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Natural gas (NG) production has significantly increased in the past decade as new

unconventional oil and gas wells are being discovered. NG as obtained from the wellhead

requires processing before being considered as pipeline grade. The process consists

of the removal of acidic gases followed by dehydration. NG processing is associated

with toxic emission having substantial environmental and health impact. Difficulty in NG

processing arises from varied flow rate and uncertain feed composition that provides

a challenge in efficient design as well as finding the optimal operating condition. The

present work used a stochastic approach to characterize natural gas composition and

its importance on the product and waste emission is studied. Under the uncertain feed

composition, optimal operating condition of the controllable variables was attained by a

reliability-based robust multi-objective optimization (RBRMOO) technique that mitigates

BTEX emission while fulfilling NG pipeline specification. Chemical process simulator is

used to find the impact of the control process settings and variation of uncertain feed

condition on NG dehydration and BTEX emission. The best prediction models were

developed using machine learning algorithm, chosen from a family of metamodels.

RBRMOO is performed using metaheuristic algorithm to determine the optimal process

condition of the control variables. The impact of uncertain feed composition in process

modeling and subsequent optimization demonstrates optimal process condition where

the rate of emission is lower by∼83 ton/yr when compared to that from the deterministic

model where median value of uncertain feed composition is used for analysis, portraying

the limitations of traditional sustainability assessment methods that do not account

for uncertainty.

Keywords: TEG dehydration process, BTEX mitigation, limit state function (LSF), reliability based robust multi-

objective optimization (RBRMOO), value of stochastic solution (VSS)

INTRODUCTION

Natural gas (NG) processing consists of the sweetening followed by dehydration. In the dehydration
unit, triethylene glycol (TEG) is primarily used to remove water from NG. In the process of
dehydration volatile organic compounds (VOCs) like benzene, toluene, ethylbenzene, isomers of
xylene (BTEX) is also absorbed in TEG.During the regeneration process of TEG substantial amount
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of the absorbed BTEX along with other VOCs are discharged
into the atmosphere causing harmful environmental as well
as a health hazard needing strict regulation of the process.
It is found that dehydration process control variables have
significant effect on BTEX emission mitigation (Braek et al.,
2001; Mukherjee and Diwekar, 2021b). Regulation of some of
these control variables to reduce emission may have adverse
effect on dehydration of the gas. To investigate the effect
of different control variables, extensive simulation has been
performed under uncertain feed condition and a metamodel
based robust multi-objective optimization is performed that
incorporates reliability constraint.

Theoretical and experimental studies of the dehydration
and related emission from NG processing is conducted to
identify perfect operating conditions. Gupta et al. (1996)
studied optimum process condition for TEG loss minimization
using sensitivity analysis. Rahimpour et al. (2013) optimizes
operating conditions of dehydration plant obtained from process
simulation to improve dew point of dry gas, glycol usage,
emission of greenhouse gas. Jacob (2014) have studied the effects
of the control variables like glycol circulation rate, flow rate
of stripping gas, and reboiler temperature on dry gas water
content. They have also studied effect of design parameter like
number of treys in the absorber. Ranjbar et al. (2015) have
used the HYSYS R© process simulator for parametric optimization
of TEG dehydration plant. Kamin et al. (2017) have used
HYSYS R© data to create a response surface model for optimizing
dehydration plant. Neagu and Cursaru (2017) have studied
impact of stripping gas flow rate and the reboiler temperature
on the dry gas water content and regeneration of TEG. Chebbi
et al. (2019) has optimized process parameter including TEG
circulation rate and concentration, and design parameter like
number of trays in the absorber to minimize the capital cost
and operating cost like utility, TEG pumping, and stripping gas
rate. Mukherjee and Diwekar (2021b) has conducted a multi-
objective optimization (MOO) taking into consideration both
economic and environmental impact for a sustainable solution.
Sustainable design has three pillars; economic, environmental,
and societal (Mukherjee et al., 2015). Traditionally, greenhouse
gas (GHG) emission is used as a yardstick for environmental
impact assessment of chemical process (Sikdar et al., 2017;
Mukherjee et al., 2020). Mukherjee and Diwekar (2021b) have
performed BTEX emission mitigation through control variable
optimization. Optimization process applied so far has used
constant feed condition. In reality, uncertain feed condition
either in the form of flow rate and/or composition is prevalent in
natural gas sources (Bullin and Krouskop, 2009; Sureshjani et al.,
2020). Thus, in the present work optimal performance of natural
gas dehydration plant under feed composition uncertainty has
been studied using advanced data analysis with machine learning
and metaheuristic algorithm.

Chemical process operation involves uncertainty in various
forms; inlet feed composition, flow rate, or data-related,
including metamodeling (Mukherjee and El-Halwagi, 2018;
Mukherjee et al., 2020). The uncertainty due to metamodeling
is addressed by Mukherjee and Diwekar (2021a). Uncertainty
in the flow rate is primarily due to declining production with

time and can be addressed by optimal fracturing of the wells
(Oke et al., 2018, 2019). In some case, optimal design capacity of
NG processing plant can be used to handle declining production
(Asani et al., 2021). Uncertainty in composition is caused by
various factors including geological formation. For a given
geological formation, the fracture shale in hydraulically fractured
reservoirs is heterogeneous in nature leading to uncertainty
(Sureshjani et al., 2020). Variation of composition of shale gas
is observed between different shale play (Bullin and Krouskop,
2009). In some cases, substantial variation in composition can
be found within the same shale play. In the present work impact
of feed composition uncertainty in the operational optimization
of NG processing has been addressed. In optimization under
uncertainty, the ensemble average of the probable scenarios is
optimized, resulting in a robust optimal condition. However, a
robust operation does not necessarily promise with certainty a
reliable process operation in the face of wide range of unknown
distributions. A reliability-based optimization in the light of
uncertain process variables can ascertain trust ability of the result
(Boroson and Missoum, 2015; Abebe et al., 2017).

