which corresponds to

2,000 new stations (The Economic Times, 2023a). This value is

adjusted to account for inflation each year. In the case of CNG

station incentives, a subsidy of INR 35 Million is provided to

establish one station (IOCL, 2023). The CNG station incentive for

the first year is set at INR 10.50 Billion, which corresponds to 300

stations. The upper limit for the establishment of CNG stations is

also set to match that of charging stations, i.e., 2,000 stations. This

translates to a maximum budget of INR 70 Billion. This upper limit

is also adjusted annually to account for inflation.

p is assumed to be 1.2, implying that the incentive at time

step t can increase up to 20% compared to the previous time

step. The value of r is assumed to be 0.8, indicating a maximum

reduction by up to 20% over the incentive value in the previous

years. Similarly, the values of u and v are also assumed to be 1.2

and 0.8, respectively. This assumption is based on the observation

that most policy shift happen gradually, and drastic changes are

unlikely. For instance, FAME II funding increased by 11.5% in

2023, from INR 100 billion to INR 115 billion (Ministry of Heavy

Industries, 2023). Additionally, funding for charging stations saw

a 20% reduction, from INR 10 billion in 2022 to INR 8 billion

in 2023 (Ministry of Heavy Industries, 2022, 2023). Moreover, the

incentives for electric two-wheelers decreased by 33.33%, from INR

15,000 per kWh in 2022 to INR 10,000 per kWh in 2023 (Ministry of

Heavy Industries, 2021, 2022, 2023). Based on these rates of change,

the values for parameters p, r, u, and v are assumed.

A base scenario is first simulated without any incentives, and

captures business as usual case. For problem 1, the GHG emissions

reduction target for the year 2050 is defined in terms of the GHG

emissions in the year 2050 for the base case (t̄ = T). In the

base scenario, the GHG emissions in 2050 were 577.42 Mt CO2e.

Therefore, GHGt̄
ref

in Equation 7 is 577.92 Mt CO2e. This model

is applied to achieve a 5% reduction from this baseline level. Thus,

q is taken as 0.95, resulting in target maximum GHG emissions of

549.02 Mt CO2e. The solutions of the optimization problems are

compared with the base case.

5 Formulation 2: optimization model
with metro transportation

This section first describes the integration of metro

transportation into the existing SD model, then presents the

optimization model formulation for the revised model.

5.1 Inclusion of metro transport in system
dynamics model

The SD model has been revised to simulate the impact of

investments in metro lines. The fund invested in constructing

metro lines is the input to the model. Figure 3 illustrates the

SD model related to metro investment. As shown in Figure 3,

the annual investment in the metro rail project is an input to

the SD model. It is distributed between the funds for operating

the existing metro lines and constructing new ones. Due to the

complex nature of infrastructure development, including erection

and commissioning phases spanning multiple years, it takes time

for the investment to result in the construction and operation

of the new lines. This time delay is indicated in Figure 3 by

parallel lines on the arrow connecting investment to newmetro line

construction.

It is assumed that increased accessibility to metro travel

increases metro ridership. The new metro riders include those

who have transitioned to metro transport from private vehicles,

other public transport options, or walking. The scope of this study

is limited to those riders who have switched from their private

vehicles to metro transport. It is assumed here that consumers will

still purchase private vehicles for specific uses such as recreation but

will transition to the metro for daily use. Therefore, the demand for

vehicles does not change.

An increase in the number of metro riders has two conflicting

effects. It reduces the number of on-road vehicles. Thus, the

total driving of a private vehicle is reduced. This reduces GHG

emissions from private vehicle stock (Figure 3). However, the

operation of a metro network requires energy. Therefore, increased

construction and use of metro networks result in increased

electricity consumption, thereby increasing GHG emissions in the

sector. The actual energy consumption depends on the average trip

length and the electricity consumption intensity of the metro lines.

Both these effects are captured in this work (Figure 3). As the scope

of this study is limited to the GHG emissions from private vehicles,

the GHG emissions from metro operations corresponding to only

those riders who have transitioned from their private vehicles to

the metro are considered. Thus, it captures the change in GHG

emissions resulting from the transition to metro transport from

private vehicles. The total metro ridership also determines the total

electricity consumption during metro operation. As the electricity

consumption increases, the total electricity cost for operating the

metro line increases, thereby increasing the metro operating fund.

5.2 Modeling of metro transport in SD
model

The division of total annual investment in metro rail projects

between the construction of new lines and operations of existing

lines is shown in Equation 9.

Ittot = Itc + Ito (9)

where, Ittot , I
t
c, and Ito are the annual investment for metro rail

projects, funds allocated for constructing new metro lines, and

funds allocated for operating the existing metro lines at time step
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FIGURE 3

CLD showing variables and their corresponding causal relation involved in metro transportation.

t, respectively. The estimation of the length of the new metro line

constructed corresponding to Itc with time delay is calculated as per

Equation 10.

Lt+a
new = b× Itc (10)

where, Lt+a
new is the new metro line constructed at time step

t + a due to investment in time step t. Here, a is the time delay

in constructing and commencing the operation of the new metro

line. b represents the length of the metro line constructed per unit

investment in metro construction. The new metro line constructed

increases the total operational metro line as shown in Equation 11.

