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1 Introduction

The detection of plant diseases is a critical concern in agriculture, as it directly impacts

crop health, yields, and food security (Fang and Ramasamy, 2015). Traditionally, this

task has relied heavily on the observations of farmers and agricultural experts, which

is fraught with many shortcomings, including human error and the inability to identify

latent or early-stage infections. In response to these limitations, the scientific community

has developed multiple innovative solutions. Among these, image classification techniques

have gained widespread adoption due to their cost-efficiency (Chhillar et al., 2020) and the

ability to enable real-time monitoring, allowing farmers to promptly detect diseases and

take timely action (Chen et al., 2020). Additionally, these techniques are highly scalable,

adaptable, non-invasive, and non-destructive and can be applied to different crops and

disease scenarios (Ramcharan et al., 2017).

However, despite these advantages, image classification methods come with their

unique set of challenges. One of the most prominent issues is finding the delicate

balance between computational cost and accuracy (Barbedo, 2016). Researchers have

delved into various strategies to tackle this challenge, including model pruning (Jiang

et al., 2022), transfer learning (Shaha and Pawar, 2018), and hybrid models (Tuncer,

2021). The proposed research seeks to make a valuable contribution to this field by

creating a new combination of Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs), known as hybrid CNN-RNN models for detecting tomato

plant diseases. This model effectively addresses the computational cost challenge while

upholding high accuracy.

The successful implementation of the model marks a significant milestone, paving

the way for real-world applications of disease detection in the agriculture industry.

The benefits extend beyond reduced crop loss and increased crop quality, leading

to higher farmer income and strengthened food security. It also contributes to

global economic improvement, reduced pesticide use that positively impacts the

environment, and enhanced relationships among farmers, researchers, and corporations.
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2 Objectives

The primary goal of this research is to develop and optimize

lightweight CNN-RNN models for effectively detecting tomato

plant diseases using images. This objective stems from the necessity

to create efficient and accessible solutions for disease detection in

agricultural settings, particularly where resources are limited. To

reach this objective, we will concentrate on several key aspects.

Firstly, this research delves into various integrations of CNNs

and RNNs to capture both spatial and sequential information

within plant images. Additionally, we will evaluate the effectiveness

of incorporating Liquid Time-Constant Networks (LTC) (Hasani

et al., 2021) alongside CNNmodels for the image classification task,

aiming to understand how LTC enhances our models’ ability to

capture temporal dependencies within plant images.

Additionally, we will explore the feasibility of deploying

our optimized models on Raspberry Pi IoT devices. These

devices have become widely used in various image-processing

applications worldwide due to their affordability, speed, and

efficiency (Kondaveeti et al., 2022). In the agricultural industry,

Raspberry Pi devices have found particular prevalence. For

example, studies highlighted in Mhaski et al. (2015) and Mustaffa

and Khairul (2017) demonstrate the use of Raspberry Pi for real-

time image processing to evaluate fruit maturity based on color and

size, utilizing CNNmodels. In another domain, research (Wardana

et al., 2021) addresses the challenge of accurate air quality

monitoring on resource-constrained edge devices by designing a

novel hybrid CNN-RNN deep learning model for hourly PM2.5

pollutant prediction, which is also implemented on Raspberry Pi.

Our evaluation of Raspberry Pi will prioritize assessing inference

times and energy consumption to ensure that the model remains

both functional and efficient within these constraints, facilitating

its practical application in real-world scenarios.

By achieving these targets, we aim to make a valuable

contribution to the field of plant disease detection, providing

accurate and lightweight solutions accessible to a broader

agricultural community. Moreover, targeting to solve smart

agriculture problems also aligns with and contributes to various

Sustainable Development Goals (SDGs).

3 Dataset

The data collection process for this research involves using the

Tomato Leaves dataset, which is sourced from Kaggle (Motwani

and Khan, 2022). This dataset comprises over 20,000 images

categorized into 10 different diseases and a healthy class as shown in

Figure 1. The images are collected from two distinct environments:

controlled lab settings and real-world, in-the-wild scenes. This

diverse dataset provides a comprehensive representation of tomato

plant conditions, making it suitable for training and evaluating

plant disease detection models.

4 Methodology

The novelty of our approach relies on a combination of transfer

learning, and specific neural network components such as CNN,

RNN, and LTC models. Deep Neural Networks are at the core of

our research, mimicking the complexity of the human brain to

excel in learning intricated patterns from raw data. Particularly

suited for image classification tasks like plant disease detection,

these networks play a pivotal role in extracting hierarchical features

from tomato leaf images.

4.1 Transfer learning

To enhance the efficiency of our disease detection models, we

plan to implement a technique known as transfer learning. This

method aims to reduce computational costs and training time

by leveraging knowledge gained from solving one problem and

applying it to a related problem (Torrey and Shavlik, 2010). Unlike

traditional machine learning approaches, which train models from

scratch on specific datasets, transfer learning reuses pre-trained

models and adapts them to new tasks.