This paper proposes a reliability-based robust multi-objective
optimization (RBRMOO) technique to find the optimal control
variables under feed composition uncertainty for NG processing
system. Data-driven metamodeling is performed with machine-
learning algorithms, followed by stochastic optimization using a
metaheuristic technique. RBRMOO is an active area of research
in engineering (Lobato et al., 2020). Multi-objective optimization
(MOO) for design and operation of chemical process system are
sensitive to external noises. A robust multi objective optimization
(RMOO) results in stable performance that is least sensitive
to uncertain process condition. However, robust design and
operation are not necessarily capable of providing optimal
solutions that satisfy prescribed reliability levels of the process
performance. Abubakar et al. (2015) has analyzed reliability of
chemical process system. In reliability analysis, the process is
stimulated for various conditions that the system may come
across and analyze response. Libotte et al. (2020) has developed
a model for reliability based robust multi objective optimization
for design of chemical process where the probability of system
failure is considered for optimization. In this work, we have
developed a RBRMOO model for real time optimal operation
of chemical process system. For reliability assessment of the
NG dehydration plant, the deterministic process simulator is
assumed to act as a digital twin of a real process system that
can simulate hypothetical scenarios is coupled with a stochastic
model. For a robust and reliable NG process operation, the
RBRMOO applies a hybrid algorithm combining robust multi-
objective optimization (RMOO) and reliability-based multi-
objective optimization (RBMOO) to obtain robust optimal
process condition that applies reliability as constraints. Through
the RBRMOO algorithm we can enhance the robustness of the
emission minimization effect with reliability as constraints for
dry gas water contents.

Chemical processes differ both in type, scale, and properties.
Thus, a standard list of variables to be controlled for optimal
operation does not exist. Important variable selection can be
done with multivariate statistics, machine learning or other
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parameter estimation methods (Li et al., 2004; Mukherjee et al.,
2013; Mukherjee, 2017). Mukherjee and Diwekar (2021b) have
been used Lasso, a machine learning algorithm for important
variables selection in NG dehydration process. Surrogate models
are generated using support vector regression (SVR) (Vapnik
et al., 1996). The model is used to quantify the effects of the
uncertain and control variables on dependent variables. The
SVR-based process model is used for optimization of the process
with metaheuristic algorithm, efficient ant colony optimization
(EACO), to obtain optimal values of control variables that
minimizes BTEX emission at different limits of the water
content of the processed gas. In this work, we quantify the
effect of uncertainties with probability density. The objective
function is changed from deterministic to expected value and
the constraint is changed to a probability function that obey
the reliability condition. EACO is an efficient algorithm that
has been extensively used in chemical engineering, including
computer aided molecular design (CAMD) (Mukherjee et al.,
2017). The present work developed an algorithmic framework for
surrogate model based robust chemical process optimization that
uses reliability as constraint and demonstrated the significance of
incorporating source stream composition uncertainty in process
optimization by the value of stochastic solution (VSS). The goal
of the present work is to find an optimal operating condition that
is reliable and environmentally friendly.

The next section describes natural gas dehydration process
and emission from the process under feed composition
uncertainty. Process simulation method implemented for data
generation, modeling with SVR, and RBRMOO is explained in
the solution methodology section. This is followed by results
from modeling and RBRMOO with SVR-EACO strategy for the
dehydration process. Finally a brief discussion of the results are
given followed by conclusions.

PROBLEM DESCRIPTION

Triethylene glycol (TEG) is the most preferred solvent in
industries for NG dehydration. Dehydration process comprises
an absorption and a stripping unit. The absorption unit is a tray
or packed column where lean TEG entering the tower from the
top is used to absorb water from wet gas in a countercurrent
manner. Rich TEG coming out from the bottom of the absorber is
subsequently regenerated in a regenerator column. Stripping gas
obtained from part of the dry gas is injected into the reboiler. The
TEG after regeneration is recycled back for absorption. Along
with water vapor, aromatics are also absorbed in the absorber
that is eventually released into the atmosphere primarily from
the regenerator. Traditional methods adopted for BTEX/VOC
mitigation like incineration, flaring, or condensation are not
environmentally friendly. Process control variables that impacts
BTEX/VOC emission may also affect the dry gas dew point.
Thus, the problem has to be solved using multi-objective
optimization (MOO) technique where the dehydration process
must achieve the emission goal along with meeting dry gas due
point requirement.

Traditionally, chemical process optimization assumes a
constant flow rate and composition, ignoring uncertainty
associated with the process. The uncertain inputs can be defined
by an associated probability distribution. Impact of the uncertain
feed composition is observed in a wide range of distribution of
the uncertain output variables namely dry gas water content and
BTEX emission. Figure 1 shows NG processing with uncertain
feed composition and propagation through the process resulting
uncertain output variables. In case uncertainty is considered
for robust multi-objective optimization (RMOO), reliability of
the process to meet the threshold of the output variables are
unknown. In our previous work, a deterministic solution is
performed where the median value of the feed composition is
used for optimization. Under uncertain feed composition, the
output variables (dry gas water and BTEX emission) at the
optimal process condition will also vary, following a distribution
and may exceed the limit as predicted by the median feed
condition. Thus, a reliability based stochastic optimization is
performed for robust solution that meets the reliability criteria
as required.