Lttot = Lt−1
tot + Ltnew (11)

where, Lttot is the total operational metro length at time step t.

The metro ridership as a function of operational metro length is

determined as follows:

Rttot = c× Lttot (12)

where Rttot is the total metro ridership at time step t, and

c is the parameter representing the number of metro riders

per unit metro length. Equations 13, 14 show the estimation of

riders transitioning from private cars and two-wheelers to metro

transport, respectively.

Rtc = Rttot × Sc (13)

Rttw = Rttot × St (14)

where, Rtc and Rttw are the riders shifted from their private cars

and two-wheelers to the metro transport at time step t, respectively,

Sc and St represents the fraction of riders transitioned from private

car and two-wheeler to metro transport, respectively. Equations 15,

16 estimate the number of cars and two-wheelers gone off the road,

respectively.

Ct =
Rtc
Oc

(15)

Tt =
Rttw
Otw

(16)

where, Ct and Tt are the number of cars and two-wheelers

gone off the road, respectively, at time step t. Oc and Otw are

the average occupancy of cars and two-wheelers, respectively. The

annual driving of Ct and Tt is reduced due to the transition of

riders to metro transport. The SD model is formulated based on

the assumption that all private cars have equal annual driving

distances, as do all two-wheelers. Here, Ct and Tt have lower

annual driving than the other vehicles in stock. However, to

simplify the formulation in the model, rather than specifying a

low annual driving for individual vehicles Ct and Tt , an average

reduction in annual driving for cars and two-wheelers is estimated.

Equations 17, 18 show the average reduction in annual driving per

car and two-wheeler, respectively.

Rdtc =
Ct × Tavg

csttot
(17)

Rdttw =
Tt × Tavg

twsttot
(18)

where, Rdtc and Rdttw is the average reduction in annual driving

of cars and two-wheelers at time step t, respectively. Tavg is the

average metro trip length and csttot and twsttot are the car and two-

wheeler stock at time step t. The numerator in RHS represents

the total driving distance reduced due to the transition of riders

from private vehicles to metro transport. The average reduction

in annual driving of cars and two-wheelers is deducted from the
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annual driving of respective vehicles estimated in Saraf and Shastri

(2023) to estimate the annual driving of vehicles as riders transition

from private vehicles to metro transport. Equations 19, 20 show

the estimation of the annual driving of cars and two-wheelers,

respectively.

Dt
cnew

= Dt
c − Rdtc (19)

Dt
twnew

= Dt
tw − Rdttw (20)

where, Dt
cnew

and Dt
twnew

are the annual driving of cars and two-

wheelers at time step t, respectively. Dt
c and Dt

tw are the annual

driving of cars and two-wheelers at time step t, respectively, as

estimated in Saraf and Shastri (2023).

Equation 21 shows the estimation of electricity consumption

during metro operation. Consequently, the electricity cost and

operating cost of the metro also increase as shown in Equations 22,

23, respectively.

Etc = Rttot × Tavg × e (21)

Etp = Etc × p (22)

Ito = Etp × f (23)

where Etc is the electricity consumed during metro operation

and e represents the electricity consumed per rider per unit trip

length. Etp is the total electricity cost corresponding to Etc, and p

is per unit electricity price. As the electricity cost increases, the

operating cost increases by a factor of f .

5.3 Metro model parameterization

In India, the metro systems in Delhi and Mumbai are the

most extensive. Consequently, data on these metro lines related

to investment in metro construction, the length of new metro

lines, annual ridership, average trip length, and annual electricity

consumption were gathered (Maharashtra Government, 2023;

DMRCL, 2023; The Times of India, 2021) and fitted to estimate the

values of model parameters.

Supplementary Table S1 the construction period, investment,

and length of various metro lines. Based on this, it is assumed

that it takes five years for the metro to be operational from

the time of the first investment (a = 5). The investment values

(inflated to the present value of money) and the length of the

metro line constructed corresponding to various metro lines (in

Supplementary Table S1) are used to estimate the average length

of the metro line constructed per unit investment. The value of

parameter b is 0.0034 km/INR 10 Million investment. In 2019–

20, Bengaluru’s daily ridership per kilometer was 9,456. Likewise,

in Delhi, Mumbai, and Chennai, it reached 40,650, 14,653, and

2,553, respectively (The Times of India, 2021). The parameter c

is determined by calculating the average of these values, which is

16,828. Sharma et al. (2014) reported that in Delhi, about 30% and

40% of commuters have shifted from their private vehicles to the

metro in 2006 and 2011, respectively. Similarly, Soni and Chandel

(2018) conducted a survey in Mumbai in 2018 in all the 12 metro

stations to identify the fraction of commuters using private vehicles

before theMumbai metro. They found that about 8% of commuters

shifted from cars and two-wheelers to metro transport. Based on

the survey data, the values for Sc and St are assumed to be 0.15.