Transfer learning involves transferring knowledge from a

source domain, where labeled data is abundant, to a target domain,

where labeled data may be limited. By doing so, it reduces the need

for large amounts of labeled data for training new models, making

it more practical and cost-effective in real-world scenarios.

There are two primary types of transfer learning. The first

is feature extraction, where the learned representations (features)

from a pre-trained model are extracted and used as input to a new

model. This involves removing the output layer of the pre-trained

model and adding a new output layer tailored to the new task,

allowing the model to be fine-tuned on the target dataset.

The second type, which we will apply in this research, is

fine-tuning. Instead of freezing the parameters of the pre-trained

model, the entire model is further trained on the target dataset

with a small learning rate. This enables the model to adapt its

learned representations to better suit the different characteristics

of the new task while still retaining the knowledge gained from the

source domain.

4.2 Convolutional Neural Network

Among neural network types, CNNs are ideal for image tasks

that can capture spatial features through convolutional layers

(Albawi et al., 2017). CNN is a powerful class of deep learning

models inspired by the human visual system. CNNs excel at

extracting meaningful features from images, making them highly

effective tools in computer vision applications. Therefore in this

research, we will use CNNs to analyze tomato leaf images and

extract visual cues linked to different diseases.

CNNs typically consist of multiple layers, including

convolutional layers, pooling layers, and fully connected layers.

Convolutional layers perform the feature extraction process

by applying convolution operations. This filter captures local

patterns such as edges, textures, and shapes. By repeatedly applying

convolutional operations across the entire image, CNNs can learn

hierarchical representations of features, starting from simple

patterns in the lower layers to more complex ones in the higher

layers. Pooling layers reduce the spatial dimensions of the feature
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FIGURE 1

Tomato disease images collected from Kaggle.

maps, making the network more computationally efficient while

preserving important information. Finally, fully connected layers

combine the extracted features to make predictions.

One of the key advantages of CNNs is their ability to

automatically learn hierarchical representations of features directly

from raw pixel data. This end-to-end learning approach eliminates

the need for manual feature engineering, allowing CNNs to adapt

to a wide range of visual recognition tasks.

However, not all information can be deduced from static spatial

features alone, so we will implement RNNs for modeling sequential

data and capturing temporal dependencies to further improve the

accuracy of the model.

4.3 Recurrent Neural Network

RNN is a class of artificial neural networks specially designed

to process sequential data, such as time series, text, and speech

(Salehinejad et al., 2017). Unlike traditional feedforward neural

networks (like CNNs), RNNs have connections that form directed

cycles, allowing them to maintain internal memory and capture

temporal dependencies within the input data.

At each time step, an RNN takes an input vector and combines

it with the previous hidden state to produce an output and update

the hidden state. This process is repeated iteratively for each

element in the sequence. The hidden state acts as a memory unit

that retains information from previous time steps, allowing the

network to incorporate context and make predictions based on the

entire sequence.

One of the key advantages of RNNs is their ability to handle

input sequences of varying lengths, making them well-suited for

tasks such as natural language processing, speech recognition,

and time series prediction. Additionally, RNNs can learn long-

term dependencies in sequential data, thanks to their recurrent

connections and memory cells.

This research has utilized RNNs as we realize that images

also contain sequential information. For example, for handwriting

recognition tasks (Dutta et al., 2018), after CNNs have extracted the

features of the image—each feature stands as a separate character—

instead of building another convolutional layer to detect the whole

string, we can pass those “character” features as sequential data into

RNNs, and it can easily predict the output.

By using similar mechanisms, we can detect special patterns

in different disease classes in our tomato leaf images with a lower

computational burden on the CNNs structure, resulting in a more

efficient model.

It is also worth noting that previous studies on CNN-RNN

models have predominantly focused on the combination of CNNs

with the Long Short-Term Memory (LSTM) network. However,

these researchers commonly face challenges in dealing with

image variability and noise in real-world data. The LSTM model

struggles to handle these issues effectively, resulting in reduced

accuracy in practical scenarios. In response to this challenge, we

propose to combine CNNs with the new LTC model, drawing

inspiration from liquid-state machines. By dynamically adjusting

their hidden state over time in response to input data, LTC

models autonomously identify infected regions in plant images.

This innovative approach enhances robustness and generalization

across various disease symptoms in different real-life scenarios,

overcoming the limitations associated with traditional hybrid

CNN-RNN approaches.

In this research, a systematic approach in Figure 2 is followed

to develop and evaluate models for accurate disease detection while

considering computational efficiency. The process involves five key

stages, each contributing to the success of the research.

i. Dataset splitting: after data collection, the dataset is divided

into two subsets: training and validation data. This partition,

typically with an 80% training and 20% validation ratio, is vital

for model evaluation and to prevent overfitting.

Frontiers in Sustainability 03 frontiersin.org

https://doi.org/10.3389/frsus.2024.1383182
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Le et al. 10.3389/frsus.2024.1383182

FIGURE 2

Model development process.

ii. Feature extraction with transfer learning: transfer learning

is a fundamental aspect of this project. We will implement

multiple pre-trained CNN models as feature extractors and

validate their effect on the hybrid model.

iii. Combining CNN and LTC model: the next phase involves

combining the fine-tuned CNN model with the LTC model.