SOLUTION METHODOLOGY

Stochastic Simulation-Based Reliability
Assessment and Optimization Framework
Stochastic simulation of the NG processing is conducted for
response analysis. In this process, the uncertain and control
input variables are generated using MATLAB. For the uncertain
variables (feed composition), a normal distribution is assumed
and for the control variables (process parameters), a uniform
distribution is selected for our analysis. From different sampling
techniques including Monte Carlo (MC), Latin Hypercube,
importance sampling, Hamersley Sequence Sampling (HSS), etc.
(Mukherjee and Diwekar, 2016), Halton sequence has been used
that has high dimensional uniformity similar to the HSS for the
control variables andMC sampling is used for uncertain variables
(Wang and Hickernell, 2000). Uncertainty and reliability analysis
is performed using the response of the system at stochastic
condition. A surrogate model is generated, and the reliability
(in terms of dry gas water content) and environmental safety
margin (in terms of BTEX emission) of NG processing system
is obtained. The framework is shown in Figure 2.

The steps involved in generating the natural gas process
response under uncertain condition, surrogate model creation
and RBRMOO for BTEX emission mitigation are:

(1) The entire process system is defined.
(2) The range and type of distribution of uncertain input variables

and control variables of the NG process system are defined.
(3) Sample of the uncertain variables and control variables

are generated using MC and Halton sequence respectively
in MATLAB.

(4) Response of the NG processing system were generated using
ProMax process simulator.

(5) Process performance criteria, constraints, and bounds
are specified.
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FIGURE 1 | Uncertainty propagation and quantification in NG processing.

FIGURE 2 | Framework for random variable generation, process simulation, data-based metamodeling, reliability estimation, reliability based robust multi-objective

optimization, and value of stochastic solution estimation of natural gas dehydration process.
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(6) SVR-based metamodels of the process are generated for the
two different responses, BTEX emission and dry gas water
content, using MATLAB for optimization.

(7) Reliability analysis is performed with LSF to obtain the
probability of failure to meet the performance targets
in MATLAB.

(8) Stochastic optimization is performed under specified limit of
probability of failure to meet the dry gas water constraints
threshold in MATLAB.

(9) The constraints are adjusted in every iteration following the
threshold to obtain the Pareto optimal solution.

Reliability Assessment of NG Processing
System and the Probability of Failure
The ProMax model of the NG processing system is simulated
for various uncertain feed compositions and the overall response
with regard to the BTEX emission and dry gas water was noted.
The performance of a chemical process system under stochastic
conditions is determined by state space variables (q), control
variables (c), uncertain inputs and modeling parameters (x), and
equipment sizes (d). A standard optimization formulation (Edgar
et al., 2001):

Minimize f
(

x, q, c, d
)

Subject to : e
(

x, q, c, d
)

= 0

g
(

x, q, c, d
)

≤ 0 (1)

Where f is the function to be minimized and e and g are
the equality and inequality constraints respectively. The state
variables q are dependent on other control variables c. The
inequality constrain can be represented as:

g
(

x, q, c, d
)

= G(x, c, d) ≤ 0 (2)

Through reliability analysis we can identify the region in the
operating space that can achieve the process target while fulfilling
the constraints. Through reliability analysis we can obtain the
values of the control variables that meets the performance
target. A threshold or failure criteria that can be determined
based on process requirements like meeting the water content
limit of dry gas or meeting a regulation target like BTEX
emission are generally used to set the performance target. The
multidimensional state space of the input variables can be divided
into safe operating region and failure region using the limit state
function (LSF), G(X) ≥ 0. Here X is the vector space of the input
variables. Suppose there are n uncertain input variables. With n
variables, we can create an n-1 dimensional hyperplane known
as the failure surface that divides the input variable space into
a safe and a failure region. Figure 3 shows a two-dimensional
vector space with the failure surface. In the present problem,
when the system response y(x) (in the present problem either dry
gas water content or BTEX emission) is greater than a threshold
θ i.e. y(x) ≥ θ , we called it a failure. The LSF is defined as:

G (X) = y (x) − θ ≥ 0 (3)

Here LSF (G (X) ≥ 0) is a constraint to the optimization problem
that satisfies one of the performance targets for the system. For

FIGURE 3 | Performance space for linear safety margin.

example, in the present problemwhen the performance is defined
by the dry gas water content, we have a failure when G (X) ≥ 0
i.e. the dry gas water content exceeds the threshold limit. When
G (X) < 0, dry gas water is less than the performance target
and the system is considered to be safe i.e. without failure. The
probability of failure is defined as:

Pf=P
[

y (x) ≥ θ
]

=P
[

G (X)=y (x) − θ ≥ 0
]

=P[G (X) ≥ 0] (4)

In case of n variables, a joint probability distribution function
(FX (x)) can constitute the failure probability Pf (Thoft-
Cristensen and Baker, 1982). Each process uncertain variables
(x) i.e. inlet feed composition of NG is defined by a probability
distribution. The Pf is obtained by integrating the joint
probability distribution function (FX (x)) subject toG (X) ≥ 0 as:

Pf =

∫

G(X)≥0
FX (x) · dx (5)

The response of the entire wet gas dehydration process is
obtained from PorMax R© simulated for five hundred data points.
Random realizations of the input variables are used to find the
random response of the entire NG processing system. The Pf is
estimated with stochastic simulation using an indicator function
I(x) that shifts integration of Equation 5 to real space domain
(Melchers, 1999) given as:

I (x) =

{

1, G (X) ≥ 0
0, G (X) < 0

(6)

The indicator I(x) in this problem has a value of 1 when the
response (e.g. dry gas water content) indicates failure satisfying
the LSF, (i.e. G (X) ≥ 0, DryG exceeds threshold linit) and 0
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otherwise. For a sample size of S, the indicator count can be used
to estimate Pf as:

Pf =

∫

G(X)≥0
I (x) · FX (x) · dx ∼=

1

S

k
∑

i=1

I(xi) (7)

Reliability Based Robust Process
Optimization
For a NG dehydration unit due to the varied feed composition,
the process should have robust operating conditions. Here, two
different goals need to be achieved: maximum drying efficiency
and minimum toxic release. Thus, a robust multi-objective
optimization RMOO problem needs to be solved. To obtain a
reliable and robust process that fulfills multi-objectives criteria,
a composite algorithm named Reliability-based Robust Multi-
objective Optimization (RBRMOO) that applies both Reliability-
based Multi-objective Optimization (RBMOO), and Robust
Multi-objective Optimization (RMOO) method for a robust
optimal solution that fulfills the reliability constraints.

Reliability-Based Multi-Objective Optimization

(RBMOO)
In RBMOO, we find an optimal solution where the failure
probability (P_f DryW, probability of dry gas water content
exceeds the threshold θDryW) is less than or equal to the target
probability (P0). The RBMOO formulation is defined as:

minimize fBTEX = yBTEX
(

x,c, wfBTEX

)

(8)

subject to P_f DryW ≡ P
[

yDryW

(

x,c, wfDryW

)

≥ θDryW
]

≤ P0 (9)

hI (x,c) = 0 I ≥ 0 (10)

gJ (x,c) ≤ 0 J ≥ 0 (11)

li ≤ ci ≤ ui i = 1, 2, . . . ..n (12)

where the objective functions fBTEX denotes the output
variables BTEX emission, x = [x1, x2, . . . ., xm]

T is the m −

dimensional vector of uncertain input variables and c =

[c1, c2, . . . ., cn]
T is the n − dimensional vector of the important

control variables, yBTEX and yDryW are the functions for the
output variables BTEX emission and dry gas water content
respectively estimated with machine learning SVR, and wfBTEX
and wfDryW are the vector of parameters for the functions
yBTEX and yDryW respectively, g and h are other inequality and
equality constraints respectively and li and ui are the lower and
upper bound of the control variables ci, respectively. It is to be
noted that the probability of dry gas water content to meet the
threshold θDryW is 1− Pf _DryW .

Robust Multi-Objective Optimization (RMOO)
The uncertain input variables (x) fluctuations will result in
variations in the product (yBTEX and yDryW) performance. The
problem is generally handled by a robust optimization method.

The RMOO is formulated as:

minimize EfBTEX = E
[

yBTEX
(

x,c, wfBTEX

) ]

(13)

subject to EfDryW ≡ E
[

yDryW

(

x,c, wfDryW

)]

≤ θDryW (14)

E(hI (x,c)) = 0 I ≥ 0 (15)

E(gJ (x,c)) ≤ 0 J ≥ 0 (16)

li ≤ ci ≤ ui i = 1, 2, . . . ..n (17)

where E is the expected value. EfBTEX and EfDryW are the objective
functions that denotes the expected values of BTEX emission and
dry gas water content respectively.

Reliability-Based Robust Multi-Objective

Optimization (RBRMOO)
Using the equations for RBMOO and RMOO, the reliability-
based robust multi-objective optimization (RBRMOO)
formulation is:

minimize EfBTEX = E
[

yBTEX
(

x,c, wfBTEX

) ]

(18)

subject to Pf _DryW ≡ P
[

yDryW

(

x,c, wfDryW

)

≥ θDryW
]

≤ P0 (19)

E(hI (x,c)) = 0 I ≥ 0 (20)

E(gJ (x,c)) ≤ 0 J ≥ 0 (21)

li ≤ ci ≤ ui i = 1, 2, . . . ..n (22)

In the present problem, the objective of mathematical
programming is to find the optimal values of the process
variables so that impact on the environment in terms of
BTEX emission (EfBTEX) is minimized while fulfilling the
constraint on the probability of failure P_f DryW. The solution
of multi-objective optimization is to find the trade-offs
between the two conflicting objectives. Our two objectives,
improved drying efficiency and BTEX mitigation which
comprises economic and environmental aspects respectively
are conflicting in nature. Thus, different process variables’
impact can show completely dissimilar trends. The RBRMOO
is solved similar to constraint method to generate a set of
preferred Pareto optimal solutions which provides the trade-off
surface. The optimization is solved repeatedly by changing
the value of the threshold θDryW to generate the Pareto set.
The task is performed in three steps. Firstly, SVR based

process models for yBTEX
(

x,c, wfBTEX

)

and yDryW

(

x, c, wfDryW

)

has been developed, followed by finding the expected value
and probability estimation, and finally optimizing the input
space of the process model control variables (c) using
EACO. The data used to develop the SVR model is given
as Supplemental Document.

Figure 4 is the algorithmic flow diagram for reliability-based
robust multi-objective optimization of natural gas dehydration
process under feed composition uncertainty. The overall process
has six steps: identify the control and uncertain variables and
their mode of distribution and range of operation, dataset
generation using efficient sampling techniques, ProMax process
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FIGURE 4 | Algorithmic flow diagram for optimization of natural gas dehydration process with RBRMOO method.
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simulation with uncertain variables and random operating
conditions, metamodel generation using SVR, probability of
failure estimation, reliability based stochastic optimization using
EACO through probabilistic estimation of the objective and
probability of failure to meet constraint threshold. The optimal
points as obtained from stochastic solution (RBRMOO) are
compared with the deterministic solution (MOO) and Value
of Stochastic Solution (VSS) is evaluated. Assuming ProMax R©

simulated process data as that from actual plant, the optimal
points as obtained from the deterministic and stochastic
optimization methods are evaluated in the process simulator for
process performance assessment.