The average occupancy of cars and two-wheelers, i.e., Oc and Otw

are taken as 2.4 and 1.5 passengers per vehicle, respectively (Soni

and Chandel, 2018). Soni and Chandel (2018) reported the average

metro trip length in Mumbai as 6 km, while Sharma et al. (2014)

reported the average metro trip length in Delhi in 2006 and 2011 as

10 km and 12.5 km, respectively. Based on these values, this study’s

average trip length (Tavg) is assumed to be 16 km. Based on the

ridership and annual electricity consumption data collected for the

MumbaiMetro (Soni and Chandel, 2018), the value of e is estimated

to be 0.034 kWh/passenger-km. The electricity price p is estimated

in the SD model. As per the data reported for the Delhi metro, the

electricity cost constituted 30% of the total operational cost of the

metro (Goel and Tiwari, 2014). Therefore, the value of f is taken

as 3.3.

Several parameters of the modified SD model related to the

metro system are not known with a high degree of certainty.

Acquiring data from other cities or obtaining additional data from

the metro lines in Delhi and Mumbai proved challenging. The

values of these parameters may also change with time as metro

systems become common in more cities in India. Consequently,

sensitivity analysis has been carried out on these model parameters

to assess how changes in parameter values may impact the change

in GHG emissions in 2050. The details of the sensitivity analysis

will be elaborated upon in the subsequent sections.

5.4 Optimization problem formulation

The optimization model formulation is the same as in the

previous section. The goal is to derive optimal investment strategies

to minimize GHG emissions by 2050. The formulation described in

the minimization of GHG emissions in Section 4.2 is applied. The

system dynamics model, acting as a constraint in the optimization

model, has been modified to integrate metro transportation. Initial

guesses, upper and lower bounds, and other financial constraints

are the same as described in the Section 4.3.

The initial aim was to include metro investment also as a

decision variable in addition to the ones considered previously.

The optimization model was accordingly modified. However, the

resulting optimization problem encountered numerical issues.

The metro investment was numerically very high as compared

to the other investments. Additionally, the problem is non-

convex in nature due to the presence of nonlinear equality

constraints. Therefore, the optimization problem was encountering

convergence issues. Several strategies, such as scaling of decision

variables, modifying the convergence and optimality tolerances,

and adjusting the step size of the solver, were attempted. The

numerical issue, however, could not be addressed. Consequently,

the approach was modified. Instead of considering metro

investment as a decision variable, three different metro investment

patterns were considered, and the optimization problem was solved

to determine values (trends) for the remaining decision variables,

namely, vehicle incentives and infrastructure investment.

The different scenarios considered here, including the three

different metro investment possibilities (Supplementary Figure S1),

are explained here:
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• No metro investment scenario: This scenario replicates the

minimum GHG emission scenario outlined in Section 4.2.

It forms the foundation for understanding the impact of

investing in metro transportation on incentives for novel

vehicle options, their adoption trends, and GHG emissions.

• Low metro investment scenario: In this scenario, a

linear trajectory is assumed for the investment in metro

transportation that starts from INR 200 Billion, per the Indian

budget (The Economic Times, 2023c), and reaches INR 8.6

Trillion in 2050.

• High metro investment scenario: In this scenario, a

linear trajectory is assumed for the investment in metro

transportation that starts from INR 200 Billion and reaches

INR 50.6 Trillion in 2050.

• Decarbonization scenario: This scenario is similar to the

high metro investment scenario, including early awareness

of consumers and greater penetration of renewables in the

electricity grid as discussed in Saraf and Shastri (2024).

Since the SD model was developed in MATLAB R©. The

optimization model was also formulated in MATLAB R©. The

simulation and optimization horizon was from 2023 to 2050,

and the simulation time step was one year. Sequential quadratic

programming (SQP) algorithm in fmincon solver was used to solve

the optimization problems. The maximum number of iterations

was set at 100,000. The step, optimality, and constraint tolerance

values were set at 1e-18. Generally, it took around 2,000 iterations

to solve the problem.

6 Results and discussion

The results for formulation 1 are first discussed followed by

results for formulation 2 with metro transport option.

6.1 Formulation 1: optimization problem
without metro transportation

This section presents the results of the optimization problems

discussed in Section 4. Since the results of the optimization model

are compared with the base case, the simulation results for the base

case are first presented.

6.1.1 Base case
For the base case, the adoption of novel vehicle options among

cars and two-wheelers was 37.62% by 2050. Figure 4 shows the

share of various options in total car stock in 2050. Petrol was the

most preferred option, followed by E85, diesel, CNG, and electric

vehicles. Consequently, the GHG emissions in 2030 reached 391.7

Mt CO2e and plateaued at 577.92 Mt CO2e in 2050. Saraf and

Shastri (2024) estimated that the GHG emissions for the private

road transport sector in 2030 should be 263 Mt CO2e to meet

the COP26 emission reduction target. However, the base scenario

surpasses this target by 128.7 Mt CO2e.