Initially, the classification layer of the CNNmodel is removed,

leaving it prepared for feature extraction rather than class

prediction. The output features from the CNN model are

concatenated into a sequential format before inputting into

the LTC model, allowing it to capture sequential relationships

between these features.

iv. Model validation: metrics such as accuracy, precision, recall,

F1-score, and confusion matrix are calculated to assess the

model’s effectiveness in disease detection. Hyperparameter

tuning will be conducted to optimize themodel’s performance,

exploring variations in parameters like the number of RNN

units, learning rates, and batch sizes.

v. Model variations: in the project’s final phase, various model

combinations are explored to assess accuracy, training time,

and computational cost. Emphasis is placed on developing

lightweight architectures suitable for resource-constrained

environments like IoT devices.

At the end of the research, we plan to deploy the model that can

achieve the best balance between accuracy and computational cost

on an IoT device like Raspberry Pi and validate the accuracy with

actual tomato plant images captured from our lab.

5 Discussion

Our research has culminated in the development of an

exceptionally efficient hybrid CNN-RNN model. This model

significantly reduces training time and computational costs,

making it highly suitable for resource-constrained environments,

particularly IoT and edge devices. Despite its simplified design, it

maintains an impressive level of accuracy in disease detection when

compared to more complex models. Furthermore, the innovative

implementation of this new LTC model substantially enhances the

model’s ability to handle noisy and outlier data.

Moreover, this research offers significant potential to contribute

to various Sustainable Development Goals (SDGs), addressing

challenges not only in New Zealand Aotearoa, where the research

is conducted, but also in other regions around the world. By

enabling early and precise plant disease detection, this research

helps to minimize the damage caused by diseases, and farmers

can preserve a larger portion of their harvest, thereby safeguarding

their livelihoods. With fewer crop losses, farmers can generate

higher yields, leading to increased incomes and economic stability.

This reduction in crop losses directly addresses the goal of “No

Poverty” by improving the financial wellbeing of farmers and

their communities.

Furthermore, by implementingmore accurate disease detection

models, farmers can maintain a more consistent and reliable

food supply. Early intervention helps prevent large-scale crop

failures, ensuring that agricultural produce remains available for

consumption. This consistency in food availability contributes to
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the goal of “Zero Hunger” by ensuring that people have access to an

adequate and nutritious diet throughout the year.

Additionally, this model also contributes to the Sustainable

Development Goal (SDG) of “Good Health and Wellbeing” by

preventing contaminated crops from entering the food supply

chain. Detecting diseases early ensures that only safe produce

reaches consumers, reducing the risk of foodborne illnesses

and related healthcare costs. This model safeguards consumer

health, minimizes health risks, and indirectly lowers healthcare

expenditures, promoting overall wellbeing and safety.

Economic growth is another area significantly influenced by

this research. When crops remain healthy, they yield higher

quantities of produce, which farmers can then sell in the market.

This increased productivity not only boosts farmers’ incomes but

also creates demand for additional labor within the agricultural

sector. More workers are needed for various tasks such as planting,

harvesting, and maintenance of healthy crops. Additionally, the

demand for skilled technicians and researchers may also increase

to develop and implement advanced disease prevention measures.

As the agricultural sector expands to accommodate these needs, it

generates more job opportunities, thereby contributing to the SDG

of “Economic Growth.”

In terms of “Industry, Innovation, and Infrastructure,” the

development of this model signifies innovation within the

agriculture sector. It introduces advanced technology and data-

driven solutions that benefit not only farmers but also the broader

agricultural industry. Implementing this technology might require

the establishment of suitable infrastructure for efficient disease

monitoring and control.

By accurately identifying diseases early, farmers can apply

treatments only where needed, minimizing pesticide use and

promoting environmental sustainability, which promotes

“Responsible Consumption.” This also aligns with the SDG of

“Climate Action” by reducing the environmental footprint of

agriculture and its impact on the environment.

Finally, the successful implementation of this research

may necessitate strategic partnerships between researchers,

governmental bodies, agricultural organizations, and technology

companies. Collaborative efforts are essential to deploy and

scale the model effectively, contributing to the SDG of forming

“Partnerships” to achieve sustainable goals.

6 Conclusion

Successfully implementing the model in resource-constrained

settings is a significant achievement, paving the way for practical

disease detection in agriculture. By improving crop health and

reducing costs and energy consumption, this outcome holds the

potential to make a substantial impact not only in enhancing

food security but also in other sustainable development aspects.

However, it’s crucial to acknowledge the limitations and areas for

further exploration.

The model may require customization for specific agricultural

contexts and broader crop types. Ongoing investigations into

its performance under various environmental conditions are

warranted. In summary, this research contributes to more efficient

disease detection in agriculture, with the need for ongoing

refinement and adaptation in diverse settings. It represents a step

toward accessible, efficient, and cost-effective disease detection,

benefiting the agricultural industry and beyond.
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