
TYPE Methods
PUBLISHED 06 January 2023
DOI 10.3389/frsus.2022.1048606

OPEN ACCESS

EDITED BY

M. A�an Badar,
Indiana State University, United States

REVIEWED BY

Giorgos Demetriou,
École des ponts ParisTech (ENPC),
France
Bikash Koli Dey,
Hongik University, South Korea

*CORRESPONDENCE

Jason M. Pittman
jason.pittman@umgc.edu

SPECIALTY SECTION

This article was submitted to
Sustainable Supply Chain
Management,
a section of the journal
Frontiers in Sustainability

RECEIVED 19 September 2022
ACCEPTED 12 December 2022
PUBLISHED 06 January 2023

CITATION

Pittman JM and Alaee S (2023) A green
scheduling algorithm for cloud-based
honeynets. Front. Sustain. 3:1048606.
doi: 10.3389/frsus.2022.1048606

COPYRIGHT

© 2023 Pittman and Alaee. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

A green scheduling algorithm
for cloud-based honeynets

Jason M. Pittman1* and Shaho Alaee2

1Cybersecurity and Information Technology, University of Maryland Global Campus, Adelphi, MD,
United States, 2AI Futures, Booz Allen Hamilton, McLean, VA, United States

Modern businesses leverage cloud architecture to achieve agile and

cost-e�ective technology services. Doing so comes at the expense of the

environment though cloud technologies consume large quantities of energy.

Cloud energy consumption is concerning in light of global climate trends

and dwindling fossil fuel reserves. Consequently, increasing attention is

given to sustainable and green cloud computing, which seeks to optimize

compute-resource allocation and usage of virtualized systems and services.

At the same time, progress toward sustainable and green cloud technology is

impeded because as more enterprises deploy services into cloud architecture,

cybersecurity threats follow. Unfortunately, cybersecurity technologies are

optimized for maximum service overwatch without regard for compute

resources and energy. This negates the energy reduction achieved in

recent sustainable technology advancements. In this work, a generalized

cybersecurity honeynet scheduling algorithm is proposed, in which power,

CPU, and network overhead are operationalized to increase sustainability while

balancing defensive mechanisms. The work describes both the mathematical

foundation for the algorithm and a pseudocode proof of concept.

KEYWORDS

green, sustainability, energy, scheduling, algorithm, cloud, honeynet

1. Introduction

Public cloud architectures such as AWS, Microsoft Azure, and Google Cloud

represent agile and cost-effective platforms for businesses to deploy infrastructure and

services. As of 2020, 94% of enterprise computing occurs in the cloud (Galov, 2022).

Clearly, the growth of cloud services, and enterprise adoption thereof, has beenmeteoric.

Yet, while the cloud offers significant savings compared to most on-premise solutions,

cloud technologies consume large quantities of energy (Mehta et al., 2021; Ohwo and

Thomas, 2021). Consequently, increasing attention is given to sustainable and green

cloud computing, which seeks to optimize compute-resource allocation and usage of

virtualized systems and services (Yadav et al., 2018; Ohwo and Thomas, 2021). Much

of the related literature attempts to optimize cloud orchestration or schedulers for green

cloud computing.

Frontiers in Sustainability 01 frontiersin.org

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org/journals/sustainability#editorial-board
https://www.frontiersin.org/journals/sustainability#editorial-board
https://www.frontiersin.org/journals/sustainability#editorial-board
https://www.frontiersin.org/journals/sustainability#editorial-board
https://doi.org/10.3389/frsus.2022.1048606
http://crossmark.crossref.org/dialog/?doi=10.3389/frsus.2022.1048606&domain=pdf&date_stamp=2023-01-06
mailto:jason.pittman@umgc.edu
https://doi.org/10.3389/frsus.2022.1048606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frsus.2022.1048606/full
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

Moreover, as the enterprise has shifted to cloud architecture,

cybersecurity threats have followed (Ohwo and Thomas, 2021).

Along with other cybersecurity infrastructure, honeypots and

honeynets have made the migration to the cloud (Brown

et al., 2012; Hamad and Omara, 2016; Kelly et al., 2021).

Honeypots are important tools in research and practice. As

intentionally vulnerable systems, honeypots provide researchers

with a methodology to collect attacker techniques, tactics,

and processes (Chin et al., 2009). Unfortunately, cybersecurity

technologies are optimized for maximum service overwatch

without regard for compute resources and energy. This

negates the energy reduction achieved in recent sustainable

technology advancements.

It is not known how much energy honeynets consume.

Accordingly, there is a problem insofar as there are no

generalized green computing algorithms applicable to honeynets

(More and Ingle, 2017). Furthermore, existing honeynet

scheduling algorithms optimize toward maximum service

exposure and uptime (Kong et al., 2020). As a consequence, the

existing scheduling mechanisms do not consider sustainability

a core operational principle. Accordingly, the purpose of this

work is to demonstrate a potential generalized green scheduling

algorithm for honeynets.