6.1.2 Problem 1: minimization of total investment
The optimal solution recommended a total investment of INR

15 Trillion over the entire simulation horizon. Almost 92% of this

total investment (INR 13.8 Trillion) was for vehicle incentives,

while the rest was for infrastructure. Figures 5, 6 show the incentive

trends for cars and two-wheelers, respectively. It was observed

that the incentive for electric cars and two-wheelers increased

at the maximum possible rate given the constraints till 2027

and 2028, respectively. Thereafter, the incentives were reduced

rapidly, again limited by the limit on the rate of reduction.

The incentive values for other car and two-wheeler options

were reduced from the beginning of the simulation. Figure 7

shows the incentive trends for EV charging and CNG refueling

infrastructure. Note that the y-axis of this figure has a logarithmic

scale. As can be seen, the incentive trends for both increased at

the maximum possible rate till 2036 and then rapidly reduced

thereafter.

As per these trends, electric vehicles should be aggressively

promoted for the next few years by giving incentives for vehicle

purchases and rapidly developing the charging infrastructure to

support them. This is reflected in the rapid increase in the

adoption of EVs in the near future. Supplementary Figure S2

shows the share of new car sales in the annual total car sales

for different years. The fraction of electric car sales in total

annual sales of new cars increased from 11.4% in 2022 to 48.35%

in 2028, significantly higher than a mere 14% in 2028 for the

base case. The share of various car options in total car stock

in the year 2050 is shown in Figure 4. It shows a reduction

in the share of petrol, diesel, and E85 cars as compared to

the base case, while that of EVs and CNG cars increased. Due

to vehicle incentives and infrastructure investment, the share

of novel vehicle sales increased from 24% in 2022 to 80% in

2030.

Supplementary Figure S3 compares the annual ownership costs

of petrol and electric cars in this scenario with those in the base

case. Without the incentive, petrol cars would have been preferred

over electric cars due to lower annual ownership costs. Due to

the reduced adoption of petrol vehicles (as shown in Figure 4),

the petrol demand reduced, thereby reducing the petrol prices

and annual ownership cost of petrol cars. Therefore, a slight

reduction was observed in the annual ownership cost of petrol

cars in this scenario compared to the base case. The aggressive

incentivization of electric cars drastically reduced ownership costs,

making petrol cars relatively less desirable. The proportion of petrol

car sales in annual new sales reduced from 56.7% in 2022 to 11.4%

by 2028.

CNG cars are not prioritized despite lower GHG emissions

than petrol cars. This is because the vehicle selection is based

on the vehicle’s annual ownership cost and annual GHG

emissions (Supplementary Figures S5–S7). It has been previously

demonstrated that the cost of ownership of CNG cars is quite

sensitive to the availability of CNG refueling infrastructure

(Supplementary Figure S6). Due to the shortage of refueling

stations, inconvenience costs increase, reducing demand. When

the demand remained low for subsequent time steps, the

CNG car stock also decreased, reducing the demand for gas-

refilling stations and thus reducing inconvenience. This led to
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FIGURE 4

Share of various car options in total car stock in 2050.

FIGURE 5

Incentive trends for E85, EV, and CNG four-wheelers to minimize

total investment.

FIGURE 6

Incentive trends for E85 and electric two-wheelers to minimize total

investment.

increased adoption of CNG car stock, and the feedback loop

continued.

FIGURE 7

Incentive trends for charging and CNG refilling stations to minimize

total investment. Note that the y-axis of this figure has a logarithmic

scale.

In such a situation, offering vehicle incentives to CNG cars

could exacerbate the instability. Therefore, the optimization model

prioritizes electric vehicles from 2022 to 2036 by providing vehicle

and infrastructure incentives to reduce annual ownership costs

and prevent the adoption of petrol cars. Meanwhile, it also

prioritizes investment in gas refilling stations to develop a strong

infrastructure network to support the high adoption of CNG cars.

As seen in Figure 7, the investment in charging and CNG stations

increased until 2036 and then reduced. This can be explained by

Supplementary Figures S4, S8. The annual ownership cost of CNG

cars became the lowest from 2035. As a result, the adoption of

CNG cars increased from 9% in 2022 to 39% in 2042. Based on

the specific GHG reduction target, there is no requirement to

provide additional incentives for any options. Hence, incentive

values started to decrease with the maximum limit.

In the base case, in 2023 and 2033, E85 car adoption accounted

for 39% and 35% of the total car stock, respectively. However,
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despite experiencing a minor decrease to 35% in 2023 and 33.4% in

2033, the adoption of E85 cars remained substantial in this problem

as well. After 2040, E85 cars emerged as the second most prevalent

vehicle choice, following CNG cars. Although E85 cars exhibit

reduced annual ownership costs and emissions, the optimizer did

not prioritize incentives for E85 vehicles due to the potential for

increased demand for ethanol with high adoption rates. The limited

ethanol supply could result in unmet demand, leading to higher

ethanol prices and annual ownership costs for E85 cars. Increase

in the annual ownership cost will reduce the demand for E85 cars.

Reduced demand, despite incentives for E85 vehicles, would hinder

their adoption. Since E85 cars have lower greenhouse gas emissions,

a decline in their adoption could make it difficult to meet the GHG

emission reduction targets.

This situation is undesirable because E85 vehicles have lower

greenhouse gas emissions.