RESULTS

Chemical process variables may vary over time leading to failure
of the system tomeet the specifications. To assess the reliability of
the NG dehydration process in fulfilling the dry gas water limit or
meet the BTEX emission threshold as predicted by deterministic
optimization method, different uncertain variables in the process
needs to be identified and varied over their possible range and
distribution. In the present work, the feed composition is varied
as in Figure 1. The reliability is evaluated by the probability of
failure to comply the emission threshold and/or meeting the dry
gas water limit.

Benchmark Solutions (Deterministic)
The benchmark performance of NG dehydration system is
generated by constant feed composition. In reality, uncertain feed
stream composition can lead to divergence from the benchmark
solution. Considering process control variables like Glycol
circulation rate, Absorber pressure, Reboiler Temperature and
Stripping gas rate as constant, the reliability of the dehydration
process to fulfill any set point like benchmark set by deterministic
solution will depend on the amount of uncertainty in the feed
streams from NG sources. At the constant feed composition, the
multi-objective condition is revealed by 10 Pareto optimal points
as obtained by Mukherjee and Diwekar (2021b). The process
conditions at the Pareto points are shown in Table 1.

The benchmark as obtained from constant feed condition
at the 10 optimal conditions of NG dehydration system emits
BTEX and dry gas water as shown by the performances of the
process. When the feed compositions are normally distributed
around the mean, the output emission and dry gas water content
from the system can vary significantly resulting in the failure
to meet the benchmark performance as obtained from steady
feed composition.

Probability of Failure of the Deterministic
Solution
Chemical process response is function of the control variables
as well as uncertain process conditions. In the present work,
we have considered uncertain feed conditions of the process.
The selection of the rage of the control variables are based on
literature (Braek et al., 2001). For a feed rate of 17.5 MMSCFD,
the range of variables used by Braek et al. (2001) as well as
the optimal condition as found by their analysis is given in

Mukherjee and Diwekar (2021b). Based on the parametric study,
Braek et al. (2001) has selected the glycol circulation rate and the
stripping gas flow rate as significant parameters for optimization.
They have also modified the flash tank pressure and the reboiler
temperature. The molar percentage of the inlet components
(uncertain variables) are assumed to vary normally around the
mean value. The control variables can be varied by the operators
uniformly within the range of operation. The distribution of
the decision (control) variables and uncertain variables (feed
compositions) as used for reliability estimation and stochastic
optimization is shown in Table 2.

The process model is simulated for five hundred realizations
of random input samples obtained from normally distributed
data as shown in Figure 1. Using the input-output data,

nonlinear response yBTEX
(

x,c, wfBTEX

)

and yDryW

(

x, c, wfDryW

)

is generated for BTEX emission and dry gas water content
respectively. The analysis is conducted with sample size of
500. The corresponding output distribution of BTEX emission
and dry gas water at the process decision variables as in
optimal condition E in Table 1 is also shown in Figure 1. The
cumulative distribution function of BTEX emission and dry
gas water at the 10 Pareto optimal points as in Table 1 is
shown in Figures 5A,B respectively. In face of uncertain feed
composition, the dehydration unit can fail either in creating
sufficient dryness and/or emitting excess BTEX than what is
obtained from deterministic solution. To find the probability
of failure of the dehydration unit, we have taken the optimal
amount of BTEX emission and dry gas water as obtained from
deterministic solution in Table 1 as the set point. The probability
of failure is estimated by the frequency of time the amount
of emission and dry gas water is equal to or exceeds the limit
specified by the set point.

From BTEX emission, the cumulation distribution at the
10 Pareto optimal points is shown in Figure 5A. From the
distribution, the probability of failure

(

Pf
)

obtained is between
0.46 and 0.47 as shown in Figure 6A. Thus, the reliability
(

1− Pf
)

of the dehydration process to emit BTEX as predicted
by the benchmark obtained from deterministic solution is as
high as 54% and as low as 53% reliable. Similar analysis for dry
gas water content is shown in Figure 5B. Here the probability
of failure

(

Pf
)

is found to be between 0.38 and 0.49 as shown

in Figure 6B. Thus, the reliability
(

1− Pf
)

of the dehydration
process to produce dry gas as per the benchmark is found to
be as high as 62% and as low as 51% reliable. Figures 5A,B
also shows process performance where the dehydration unit
is 95% reliable in terms of BTEX emission and dry gas water
content respectively.

Stochastic Solution
Using ε − constrained method, Pareto optimal points are
generated solving RBRMOO as shown in Equation 15 to
Equation 19 that compares dry gas water content with BTEX
emissions. Table 3 shows the optimization results. For the
Pareto point A, optimization is performed by minimizing BTEX
emission for minimum moisture content or maximum dryness
possible. Thereafter, for the Pareto points B to I, BTEX emission
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TABLE 1 | Optimized process condition for the nine Pareto points.