2. Related work

There are six components in the conceptual framework

supporting this research. The necessary background to

contextualize the problem is broad and deep because of the

number of fields involved. As such, we summarize seminal and

timely literature in each of the components while attempting

to avoid assumptions in content knowledge. At the same time,

we have organized the related work around the common

theme of cloud-based honeynets and sustainable, green cloud

architecture schedulers.

2.1. Honeypots and honeynets

A honeypot is a computing system intended to attract

adversaries and designed to be attacked (Zakaria and Kiah,

2013). These purposefully vulnerable systems are qualitatively

categorized based on traits such as interaction level (Campbell

et al., 2015). In this sense, there are three overarching categories

of honeypots: low, medium, and high interactions (Moore

and Al-Nemrat, 2015). What services the honeypot emulates

and the depth of the emulation constitute the interaction

type. Specifically, low-interaction honeypots emulate individual

services (e.g., SSH) and limited emulated functionality. A

medium-interaction honeypot hasmore interactivity than a low-

interaction honeypot but similarly offers a few services only.

High interaction mimics full computing systems.

Each type has associated advantages and disadvantages

(Pittman et al., 2020). Perhaps, the most noteworthy

disadvantage common to all honeypots is that the deceptive

technology is only as good as the traffic it is able to capture.

Of course, the ability to capture traffic is, in part, coupled with

the service or services offered by the honeypot. To address the

capture dependency, researchers developed honeynets.

A honeynet is a collection of honeypots running on the same

or adjacent network segments (Fan et al., 2015). Honeynets offer

a more diverse application service set than a single honeypot.

The aim is to capture more traffic. Moreover, honeynets

offer inter-networking capture between discrete honeypots

implemented across the honeynet and thus have additional

depth than a honeypot.

Honeynets are similar to honeypots insofar as honeynets are

also categorized according to type. The types—low, medium,

and high interactions—denote interaction levels identical to

honeypots. Furthermore, because honeynets offer multiple

honeypots on the deception network, there is an additional

hybrid type. Hybrid honeynets are simply two or more

honeypot types (Fan et al., 2015; Bao et al., 2018) represented

in the honeynet. More specifically, a honeynet is minimally

two honeypots and a controller-logging system. Networking

equipment is implicit to honeynet architectures but nominally

includes a screening router or firewall (Fan et al., 2015; Bao

et al., 2018). Finally, the honeynet controller-logging system

itself operates similarly to a high-interaction honeypot because

of the need to screen and direct incoming network traffic.

Honeynets introduce a different set of disadvantages.

Foremost, honeynets are difficult to deploy, configure, and

maintain (Fan et al., 2015; Meng et al., 2017; Franco et al.,

2021). As an analogy, imagine scaling system and network

administration overhead from a single personal computer to a

small business office. Furthermore, honeynets consume more

compute resources and power compared with a honeypot.

This is evidenced by resource management being one of six

deployment architecture requirements (Chin et al., 2009).

The latest honeynet literature describes innovations with

deployment architectures. These innovations either seek tomake

honeynets behave more intelligently (Fan et al., 2015; Fraunholz

et al., 2017; Meng et al., 2017) or to improve compute-resource

management in some fashion (Kong et al., 2020; Washofsky,

2021). Thus, honeypots and honeynets are migrating to cloud

architecture (Brown et al., 2012; Hamad and Omara, 2016; Kelly

et al., 2021).

2.2. Honeynet deployment architectures

Honeynet deployment architectures can be described by

their generation. Generations i, ii, and iii encompass the

transition from physical machines to virtualization (Abbasi and

Harris, 2009). The post-generation iii architectures evolved from

Frontiers in Sustainability 02 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

host-based virtualization to become hybrid or next-generation

implementations. Research (Brown et al., 2012; Kumar et al.,

2012; Fan et al., 2019) shows the next-generation honeynets

consist of virtual systems or containers in a cloud architecture

and software-defined networking (SDN). Based on sample

honeynet architectures (Fan et al., 2015; Meng et al., 2017; Bao

et al., 2018; Kong et al., 2020; Franco et al., 2021), the minimum

number of systems in a honeynet is five—a low-interaction

honeypot, a high-interaction honeypot, the honeynet controller

and logging facility, a screening router, and SDN controller.

The combination of cloud architecture and SDN enables

honeynet deployment architectures to address the deployment,

configuration, and maintenance issues older honeynet

generations experienced (Kyung et al., 2017). While such an

approach has demonstrated success, the trade-off has been in

cloud-based compute resources. Processing power and virtual

hardware requirements are high for honeynets. The high

compute-resource utilization is exacerbated by the need for

honeynets to optimize toward maximum service exposure and

uptime (Kong et al., 2020). Fortunately, elastic and dynamic

resource allocation is a cloud computing specialty.