6.1.3 Problem 2: minimization of GHG emissions
The minimumGHG emission in 2050 was achieved at 535.3 Mt

CO2e, with a total incentive investment of INR 137.74 Trillion over

the entire simulation horizon. Approximately 98% of this amount

was allocated to vehicle incentives, with the remaining portion

designated for infrastructure incentives. The total investment has

risen substantially from INR 15 Trillion to INR 137.74 Trillion,

despite a minor reduction in GHG emissions from 549.02 Mt CO2e

to 535.5 Mt CO2e in 2050. This non-linear trend can be attributed

to the necessity of significantly increasing investment in the phase

of high vehicle demand to ensure greater adoption of novel vehicles,

thereby reducing GHG emissions.

The trends in vehicle and infrastructure incentives are depicted

in Figures 8, 9, respectively. The justification for the trends is

similar to that for problem 1 since the vehicle cost and emission

attributes are the same. The incentives for electric cars increased

until 2034 and then decreased. Similarly, incentives for charging

stations also increased until 2030 and then decreased. The incentive

for E85 vehicles increased till 2026, ensuring a higher adoption of

E85 cars until the annual ownership cost of CNG cars stabilized.

The fraction of E85 cars in total car sales in 2026 was 53.3%

(Supplementary Figure S9). For CNG cars, as explained in the

preceding section, offering vehicle incentives can destabilize the

annual ownership cost, leading to a decline in the adoption of

CNG cars. Hence, the vehicle incentive was initially reduced while

providing incentives for setting up gas refilling stations at the

maximum limit. Once a sufficient infrastructure network was

established, the vehicle incentive aimed to decrease the annual

ownership cost of CNG cars to the minimum, thereby increasing

their adoption. Supplementary Figure S10 shows that after 2034,

CNG cars had the lowest annual ownership cost. The fraction of

CNG car sales in total car sales in 2037 was 49%.

If constraints on the rate of increase or decrease were removed,

the GHG emissions could reduced to 522.5 Mt CO2e in 2050 with a

total investment of INR 129 Trillion, with 86.7% allocated to vehicle

incentives and the remaining portion dedicated to infrastructure

investments. This result is expected since the optimization model

is less constrained. As expected, the incentives had very aggressive

profiles. For example, the investment trends hit very high values in

FIGURE 8

Incentive trends for E85, EV, and CNG four-wheelers to minimize

GHG emissions.

FIGURE 9

Incentive trends for charging and CNG refilling stations to minimize

GHG emissions. Note that the y-axis of this figure is a logarithmic

scale.

the initial phase of the simulation, reducing the inconvenience costs

to zero for EVs and CNG vehicles (Supplementary Figures S11,

S12). The CNG car sales in total annual new car sales increased to

57.3% and that for petrol reduced to 6% in 2030.

Based on the results of Problem 1 and Problem 2, it can be

inferred that a trade-off exist between the investment in incentives

and the reduction in GHG emissions which is achieving higher

emission reduction is more expensive. To understand the trade-

off clearly, Problem 1 was reformulated and solved for varying

values of q, i.e., 1%, 3%, 6%, and 6.8% and the resultant values of

investment in incentives were plotted against the GHG emissions

in 2050. Figure 10 shows the Pareto curve between the investment

and GHG emissions in 2050. The results also showed diminishing

returns. The reduction of GHG emissions from 577.92 Mt CO2e

to 549.02 Mt CO2e, i.e., 28.9 Mt CO2e, was achieved with

an investment of INR 15 trillion, meaning that every INR 1

trillion investment reduced the GHG emissions by 1.92 Mt CO2e.

However, the reduction of GHG emission below 549.02 required

much higher investment. Every INR 1 trillion investment could

only reduce 0.11 Mt CO2e. The constraints on incentive changes

and the upper limit on incentives led to increased investment

requirements for achieving greater GHG emission reductions.

Furthermore, the initial phase of the simulation saw low adoption

of novel vehicles due to high purchase prices and limited refueling

infrastructure, resulting in continued adoption of petrol and diesel
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FIGURE 10

Pareto curve between the investment in incentives and the GHG

emissions in 2050.

vehicles, which then remain in use for their full service life. Thus,

promoting the adoption of novel vehicles early on is crucial.

6.2 Formulation 2: optimization problem
with metro transportation

This section presents the results of the optimization problems

discussed in Section 5.

6.2.1 Simulation and sensitivity analysis
Simulation studies were performed before using the revised

model with the metro transport option in the optimization

formulation. The purpose of the simulation studies was to establish

a base case or benchmark for the revised model. Additionally,

sensitivity analysis was performed to determine the impact of some

assumptions made during model parameterization.

The baseline scenario was devised assuming a linear trajectory

for the investment in the metro, starting at INR 20,000 Billion

in 2022 as per the Indian budget 2022–23 (The Economic Times,

2023c). The base case assumes that it will reach 8.6 trillion INR in

2050. No incentives for individual vehicles were considered, and

the consumer environmental awareness factors were the same as

those for the base case in the previous scenarios. Simulation results

showed that the annual GHG emissions in 2050 were 562.7 Mt

CO2e. These were lower than 577.92Mt CO2e obtained for the base

case scenario in the previous formulation when metro transport

was not considered. This implied that even without incentives,

transitioning towards metro transport can lead to a noticeable

reduction in GHG emissions.