Pareto points Process variables Process performance (Set points)

Glycol Absorber Reboiler Stripping BTEX Dry gas

circ. rate pressure Temp. gas rate emission water

sgpm psig Fahrenheit MSCFD ton/yr lbm/MMscf

A 9.51 500.00 399.66 100.00 1,213.82 1.92

B 6.79 500.00 399.99 100.00 910.69 2.35

C 4.25 598.12 400.00 100.00 449.45 4.08

D 3.46 600.00 400.00 100.00 353.71 4.98

E 2.96 600.00 400.00 100.00 293.33 5.78

F 2.60 600.00 400.00 100.00 248.50 6.55

G 2.62 600.00 377.81 51.93 245.40 7.13

H 2.29 600.00 377.11 46.71 206.36 7.99

I 2.03 600.00 376.68 42.02 174.27 8.86

J 1.79 600.00 376.34 37.69 147.11 9.77

TABLE 2 | Range of the process variables as used for analysis.

Variable name Variable type Distribution type Distribution characteristics

Glycol circulation rate (sgpm) Decision Uniform ul = 1, uu = 10

Absorber pressure (psig) Decision Uniform ul = 500, uu = 600

Reboiler temperature (Fahrenheit) Decision Uniform ul = 360, uu = 400

Stripping gas rate (MSCFD) Decision Uniform ul = 0, uu = 100

H2S (mole%) Uncertain Normal µ = 1.5748, σ = 1.5748× 0.2

CO2 (mole%) Uncertain Normal µ = 3.31154, σ = 3.31154× 0.2

Methane (mole%) Uncertain Normal µ = 81.7503, σ = 81.7503× 0.2

Ethane (mole%) Uncertain Normal µ = 9.4179, σ = 9.4179× 0.2

Propane (mole%) Uncertain Normal µ = 3.8509, σ = 3.8509× 0.2

Benzene (mole%) Uncertain Normal µ = 0.0331, σ = 0.0331× 0.2

Toluene (mole%) Uncertain Normal µ = 0.0189, σ = 0.0189× 0.2

Ethylbenzene (mole%) Uncertain Normal µ =0.0237, σ = 0.0237× 0.2

o-Xylene (mole%) Uncertain Normal µ = 0.0047, σ = 0.0047× 0.2

m-Xylene (mole%) Uncertain Normal µ =0.0095, σ = 0.0095× 0.2

p-Xyleme (mole%) Uncertain Normal µ =0.0047, σ = 0.0047× 0.2

minimization is obtained by increasing in steps the dry gas water
limit from that obtained at Pareto point A up to 10 lbm/MMscf.
The constraint on the probability of failure to meet the dry
gas water limit Pf _DryW = 0.05. The process conditions at the
optimal points from A to I as listed in Table 3 is simulated in
process simulator in the face of uncertain feed condition and the
set point for probability of failure Pf of 0.05 or 95% reliable is
identified as shown in Figures 7A,B respectively for both BTEX
emission and dry gas water respectively.

The Pareto optimal points as obtained from RBRMOO
stochastic solution and MOO deterministic solution are shown
in Figure 8. From the two types of simulation, the optimal
performance is obtained where the system is 95% reliable in
face of uncertainty. The Pareto front reveals that the dry gas
water decreases at the cost of increased BTEX emission. Natural
gas needs to be dried to have a maximum moisture content 7

lbm/MMscf. Balanced operating conditions obtained from the
RBRMOO as tabulated in Table 3 lies between Pareto points C
and F. The overall optimal solution is at Pareto point E where
BTEX emission (521.10 ton/yr), as well as dry gas water (5.72
lbm/MMscf). From the 500 realizations used for our analysis,
the maximum BTEX emission was found to be 2,302.54 ton/yr,
and that of dry gas water was 14.30 lbm/MMscf. The optimal
operating conditions at the Pareto point “E” when compared with
the maximum values reveals that RBRMOO have decreased dry
gas water and BTEX emission by 60% and 77.37% respectively
and the result is reliable for more that 95% of the time.

Tables 4, 5 shows the probabilistic characteristics of BTEX
emission and dry gas water respectively at the nine Pareto
optimal points as obtained from RBRMOO. At the mean (µ) feed
composition as given in Table 1, the BTEX emission and dry gas
water at the Pareto point E is 313.84 ton/yr and 5.31 lbm/MMscf
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FIGURE 5 | (A) Probability distribution of BTEX emission from uncertain NG process feed compositions generated with 500 sample points at the 10 Pareto optimal

points from deterministic solution. The reliability of the system when BTEX emission is less than the amount as given in Table 1 lies between 0.54 and 0.53%; (B)

Probability distribution of dry gas water content from uncertain NG process feed compositions generated with 500 sample points at the 10 Pareto optimal points from

deterministic solution. The reliability of the system when dry has water is less than the amount as given in Table 1 lies between 0.62 and 0.51%.

respectively. From Table 4 it can be seen that at Pareto point E,
the P95 value of BTEX emission is 521.1 ton/yr. The difference
imply that traditional analysis may misrepresent BTEX emission
from the process by ∼= 39.77%. Similarly, from Table 5 at
Pareto point E, the P95 value of the dry gas water content
is 5.72 lbm/MMscf suggest that traditional analysis approach
may misrepresent dry gas water content of the process by ∼=

7.17%. Thus, traditional analysis has overpredicted the emission
and dryness.

Looking at the statistical characteristics of the distribution of
BTEX emission in Table 4 suggests that at Pareto point E, the
award zone (P5) when the emission is low and the risk zone (P95)
when the emission is high is found to be 213.37 and 521.1 ton/yr
respectively with the standard deviation is as high as 31.40% of
the mean value. On the other hand, the statistical characteristics
of the distribution of dry gas water content in Table 5 suggests
that at Pareto point E the standard deviation of the dry gas water
content is only 5.85% of the mean value.