2.3. Cloud computing

The idea of cloud computing is to distribute compute

resources and persistent data across geographic locations (Dillon

et al., 2010). Doing so leverages cost-effective compute models

and offers a guarantee of ubiquitous, always-on information

technology. According to NIST (Mell and Grance, 2011), such

distribution can be categorized in three services: software,

platform, or infrastructure. Honeynets are implemented as

infrastructure as a service (IaaS) (Kelly et al., 2021) because of the

need to configure processors, memory, storage, and networking

components for high interaction honeypots.

While cloud computing accounts for 94% of enterprise IT

workloads (Kelly et al., 2021), the technology is not free of

challenges. Early research (Dillon et al., 2010; Daryapurkar and

Bagde, 2014) suggested platform security and cost modeling

are the biggest challenges. However, recent work demonstrates

a consensus on performance optimization and sustainability

(Abd El-Mawla and Ibrahim, 2022; Khan et al., 2022) as

significant challenges.

2.4. Workload scheduling mechanisms

Workload scheduling is necessary for performance

optimization because compute-resource utilization rises

sharply as task parallelism increases. There are two scheduling

mechanisms to consider in this conceptual framework. The first

is related to general cloud workload scheduling. The second is

honeynet-specific workload scheduling in IaaS platforms.

2.4.1. Cloud scheduling

Regardless of what services a cloud architecture provides—

infrastructure, application, or platform—there is a need to do

so with a high degree of performance. Thus, when a user

or adjacent system initiates a process in the cloud, the cloud

scheduler selects available compute resources and allocates the

task to those resources (Kumar et al., 2019). The task scheduler

mechanism demonstrates a similar concept to CPU scheduling

of user or system process requests against the kernel and

hardware resources. Such an analogy is appropriate because

single metric scheduling (e.g., CPU utilization) has been the core

of cloud task scheduling since the beginning.

It should not be controversial to suggest single metric

scheduling algorithms are not as effective at optimizing

performance as multi-metric algorithms. Moreover, the breadth

of research investigating various task-scheduling algorithms

indicates the criticality of the mechanism. The plethora of

approaches to task scheduling also shows how balancing

optimization and implementation is challenging. Overall, the

differences between multi-metric scheduling mechanisms are a

combination of what metrics are amalgamated and how tasks

are allocated to compute resources based on those metrics.

For example, genetic algorithm-based task scheduling

leverages evolutionary recombination phases achieve high

optimization for performance to the detriment of task latency

(Zhao et al., 2009). Comparatively, particle swarm scheduling

does not induce task latency but does exhibit load balancing

problems despite having high performance (Awad et al., 2015).

Other multi-metric algorithms, such as ant colony or cost-based,

share similar trade-offs. Yet, none of these task-scheduling

algorithms incorporate sustainability metrics.

To that end, workload optimization and scheduling in the

context of sustainable cloud resource management research are

nascent topics. Cutting-edge work has focused on combining

advanced learning algorithms with the scheduling of application

services tasks, virtual machine elasticity, and compute-resource

allocation. Furthermore, research (Arunarani et al., 2019)

suggests the nature-inspired algorithms hold the most promise

and need to be further explored.

2.4.2. Honeynet scheduling

Insofar as a honeynet is cloud based, it is constrained by

the underlying cloud scheduling algorithm and must implement

a higher-layer task scheduler for the routing of network traffic

into its honeypots. The reliance on network traffic fosters a

sensitivity to both connection and operational latency. Thus, the

literature surrounding cloud-based honeynet scheduling focuses

on minimizing TCPIP overhead while optimizing compute-

resource allocation to the honeypot virtual machines. Hence,

software-defined networking (SDN) has emerged as a honeynet

scheduling mechanism (Han et al., 2016; Kyung et al., 2017;

Meng et al., 2017) attempting to optimize the honeynet network

Frontiers in Sustainability 03 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

layer. SDN, in this context, allows for dynamic spin-up of

specific low- and high-interaction honeypots based on the

incoming network traffic. The advantage is that a single SDN

controller can orchestrate connections for the entire honeynet,

and control is centralized (Han et al., 2016; Meng et al., 2017). In

this way, only the most desirable ingress traffic is directed to the

relevant honeypot.

In addition to task scheduling for network traffic, honeynets

are also subject to compute-resource task scheduling constraints.

Existing research defines resource scheduling as including

compute resources (i.e., CPU and RAM) (Bao et al., 2018).