To explore the sensitivity of the GHG emissions to model

parameters a, b, c as well as model inputs Scar and Stw, the base

values of these parameters (as discussed in Section 5.3) were varied

from –50% to +50%. Each parameter was individually altered, and

the resulting change in GHG emissions in 2050 was examined.

Supplementary Figure S13 shows the sensitivity of GHG emissions

in 2050 to model parameters. It can be observed from the figure

that as the metro construction period increased by 50%, i.e., to

7.5 years, the resultant GHG emissions also increased by 0.53%.

Similarly, as the length of the metro line constructed per unit

investment was increased by 50%, the GHG emissions in 2050 were

reduced by 1.5%. An increase in daily ridership per km reduced

GHG emissions by 1.5%. Among the model parameters, the GHG

emissions were most sensitive to the electricity consumption per

passenger km. An increase in electricity consumption per passenger

km by 50%, increased the GHG emissions by 1.6%, while a

reduction in electricity consumption by 50%, reduced the GHG

emissions by 1.8%, which was more significant than other model

parameters. Using a renewable electricity grid for metro operations

could significantly reduce GHG emissions.

6.2.2 Optimization results: GHG emissions and
investment trends

Table 1 reports the minimum GHG emissions achieved in

2050 under various metro investment scenarios. Table 2 shows

the distribution of the total investment in novel transport options

across different categories for various metro investment scenarios.

A substantial decrease in GHG emissions occurred from the

no metro investment to the low metro investment scenario,

dropping from 535.5 to 464.5 Mt CO2e. This was because metro

transportation can significantly reduce the driving of private

vehicles while emitting lower emissions per unit distance traveled.

In the low metro investment scenario, the driving distances for

private cars and two-wheelers reduced by 645 km per vehicle

and 601 km per vehicle by 2050, respectively. This resulted in

an increase in GHG emissions of 11.3 Mt CO2e due to metro

operations in 2050. This was compensated by the significant

reduction in GHG emissions from on-road vehicles, thereby giving

a 20% reduction over the scenario with no metro investment

and no incentives. The reduction was about 13% compared to

the scenario with no metro investment but investment in other

incentives. The GHG reduction intensity was 0.3 Mt CO2e per

INR Trillion investment for the no metro investment scenario.

This increased to 0.44 Mt CO2e per INR Trillion investment for

low metro investment scenarios. It clearly shows that investment

in public transport infrastructure and incentives for novel vehicles

leads to more impact. About 96% of the total investment of INR

128.25 Trillion was allocated to vehicle incentives and the rest to

infrastructure investments. The vehicle incentives were distributed

between electric, CNG, and E85 vehicles with a share of 51%,

42%, and 7%, respectively. Among the infrastructure investments,

investments for gas refilling stations dominated over charging

stations. Since there was a significant benefit in the low metro

investment scenario, it was expected that the benefit would be

even greater when there was substantially higher investment in the

metro. Instead, GHG emissions in 2050 increased slightly to 467.8

Mt CO2e in the high metro investment scenario compared to the

low metro investment scenario. This seemed counterintuitive, but

it can be justified as follows.

The investment for metro transportation activated a feedback

effect in the system, as illustrated in Figure 11. With the reduction

in private vehicle driving, fuel consumption was significantly

reduced, particularly petrol consumption. In the transport sector,

petrol is predominantly utilized by private vehicles, while

diesel experiences its highest demand from heavy-duty vehicles.
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TABLE 1 GHG emission and incentive investment in di�erent scenarios for formulation 2 with metro transport option.

Scenarios GHG
emissions

Investment (in INR Trillion) GHG reduction
intensity

Metro
investment

(Mt CO2e) Incentive Metro Total (Mt CO2e/INR Trillion)

No 535.3 137.7 0 137.7 0.3

Low 464.5 128.25 127.6 255.85 0.44

High 467.8 188.7 736.6 925.3 0.12

TABLE 2 Total incentive and allocation in vehicle and infrastructure incentive for di�erent metro investment scenarios.

Metro investment
scenario

Total Incentive Distribution of incentives Distribution of incentive

Vehicle Infra. Electric E85 CNG Charging
station

Gas
station

No 137.7 135.7 2 59.6 32.7 43.4 0.013 1.9

Low 128 123.9 4.1 64.3 7.6 52 0.03 4.15

High 188.7 186.9 1.8 70.9 71.5 44.5 0.03 1.7

Values are in INR Trillion.

FIGURE 11

Causal loop diagram showing the impact of reduced driving on adoption of petrol vehicles.

Consequently, any fluctuations in the demand for petrol vehicles

or variations in annual driving habits carry substantial implications

for both petrol demand and pricing dynamics. As outlined in

Saraf and Shastri (2023), the decline in petrol demand led to a

reduction in petrol prices, subsequently lowering the fuel expenses

and annual ownership costs associated with petrol vehicles.