Value of the Stochastic Solution (VSS)
VSS is estimated by comparing BTEX emission at different
dry gas water content at optimal conditions suggested by
RBRMOO stochastic and MOO deterministic solution. The
difference between optimization as used in Mukherjee and
Diwekar (2021b) obtained at the average value of the uncertain

variable (in the present case feed composition) when compared
with optimization as used in the present work by propagating
the uncertainties through the model and using the probability
of failure as constraint, is defined as the Value of the Stochastic
Solution, VSS. Figure 8 shows the Pareto optimal points as
predicted by stochastic and deterministic optimization. Figure 8
shows the P95 of the two objectives, BTEX emission and dry gas
water content obtained from chemical process simulation at the
optimal conditions. To compare BTEX emission at a specific dry
gas water level as obtained from the stochastic and deterministic
method, interpolation was used using the following equations:

BTEX1 =
[((

DryG1
D − DryG1

s
)

/
(

DryG2
s − DryG1

s
))

×
(

BTEX2
s − BTEX1

s
)]

+ BTEX1
s (23)

BTEXi =
[((

DryGi
D − DryGi

s
)

/
(

DryGi+1
s − DryGi−1

s
))

×
(

BTEXi+1
s − BTEXi−1

s
)]

+ BTEXi
s (24)

for 2 ≤ i ≤ n− 2

BTEXn−1 =
[((

DryGn
D − DryGn

s
)

/
(

DryGn
s − DryGn−1

s
))

×
(

BTEXn
s − BTEXn−1

s
)]

+ BTEXn
s (25)

BTEXn =
[((

DryGn
D − DryGn

s
)

/
(

DryGn
s − DryGn−1

s
))

×
(

BTEXn
s − BTEXn−1

s
)]

+ BTEXn
s (26)
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FIGURE 6 | (A) At the 10 Pareto optimal points as obtained from MOO, the probability of failure when BTEX emission exceeds as given in Table 1 lies between

0.46 ≤ Pf ≤ 0.47; (B) At the 10 Pareto optimal points as obtained from MOO, the probability of failure when BTEX emission exceeds as given in Table 1 lies between

0.38 ≤ Pf ≤ 0.49.
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TABLE 3 | Optimized process condition for the nine Pareto points.

Pareto points Optimum process variables Output from process simulation

Glycol Absorber Reboiler Stripping BTEX emission Dry gas water

circ. rate pressure Temp. gas rate (95% reliable) (95% reliable)

sgpm psig Fahrenheit MSCFD ton/yr lbm/MMscf

A 8.22 500.13 399.99 100.00 1,819.4 2.21

B 5.43 599.37 400.00 100.00 944.87 3.43

C 4.52 599.26 399.99 99.96 779.73 4.07

D 3.79 599.28 400.00 100.00 641.58 4.82

E 3.18 598.33 399.88 100.00 521.1 5.72

F 2.65 600.00 400.00 100.00 412.45 6.81

G 2.16 600.00 400.00 100.00 314.23 8.20

H 1.71 600.00 398.73 100.00 225.03 10.04

I 1.26 587.66 400.00 100.00 147.98 12.44

Pareto point E is the optimal point considering both the objectives.

FIGURE 7 | (A) Probability distribution of BTEX emission from uncertain NG process feed compositions generated with 500 sample points at the nine Pareto optimal

points as obtained from stochastic solution (RBRMOO). The reliability of the system when BTEX emission is less than the amount as given in Table 3 is 0.95%; (B)

Probability distribution of dry gas water from uncertain NG process feed compositions generated with 500 sample points at the nine Pareto optimal points as obtained

from stochastic solution (RBRMOO). The reliability of the system when DryG is less than the amount as given in Table 3 is 0.95%.

Where the superscripts S and D are used to represent
stochastic and deterministic solutions respectively. Dry gas
water and BTEX emission as obtained from stochastic and
deterministic solution and the interpolated value of BTEX as
obtained using Equations 23-26 is shown in Table 6.

The VSS is obtained from the difference of deterministic and
stochastic solution (interpolated) is shown in Figure 9. From the
results we can see that emission savings as much as 83.17 tons
per year.

DISCUSSION

From the Pareto optimal solutions in Table 3, points C
to F are appropriate for plant operation. At these points,
dry gas water content is between 4 to 7 lbm/MMscf as
recommended by Mokhatab et al. (2015) with modest
BTEX emission. RBRMOO is performed by propagating the
uncertainty through the model and setting the probability
of failure as constraint. For reduced moisture level in
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FIGURE 8 | Pareto optimal points predicted by RBRMOO stochastic and MOO deterministic optimization.

TABLE 4 | Characteristics of BTEX emission at the Pareto optimal points as obtained from stochastic solution (ton/yr).

Pareto Mean Median Mode stdev Minimum Maximum P5 P95

A 1,116.80 1,051.40 993.64 362.64 451.04 2,732.70 706.70 1,819.40

B 605.85 574.66 543.16 197.82 251.48 1,717.00 389.51 944.87

C 497.90 471.57 441.51 165.42 206.05 1,454.10 319.22 779.73

D 407.23 387.23 366.23 128.32 169.35 1,209.30 262.18 641.58

E 330.94 314.76 300.45 103.90 138.01 951.88 213.37 521.10

F 263.15 250.6 235.31 81.30 110.59 738.09 170.50 412.45

G 201.95 192.73 182.61 60.86 85.78 547.92 131.61 314.23

H 146.32 140.04 134.16 42.41 63.16 384.74 96.24 225.03

I 97.57 93.87 90.85 27.00 42.91 240.71 64.93 147.98

Pareto point E is the optimal point considering both the objectives.

dry gas, RBRMOO has resulted in identifying optimal
process conditions that mitigates BTEX emission as high
as 83.17 ton/yr when compared to that from deterministic
optimization. At the optimal points C to F, we can also find
that the difference between the stochastic and deterministic
simulations are minimal. On the other hand, when the
constraint on the dry gas water limit is too low or high, the

difference between the stochastic and deterministic simulations
are maximal.