Resource task scheduling is critical to honeynets because

the virtual machine honeynets must always be accessible

to maximize capture availability. Obviously, when maximally

capturing attack traffic, the honeynet may require significant

compute resources under millisecond demand (Bao et al.,

2018; Kong et al., 2020). Alternatively, the honeynet idles with

minimal compute-resource expenditure.

Such volatility strains the underlying cloud architecture

task scheduler (Kumar et al., 2019; Kelly et al., 2021). This

task scheduler strain results from the two layers—cloud and

honeynet—not being interconnected. At the same time, neither

the cloud scheduler nor the honeynet scheduler are natively

oriented toward sustainability.

2.5. Green computing

The green computing initiative is a reaction to cloud data

centers consuming up to 4% of global electrical power (More

and Ingle, 2017; Mehta et al., 2021). The initiative aims to

reduce energy consumption by implementing sustainability

at various levels of computing infrastructure (Kurp, 2008),

particularly the software enabling cloud architectures. The focus

on software is reasonable, given that servers—compute nodes

and virtual machines alike—make up approximately 70% of

cloud power allocation (More and Ingle, 2017). Moreover, the

highest consumer of energy within cloud server architecture is

the CPU (Abd El-Mawla and Ibrahim, 2022; Khan et al., 2022).

Second to the processor, network interface cards (NICs) can

consume up to 13% of the total power drawn by the system.

Software layer green computing research can be categorized

as consolidation (Srikantaiah et al., 2008), scaling (Dargie

and Schill, 2012), and scheduling (Merkel et al., 2010). A

consolidation is an overarching approach not unlike the concept

of batch processing or network communications insofar as

fewer, larger bundles of consolidated operations are more

efficient to process than, smaller operations. Scaling aims

to optimize energy efficiency in the electronics components,

including CPU frequency related to voltage from the power

subsystem. Green task schedulers must be at least energy

consumption and thermal aware (Abd El-Mawla and Ibrahim,

2022). The literature also explicitly calls for such schedulers to

maintain intercommunication with the control plane capable

of dynamic virtual machine spin-up, spin-down, and migration

(Abid et al., 2020; Mehta et al., 2021).

2.6. Green schedulers

Similar to honeypots, green computing schedulers can

be described as low level or high level. Low-level green

schedulers attempt to optimize operating system processes

based on energy consumption in the underlying hardware. The

literature (Dargie and Schill, 2012; More and Ingle, 2017; Abid

et al., 2020) describes low-level schedulers as dynamic process

scaling mechanisms. High-level green schedulers operate as

load managers within the cloud compute fabric and within

an operating system. In this context, green schedulers can be

understood as controllers seeking to optimize which cloud virtual

machines are powered on or off (Srikantaiah et al., 2008; Merkel

et al., 2010; Mehta et al., 2021). Thus, high-level schedulers

implement the green computing principles of consolidation and

scheduling, whereas low-level schedulers behave according to

the scaling principle.

Unfortunately, there are no studies investigating a

comprehensive resource allocation techniques workload task

scheduling and energy consumption in terms of “...cost, resource

utilization, energy, workload, execution time, response time,

user satisfaction, and QoS” (Abid et al., 2020, p. 2817). More

notably, the literature recognizes increases in sustainability at

the green compute layer necessarily limit cloud computing

processing capabilities (Abid et al., 2020; Mehta et al., 2021).

The trade-off causes a great deal of friction with honeynet

implementations based on the honeynet’s usage profile and

operational mission.

3. Mathematical foundation and
proposed algorithm

The green scheduling algorithm for cloud-based honeynets

takes into consideration five sustainability characteristics. The

characteristics were extracted from the cloud, honeynet, and

green computing literature. We first operationalized these into

discrete mathematical foundational equations. Then, we use

critical elements from the equations to aid in the pseudocode

description of the green honeynet scheduler algorithm.

3.1. Mathematical foundation

3.1.1. Resources

There are two sets of resources in the foundation of the

proposed algorithm. First, there are the resources in the cloud

Frontiers in Sustainability 04 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

architecture. The cloud consists ofN compute nodes. Each cloud

compute node can be described as follows:

Ci = {CPU,MEM,NET} (1)

where Ci is the set of cloud compute node resources

consisting of a CPU, RAM, and network. The proposed

algorithm incorporates the cloud hardware because of the

implicit relation to virtualized compute resources. In simple

terms, if there are no cloud hardware resources available to

service a task, the task cannot be routed to the virtualized system

regardless of the latter’s resource utilization.