Supplementary Figure S14 compares the annual ownership costs

of a petrol car in different investment scenarios. Until 2030, there

was no notable change in the annual ownership cost of petrol cars.

However, after 2030, the difference began to increase significantly.

The diminished annual ownership costs became an attractive factor

for adopting petrol vehicles. Consequently, the adoption of novel

vehicles decreased. However, increased adoption of petrol vehicles

is not conducive to minimizing GHG emissions, given the higher

GHG emission intensity of petrol compared to ethanol, CBG,

and EVs. Therefore, there was a 47% increase in the incentives

for different vehicle options (from INR 128.25 Trillion to INR

188.7 Trillion), yet the total emissions increased in the year 2050.

The GHG emission reduction intensity was 0.12 Mt CO2e per

INR Trillion investment. To further verify this hypothesis, the SD

model was simulated without incentives for novel vehicle options,

using high investment in metro transportation as an input. The

adoption of novel vehicle options declined from 43% to 37%, and

the adoption of petrol vehicles increased from 53% to 57.2%. As

a result, GHG emissions increased from 467 Mt CO2e to 493 Mt

CO2e in 2050.

This result captures the central hypothesis of this work, which

is that the behavior of the transport sector can be highly non-

linear. Results cannot be extrapolated, and consumer decision-

making will be crucial in achieving the desired goals. The policy
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instruments, therefore, need to be designed appropriately. An

optimization problem was solved to minimize the GHG emissions

for a high metro investment scenario by including a carbon tax

rate on transport fuels as discussed in Saraf and Shastri (2024).

The results showed a decline in GHG emissions in 2050 from

467.8 Mt CO2e in a high metro investment scenario to 456.33

Mt CO2e. Additionally, the total investment reduced significantly

from INR 188.7 Trillion in the high metro investment scenario

to INR 66.86 Trillion. Out of this, about 98% was for vehicle

incentives and the rest for infrastructure investment. Among

the vehicle incentives, about 40% was allocated to CNG cars,

followed by 30% to E85 vehicles and the rest to electric vehicles.

Regarding the adoption of novel vehicle options, it increased

from 43% in high metro investment to 46% in 2050 due to

the imposition of the carbon tax (Supplementary Figure S15).

The reduction in total investment when the carbon tax was

imposed compared to the high metro investment scenario was

to prevent the annual ownership costs of E85 and electric cars

from becoming comparable with CNG cars, thereby ensuring

high adoption of CNG cars. Supplementary Figure S16 shows the

annual ownership costs of various car options. The investment

in gas refilling stations was sufficient to ensure no inconvenience

costs for CNG cars. Therefore, the annual ownership cost of the

CNG car shows no fluctuations (see Supplementary Figure S16).

In addition, lower carbon tax due to lower emissions and annual

ownership cost made it the most preferred option. Due to

the imposition of the carbon tax, the adoption of petrol cars

declined. The fraction of petrol car sales in total car sales in

2030 reduced from 12% in the high metro investment scenario

to 8.3%. As a result, higher investments were not required

to prevent the adoption of petrol vehicles. In this particular

case, the result shows that high metro investment will need

to be complemented with carbon tax to keep fossil fuel-based

vehicles more expensive to own. This is expected to provide

significant benefits and will lead to a reduction in total GHG

emissions.

6.2.3 Decarbonization scenario
An optimization problem was solved for the high metro

investment scenario by including early awareness of consumers

and greater penetration of renewables in the electricity grid as

discussed in Saraf and Shastri (2024). Figure 12 shows the GHG

emission trend for the decarbonization scenario. In 2030, GHG

emissions reached 352 Mt CO2e, still 34% higher than the COP26

target for the private road transport sector. However, the GHG

emissions show a promising trend, peaking at around 2040 and

then reducing for the remaining time horizon. Since the adoption

of novel vehicles only began in 2022–23, conventional petrol

and diesel vehicles still made up a significant share of the total

vehicle stock, posing a challenge to meet the COP26 emissions

reduction target by 2030. In 2023, the demand for novel vehicles

was low at 5.48%, while conventional vehicles remained highly

popular, with annual demands for petrol cars, two-wheelers,

and diesel cars at 54%, 72.94%, and 18.3%, respectively. These

conventional vehicles continued to operate until the end of their

service lives. While incentives, carbon tax, greener electricity

FIGURE 12

GHG emission trend in decarbonization scenario.

grid, and consumer awareness contribute to increased demand

of novel vehicles, bringing their adoption up to 34% in total

vehicle stock by 2030, the stock of petrol and diesel cars still

held a substantial share of 32% and 15.5%, respectively in total

car stock, accounting for nearly 50% of the total car stock.

Thus, with novel vehicle adoption only starting in 2022–23,

achieving the 2030 COP26 target is challenging. Banning the

purchase of new petrol and diesel vehicles, or introducing an

attractive vehicle scrapping/swapping policy could help bridge this

gap.