A hybrid method is applied that uses SVR and EACO for
metamodeling, probability of failure analysis and reliability based
robust optimization of TEG dehydration process under feed
composition uncertainty. SVR is a machine learning technique
that is used for two different process model development,
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TABLE 5 | Characteristics of dry gas water content at the Pareto optimal points as obtained from stochastic solution (lbm/MMscf).

Pareto Mean Median Mode stdev Minimum Maximum P5 P95

A 2.02 2.04 2.08 0.14 1.41 2.35 1.77 2.21

B 3.17 3.20 3.25 0.18 2.34 3.60 2.85 3.43

C 3.76 3.80 3.85 0.22 2.76 4.27 3.37 4.07

D 4.46 4.50 4.56 0.26 3.27 5.06 3.99 4.82

E 5.30 5.34 5.41 0.31 3.89 6.00 4.75 5.72

F 6.32 6.38 6.45 0.35 4.68 7.14 5.68 6.81

G 7.63 7.70 7.81 0.41 5.70 8.59 6.88 8.20

H 9.37 9.45 9.57 0.49 7.08 10.49 8.48 10.04

I 11.62 11.72 11.87 0.60 8.82 12.99 10.53 12.44

Pareto point E is the optimal point considering both the objectives.

TABLE 6 | Interpolated values of BTEX emission.

Pareto points (i) Stochastic solution Deterministic solution Stochastic solution (Interpolated)

Dry gas water BTEX emission Dry gas water BTEX emission BTEX emission

(lbm/MMscf) (ton/yr) (lbm/MMscf) (ton/yr) (ton/yr)

1 2.21 1,819.4 2.05 1,972.8 1,934.09

2 3.43 944.87 2.52 1,536.7 1,453.53

3 4.07 779.73 4.31 732.07 727.36

4 4.82 641.58 5.27 575.21 571.04

5 5.72 521.1 6.13 475.4 473.89

6 6.81 412.45 6.93 402.73 402.44

7 8.2 314.23 7.53 397.29 353.11

8 10.04 225.03 8.47 330.85 286.59

9 12.44 147.98 9.37 279.11 246.54

10 10.35 232.37 215.08

one for dry gas water content and the other for BTEX
emission. Reliability based robust multi-objective optimization
(RBRMOO) of the control variables in the input space of the SVR
models is performed using EACO. Here, the ensemble average of
BTEX emission is minimized with constraint on the probability
of failure to meet the threshold of dry gas water content using
ε − constraint method. The hybrid approach involving SVR and
EACO for RBRMOO to obtain a Pareto optimal solution is novel.
The method is applicable for an exclusive historical process data-
based modeling and optimization under uncertainty where the
predicted process performance is reliable.

While structural reliability assessment in civil construction
and quality reliability analysis and reliability-based optimization
in manufacturing process is relatively common, reliability
assessment as well as reliability based chemical process
performance analysis as well as optimizing the process using
reliability constraint is not a prevalent practice. Developing a
robust and reliability-based optimization framework presented
in this work is key to ensure safer, more reliable and efficient
chemical process operation that can support chemical engineers
as they seek to improve plant safety, reliability in environmental
and economic performance. Reliability based robust process
performance optimization can increase the prospect for early

fault detection by assessing the operational specifications in real
time. The methodology presented in this work is one of those
key steps necessary to implement traditional process simulators
as digital twins. Availability of the optimal performance measures
during process operation would greatly assist operators and other
stake holders to ensure reliable operation. The results from this
work support the usage of this framework in ensuring reliable
performance of chemical processes under uncertainty. Although
this paper focuses on natural gas dehydration plant, the proposed
approach is also applicable for reliability based optimal operation
of typical engineering process system.

CONCLUSIONS

This work has addressed optimal operation of NG dehydration
process under feed composition uncertainty. The optimal
control variables and the assessment of reliability in predicting
process performance under uncertain feed composition has
been addressed. Traditionally, optimal operating condition of
chemical process system are obtained using first principle-
based model of the mass and energy balance. A constant
flow rates and concentration is assumed. In contrary, process
generally encounter fluctuations especially in the feed streams
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FIGURE 9 | The difference between deterministic and stochastic optimization solution shown by the Value of the Stochastic Solution (VSS).

with uncertain flow rates and/or concentration. Target of
emission and dehydration set has a limited probability to be
fulfilled. A novel data driven approach is proposed that applies
the principle of reliability under uncertainty to enhance NG
dehydration reliability. Under uncertain feed composition, a
limited reliability is observed to meet the benchmark set by
deterministic optimization.

In the present work, reliability based robust multi-objective
optimization framework has been developed. The optimal
condition promises reliable operation of NG dehydration
process under uncertainty of the system. The present work
shows how to theoretically decide on the set point under
uncertain inlet composition for enhanced reliability of the
dehydration operation. Traditionally, NG processing operates
under uncertain feed composition distributed around a median
value. In case some changes are incorporated either in the
mean feed composition or other process condition, analysis as
proposed can be performed to readjust the optimal process
condition to ascertain reliable operation of the system.
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