Second, there are virtual machine resources comprising the

honeynet. At a minimum, the virtual compute resources are, in

a three-to-one relation to the cloud hardware resources. In other

words, there are at least three virtual machines running on a

single physical cloud compute node to form a honeynet. These

can be described as follows:

Ch = {vCPU, vMEM, vNET} (2)

Finally, the proposed algorithm must be aware of the

maximum resources available on a given individual compute

node ci ∈ Ci such that the cloud compute node is optimally

utilized for the honeynet. This can be described as follows:

ci ∈ Ci|sum(ch ∈ Ch) <= max(ci) (3)

3.1.2. Tasks

Any compute instruction sent by the cloud architecture to

the honeynet is encoded as a task. Likewise, instructions from

the honeynet to the cloud architecture are tasks. The algorithm

does not need to differentiate between task directions because

the green honeynet scheduler multiplexes all tasks. Thus, we can

simply state the set of tasks in the following form:

T = {t1, t2, t3...tn} (4)

3.1.3. Network interfaces

The honeynet requires at least seven NICs—one physical

and six virtual—based on the minimum number of cloud

compute nodes and virtual systems involved. The virtual NICs

are attached in pairs to virtual machine honeypots as chNa,Nb.

These NICs impact power consumption, as discussed, and

also impact honeynet latency negatively. Honeynet latency is

considered as a sum of individual honeypot latencies as follows:

L = {(chNa,Nb1)+ (chNa,Nb2)+ (chNa,Nb3)...(chNa,Nbn)}

(5)

3.1.4. Power

Virtual machine honeypots in the honeynet can be in one of

three states: active, sleep, and off. This can be expressed as Sa, Ss,

and So, respectively. The Sa state can be further expanded into

running as Sar or Sai. As well, transitions between states must be

incorporated into the algorithm because of the spike in compute

resources incurred during any such operations. The set of state

transitions can be expressed as follows:

X = {(Sa → Ss), (Sa → So), (Ss → Sa), (Ss → So), (So → Sa)}

(6)

Furthermore, the algorithm considers the collective baseline

power consumption through the sum of all active and sleeping

honeynet virtual machines. This can be expressed as follows:

P(Ci) = {P(Sar)+ P(Sai)+ P(Ss)} (7)

3.1.5. Utilization

Utilization is an expression of the power consumed as

observable through task allocation to a compute resource. From

the perspective of the honeynet controller, a green algorithm

monitors honeynet utilization according to the summation

below. Functionally, utilization has a threshold d which serves

as a demarcation for green power consumption.

Uch =

T∑

j=1

cj,d (8)

The algorithm also has a reference lookup for power

consumption associated with T, which is accessible through

the utilization instantiation of UT . Such allows the algorithm

to determine whether an incoming task can be processed

optimally by an active, running honeypot without exceeding the

green threshold d.

3.2. The algorithm

The aforementioned expressions can be operationalized into

a green honeynet task-scheduling algorithm (Algorithm 1). In

simple terms, incoming tasks are mapped from a cloud compute

node to a honeypot in the honeynet when the honeypot has

available compute resources. Otherwise, if there is honeypot in

an off state, the honeynet should make it active and map the

incoming task onto the honeypot.

When this is not possible, the honeynet checks whether the

cloud compute node has enough compute resources available

to support an additional virtual machine. If so, the honeynet

will request a new honeypot virtual machine be created and

map the task onto the new honeypot. When the current cloud

Frontiers in Sustainability 05 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

compute node is near the threshold, the honeynet requests

the new honeypot virtual machine to be moved to a different

compute node in the cloud infrastructure.

In all cases, the honeynet returns an updated compute

resources utilization value.

1: for all t ∈ T do

2: while (ci ∈ Ci ∧ ch ∈ Ch) ∈ Ssr do

3: if (UT < Uch ) and (L is True) then

4: t → ch

5: return Uch

6: else

7: if (So → Sa) then

8: t → ch

9: return Uch

10: else if P(ci) < d then

11: new ch(Sar) → Ch ⇒ ci ∈ Ci

12: t → ch

13: return Uch

14: else if P(ci) ≥ d then

15: move ch(Sar to ci ∈ Ci

16: t → ch

17: return Uch

18: end if

19: end if

20: end while

21: end for

Algorithm 1. Green honeynet task scheduler.

4. Conclusion

Cloud services have expanded exponentially over the past

decade. However, cloud technologies consume large quantities

of energy (Mehta et al., 2021; Ohwo and Thomas, 2021).

Consequently, research is increasingly exploring sustainable

and green cloud computing options. More specifically, there is

growing interest in optimizing cloud orchestration or schedulers

for green cloud computing.

Furthermore, as enterprises have shifted to cloud

architecture, cybersecurity threats have followed (Ohwo and

Thomas, 2021). Defensive cybersecurity technologies such as

honeypots and honeynets have followed the migration (Brown

et al., 2012; Hamad and Omara, 2016; Kelly et al., 2021). This is

because honeypots are important tools in research and practice.

Unfortunately, cybersecurity technologies are optimized for

maximum service overwatch without regard for compute

resources and energy. This negates the energy reduction

achieved in recent sustainable technology advancements.