In terms of investment, the incentive investment was INR

77.9 Trillion, significantly lower than that obtained in the high

metro investment scenario, i.e., INR 188.7 Trillion. Reduction

in investment was attributed to increased adoption of novel

vehicle options due to increased environmental awareness and

a greener electricity grid, leading to reduced emission intensity

for electric vehicles. The vehicle incentive constituted 97% of the

total investment and the rest for infrastructure investments. The

highest share of vehicle incentives was 45.6% for E85 vehicles,

followed by 31% for EVs and 23.4% for CNG vehicles. The adoption

of novel vehicle options increased from 43% in the high metro

investment scenario to 48% in the decarbonization scenario in

2050. In the decarbonization scenario, the share of E85 cars in

the total car stock in 2050 was 32%, the highest among other

available options, followed by CNG cars with 29.2% share and

electric cars with 9.2%. The fraction of E85 car sales in total

car sales has been highest at 48% among other vehicle options

in 2030 (Supplementary Figure S17). As E85 cars had the highest

preference during the phase of high vehicle demand, it led to

a significant share in the total car stock. The fraction of CNG

car sales in total car sales increased 16.6% in 2022 to 75.8% in

2050, which has been the highest among other vehicle options.

Higher adoption of E85 and CNG vehicles due to lower annual

ownership costs and emissions dominated the adoption of electric

vehicles. In addition to that, EVs were less preferred due to

their higher annual ownership costs and emissions compared to

E85 and CNG vehicles. As a result, the share of electric cars in

total car stock in 2050 was reduced to 9% from 18.3% in the

high metro investment scenario. Even with comparable petrol

prices, the fraction of petrol cars in total car sales throughout the
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simulation horizon was lower than in the high metro investment

scenario.

A pivotal factor contributing to reducing GHG emissions was

the decrease in GHG emissions from metro operations due to a

greener electricity grid. The GHG emissions from metro operation

in 2050 reduced from 104 Mt CO2e in the high metro investment

scenario to 0.08 Mt CO2e in the decarbonization scenario. This

indicates the importance of increasing renewable share in the

electricity grid.

7 Conclusion

An optimal investment strategy has been devised to allocate

the incentives for novel vehicle options to decarbonize the Indian

private vehicle sector. This work has used a system dynamics

model, previously developed for the private road transport sector

of India, within an optimization modeling framework. Different

optimization models with varying objectives and constraints were

solved, and multiple scenarios were considered.

The critical overall conclusion from the results was that the

sector is highly complex, with strong interactions between different

vehicle technologies. Therefore, incentives must be designed to

consider these interactions and the effects of feedback in the

system. Otherwise, they are likely to be less effective. Incentivization

strategy should be combined with carbon taxation and increased

renewables in the electricity grid for maximum benefits.

Specifically, it was observed that a total investment INR 15

Trillion was needed to achieve the GHG emissions target of 549.02

Mt CO2e by 2050. However, the investment rose by over 9 folds

to INR 137.74 Trillion to achieve GHG emissions of 535 Mt

CO2e by 2050. This indicated a highly nonlinear nature of the

GHG reduction and cost trade-off. EVs were incentivized in the

near future to reduce the adoption of petrol and diesel vehicles,

while incentives were provided to establish strong network of

charging and gas-refilling stations. In the later stage, CNG vehicle

were prioritized by removing the purchase incentives for other

vehicle options. The rate at which incentives were increased or

decreased impacted both the minimum achievable GHG emissions

and the total investment required. A higher rate of increase of

incentive especially during the phase of high vehicle demand

can lead to greater GHG reductions due to the accelerated

adoption of novel vehicles. Metro transport could significantly

reduce GHG emissions due to the reduced use of vehicles. The

GHG reduction benefit per unit of investment increased from

0.3 to 0.44 Mt CO2e/INR Trillion when metro investment was

an option. However, beyond a certain threshold of investment

in metro transportation, it was needed to be supported by more

significant incentives for novel vehicle options due to a feedback

effect causing reduction in petrol price. Implementation of a carbon

tax on transport fuels demonstrated effectiveness in reaching

minimum GHG emission of 456.8 Mt CO2e in 2050, along with

a notable decrease in financial incentives by INR 66.8 Trillion.

In addition to that, increased renewable share in the electricity

grid and environmental awareness among consumers reduced the

GHG emissions further to 400 Mt CO2e in 2050. However, it was

still higher than the COP26 emission reduction target of 2030 by

34%. Greener electricity grid reduced the emissions from metro

transportation by 99% in 2050.

This work involved integrating metro transportation into the

system dynamics model, introducing several new parameters, such

as investment in metro line construction, length of operational

lines, construction duration, daily ridership, and more. In order

to model the dynamics of metro construction and its impact on

daily ridership, most of the data needed for estimating parameter

values were obtained from two major metro cities in India, Delhi

and Mumbai. However, as metro lines continue to be constructed

and become operational in additional cities, these parameter values

would not be able to capture the dynamics of metro transportation

at national level accurately. Thus, periodic re-parameterization will

be necessary as more data becomes available.

The work can be extended further to consider other emerging

technologies such as fuel cell vehicles. Other transport sectors, such

as long-distance road transport (passenger and freight), can also

be considered. Finally, this work considered only GHG emissions

as the environmental impact. However, other pollution effects are

equally important and can be considered in the vehicle purchase

decision-making model.
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