Accordingly, we presented a mathematical foundation

for a green honeynet scheduling algorithm. The foundation

considered five sustainability characteristics as evidenced in the

related work. Notably, the characteristics were cloud compute

node and honeynet node resources, tasks, network interfaces,

power, and utilization. We used those characteristics as integral

elements in a conceptual green honeynet scheduler consisting

of 21 steps.

Overall, the green honeynet scheduling algorithm may

be of theoretical significance to researchers exploring

mechanisms for sustainability and green computing. The

proposed green algorithm for honeynet scheduling is illustrative

of one possible research pathway which investigators can

use to build on. In addition, this work may hold practical

significance for cloud and cybersecurity engineers interested

in a solution to schedule resource allocation sustainably.

From a managerial perspective, a successful implementation

of the proposed algorithm would have practical significance

insofar as operational costs are reduced through sustainable,

green operations.

This work is based on four assumptions. Foremost, we

assume a net positive sustainability impact can be made

in honeynets operating in a cloud architecture. While there

is a healthy literature basis for sustainability in cloud and

cloud task schedulers, this work is the first to describe how

sustainability standards might be implemented for honeynet

scheduling. Furthermore, the proposed scheduling algorithm

is assumed to incorporate the correct set of variables related

to sustainability and green computing. It is possible for

extraneous factors to be present in the cloud architecture

which are not encapsulated in the proposed algorithm. Along

those lines, we assume honeypot resource utilization correlates

positively with attack detection and capture. Finally, we assume

the introduction of the scheduling algorithm does not itself

increase resource utilization significantly. Future work, if

conducted, might bear out the findings necessary to resolve

these assumptions.

Given the proposed algorithm and the stated assumptions,

this work, as well as any future work, is limited in

three important ways. For instance, existing cloud

architecture and algorithm design serve as limitations. If

the cloud architecture was to change, say to limit network

overhead for sustainability reasons, not only would the

algorithm design potentially not function appropriately

but also a honeynet may not be possible at all. Another

limitation affecting this work is the lack of existing

research in applying sustainability and green computing

standards to cybersecurity tools in general and honeynets

specifically. A final limitation, assuming future work is

conducted to bring the algorithm to practical fruition,

is the availability of proper instrumentation to measure

sustainable effectiveness.

Taking the assumptions and limitations into account, future

work may explore the potential relationship between attack

detection and capture with the goal of discovering sustainable

Frontiers in Sustainability 06 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

optimizations in the capture mechanisms. In addition, while

a honeynet depends on having constant service exposure,

individual honeypots should only be active when there is an

attack to capture. There may be future work possible here in

reducing the power consumption overhead by turning on a

honeypot or reviving one from a sleep state. Another suggestion

for future work is for optimizations in the honeynet controller

and logging system. This system cannot be reasonably kept in

a sleeping state or off. Some areas for investigation include

more efficient signaling architectures, condensed logging to

reduce network overhead, and learning algorithms for optimized

honeypot control. Each area may be investigated through

experimentation in future studies. Finally, future exploration

of how the algorithm proposed in this research operates in

various cloud platforms (e.g., AWS and Azure) may be of

benefit to cloud and cybersecurity practitioners. Such work

could include resource allocation profiling of the scheduling

algorithm itself to ensure its execution does not adversely

impact sustainability.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

JP and SA contributed to the conception and design of the

study and wrote the equations and pseudocode. JP wrote the first

draft of the manuscript. SA was responsible for the related work

analysis. Both authors contributed to the manuscript revision

and read and approved the submitted version.

Conflict of interest

SA was employed by Booz Allen Hamilton.

The remaining author declares that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abbasi, F. H., and Harris, R. (2009). “Experiences with a generation III virtual
honeynet,” in 2009 Australasian Telecommunication Networks and Applications
Conference (ATNAC) (IEEE), 1–6.

Abd El-Mawla, N., and Ibrahim, H. (2022). Green Cloud Computing (GCC),
Applications, Challenges and Future Research Directions. Available online at:
https://njccs.journals.ekb.eg (accessed December 11, 2022).

Abid, A., Manzoor, M. F., Farooq, M. S., Farooq, U., and Hussain, M. (2020).
Challenges and issues of resource allocation techniques in cloud computing. KSII
Trans. Internet Inform. Syst. 14, 2815–2839. doi: 10.3837/tiis.2020.07.005

Arunarani, A., Manjula, D., and Sugumaran, V. (2019). Task scheduling
techniques in cloud computing: a literature survey. Fut. Generat. Comput. Syst. 91,
407–415. doi: 10.1016/j.future.2018.09.014

Awad, A., El-Hefnawy, N., and Abdel_kader, H. (2015). Enhanced particle swarm
optimization for task scheduling in cloud computing environments. Proc. Comput.
Sci. 65, 920–929. doi: 10.1016/j.procs.2015.09.064

Bao, N. K., Ahn, S. W., and Park, M. (2018). “An elastic-hybrid honeynet for
cloud environment,” in CSEIT, NCS, SPM, NeTCoM, 117127.

Brown, S., Lam, R., Prasad, S., Ramasubramanian, S., and Slauson, J. (2012).
Honeypots in the Cloud. Wisconin: University of Wisconsin-Madison, 11.

Campbell, R. M., Padayachee, K., and Masombuka, T. (2015). “A survey
of honeypot research: trends and opportunities,” in 2015 10th International
Conference for Internet Technology and Secured Transactions (ICITST) (IEEE),
208–212.

Chin, W., Markatos, E. P., Antonatos, S., and Ioannidis, S. (2009).
“Honeylab: large-scale honeypot deployment and resource sharing,” in 2009 Third
International Conference on Network and System Security (IEEE), 381–388.

Dargie, W., and Schill, A. (2012). “Analysis of the power and hardware resource
consumption of servers under different load balancing policies,” in 2012 IEEE Fifth
International Conference on Cloud Computing (IEEE), 772–778.

Daryapurkar, J. U., and Bagde, K. G. (2014). Cloud computing: issues and
challenges. Int. J. Recent Innov. Trends Comput. Commun. 2, 770–773.

Dillon, T., Wu, C., and Chang, E. (2010). “Cloud computing: issues and
challenges,” in 2010 24th IEEE International Conference on Advanced Information
Networking and Applications (IEEE), 27–33.

Fan, W., Du, Z., Smith-Creasey, M., and Fernandez, D. (2019). Honeydoc: an
efficient honeypot architecture enabling all-round design. IEEE J. Select. Areas
Commun. 37, 683–697. doi: 10.1109/JSAC.2019.2894307

Fan, W., Fernández, D., and Du, Z. (2015). “Adaptive and flexible virtual
honeynet,” in International Conference on Mobile, Secure and Programmable
Networking (Springer), 1–17.

Franco, J., Aris, A., Canberk, B., and Uluagac, A. S. (2021). A survey
of honeypots and honeynets for internet of things, industrial internet of
things, and cyber-physical systems. IEEE Commun. Surv. Tutor. 23, 2351–2383.
doi: 10.1109/COMST.2021.3106669

Fraunholz, D., Zimmermann, M., and Schotten, H. D. (2017). “An adaptive
honeypot configuration, deployment and maintenance strategy,” in 2017 19th
International Conference on Advanced Communication Technology (ICACT)
(IEEE), 53–57. doi: 10.23919/ICACT.2017.7890056

Galov, N. (2022). Cloud Adoption Statistics for 2022. Web Tribunal. Available
online at: https://webtribunal.net/blog/cloud-adoption-statistics/#gref (accessed
April 06, 2022).

Hamad, S. A., and Omara, F. A. (2016). Genetic-based task scheduling algorithm
in cloud computing environment. Int. J. Adv. Comput. Sci. Appl. 7, 550–556.
doi: 10.14569/IJACSA.2016.070471

Han, W., Zhao, Z., Doupé, A., and Ahn, G.-J. (2016). “Honeymix: toward
SDN-based intelligent honeynet,” in Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks and Network Function
Virtualization, 1–6.

Frontiers in Sustainability 07 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://njccs.journals.ekb.eg
https://doi.org/10.3837/tiis.2020.07.005
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1109/JSAC.2019.2894307
https://doi.org/10.1109/COMST.2021.3106669
https://doi.org/10.23919/ICACT.2017.7890056
https://webtribunal.net/blog/cloud-adoption-statistics/#gref
https://doi.org/10.14569/IJACSA.2016.070471
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Pittman and Alaee 10.3389/frsus.2022.1048606

Kelly, C., Pitropakis, N., Mylonas, A., McKeown, S., and Buchanan, W. J. (2021).
A comparative analysis of honeypots on different cloud platforms. Sensors 21, 2433.
doi: 10.3390/s21072433

Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M., and Buyya, R. (2022).
Machine learning (ml)—centric resource management in cloud computing:
a review and future directions. J. Netw. Comput. Appl. 2022, 103405.
doi: 10.1016/j.jnca.2022.103405

Kong, T., Wang, L., Ma, D., Xu, Z., Yang, Q., Lu, Z., and Lu, Y. (2020).
“Automated honeynet deployment strategy for active defense in container-
based cloud,” in 2020 IEEE 22nd International Conference on High Performance
Computing and Communications; IEEE 18th International Conference on
Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS) (IEEE), 483–490.

Kumar, M., Sharma, S. C., Goel, A., and Singh, S. P. (2019). A comprehensive
survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. 143,
1–33. doi: 10.1016/j.jnca.2019.06.006

Kumar, S., Singh, P., Sehgal, R., and Bhatia, J. (2012). Distributed honeynet
system using GEN III virtual honeynet. Int. J. Comput. Theory Eng. 4, 537.
doi: 10.7763/IJCTE.2012.V4.527

Kurp, P. (2008). Green computing. Commun. ACM 51, 11–13.
doi: 10.1145/1400181.1400186

Kyung, S., Han, W., Tiwari, N., Dixit, V. H., Srinivas, L., Zhao, Z., et al. (2017).
“Honeyproxy: design and implementation of next-generation honeynet via sdn,”
in 2017 IEEE Conference on Communications and Network Security (CNS) (IEEE),
1–9.

Mehta, J. A., Nanavati, P. K., and Mehta, V. K. (2021). A survey
on green cloud computing. Int. J. Eng. Appl. Sci. Technol 6, 425–429.
doi: 10.33564/IJEAST.2021.v06i01.067

Mell, P., and Grance, T. (2011). The NIST definition of cloud computing. Special
Publication 800-145. doi: 10.6028/NIST.SP.800-145

Meng, X., Zhao, Z., Li, R., and Zhang, H. (2017). “An intelligent honeynet
architecture based on software defined security,” in 2017 9th International

Conference on Wireless Communications and Signal Processing (WCSP) (IEEE),
1–6.

Merkel, A., Stoess, J., and Bellosa, F. (2010). “Resource-conscious scheduling
for energy efficiency on multicore processors,” in Proceedings of the 5th European
Conference on Computer Systems, 153–166.

Moore, C., and Al-Nemrat, A. (2015). “An analysis of
honeypot programs and the attack data collected,” in International
Conference on Global Security, Safety, and Sustainability (Springer),
228–238.

More, N. S., and Ingle, R. B. (2017). “Challenges in green computing for energy
saving techniques,” in 2017 International Conference on Emerging Trends and
Innovation in ICT (ICEI) (IEEE), 73–76.

Ohwo, O. B., and Thomas, A. (2021). Towards an efficient and effective cloud
computing architecture: a review. IUP J. Comput. Sci. 15.

Pittman, J. M., Hoffpauir, K., and Markle, N. (2020). Primer—a tool for testing
honeypot measures of effectiveness. arXiv [Preprint] arXiv:2011.00582.

Srikantaiah, S., Kansal, A., and Zhao, F. (2008). “Energy aware consolidation for
cloud computing,” inUSENIXHotPower’08:Workshop on Power Aware Computing
and Systems at OSDI.

Washofsky, A. D. (2021). Deploying and Analyzing Containerized Honeypots in
the Cloud With T-Pot (PhD thesis). Monterey, CA: Naval Postgraduate School.

Yadav, R., Zhang, W., Kaiwartya, O., Singh, P. R., Elgendy,
I. A., and Tian, Y.-C. (2018). Adaptive energy-aware algorithms
for minimizing energy consumption and SLA violation in cloud
computing. IEEE Access 6, 55923–55936. doi: 10.1109/ACCESS.2018.287
2750

Zakaria, W. Z. A., and Kiah, M. L. M. (2013). A review of dynamic and intelligent
honeypots. Sci. Asia 39S, 1–5. doi: 10.2306/scienceasia1513-1874.2013.39S.001

Zhao, C., Zhang, S., Liu, Q., Xie, J., and Hu, J. (2009). “Independent tasks
scheduling based on genetic algorithm in cloud computing,” in 2009 5th
International Conference on Wireless Communications, Networking and Mobile
Computing (IEEE), 1–4.

Frontiers in Sustainability 08 frontiersin.org

https://doi.org/10.3389/frsus.2022.1048606
https://doi.org/10.3390/s21072433
https://doi.org/10.1016/j.jnca.2022.103405
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.7763/IJCTE.2012.V4.527
https://doi.org/10.1145/1400181.1400186
https://doi.org/10.33564/IJEAST.2021.v06i01.067
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/ACCESS.2018.2872750
https://doi.org/10.2306/scienceasia1513-1874.2013.39S.001
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org

	A green scheduling algorithm for cloud-based honeynets
	1. Introduction
	2. Related work
	2.1. Honeypots and honeynets
	2.2. Honeynet deployment architectures
	2.3. Cloud computing
	2.4. Workload scheduling mechanisms
	2.4.1. Cloud scheduling
	2.4.2. Honeynet scheduling

	2.5. Green computing
	2.6. Green schedulers

	3. Mathematical foundation and proposed algorithm
	3.1. Mathematical foundation
	3.1.1. Resources
	3.1.2. Tasks
	3.1.3. Network interfaces
	3.1.4. Power
	3.1.5. Utilization

	3.2. The algorithm

	4. Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


