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Conventional Life Cycle Assessment (LCA) that relies on static coe�cients is

usually based on yearly averages. However, the impacts of electricity supply

vary remarkably on an hourly basis. Thus, a company production plan is

reassessed to reduce selected LCA impacts due to electricity consumption.

To achieve this, the company will need a forecast of hourly LCA impacts due

to electricity consumption, which can be directly forecast with the Direct

Forecasting (DF) approach. Alternatively, the Electricity Technological Mix

Forecasting (ETMF) forecasts the electricity production of the technologies

in the mix and subsequently linearly combines it with unitary LCA impact

indicators. Here, we assessed di�erent machine learning models to forecast

two LCA impact indicators for the consumption of electricity in the Italy-North

control zone. The feed-forward neural network (NN) with the ETMF approach

was the best perfomer among the assessed forecasting models. In our dataset,

recurrent neural networks (RNNs) performed worse than feed-forward neural

networks. Due to its better forecasting performance, the ETMF approach was

preferred over the DF approach. This was due to its flexibility and scalability

with easy updates or expansion of the selected forecast indicators, and due

to its ability to assess technology-specific errors in the forecasting. Finally, we

propose to adopt the correlation of LCA impact indicators within the dataset

to select indicators while avoiding unconscious burden-shifting.

KEYWORDS

life cycle assessment, machine learning, electricity, forecasting, dynamic life cycle

inventory, dynamic LCA, scheduling

1. Introduction

This paper works at the intersection of two fields: Life Cycle Assessment (LCA) and

machine learning. Databases used in LCA studies, such as ecoinvent (Ecoinvent, 2019),

provide Life Cycle Inventory (LCI) data that is often averaged over 1 year or more,

and allow for estimates of potential environmental impacts of products and services
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(Treyer and Bauer, 2016; Wernet et al., 2016). However, the

electricity production process varies over time and space.

Electricity consumption constitutes one of the main drivers of

LCA impacts and has been identified as an area where machine

learning can be applied to potentially reduce Climate change

impact (Cornago et al., 2022; Rolnick et al., 2022). This is

especially true for countries with a high penetration of electricity

produced by non-dispatchable renewable sources, such as solar

and wind energy (Laurent and Espinosa, 2019). A company

could schedule its production plan in advance to reduce the

specific environmental impact indicators by consuming cleaner

electricity, if the varied LCA impacts of electricity consumption

can be tackled through LCA data of higher resolution, across

both space and time. This has been demonstrated with various

case studies, such as electricity storage systems (Elzein et al.,

2019), households (Roux et al., 2016; Kopsakangas-Savolainen

et al., 2017; Riekstin et al., 2020), electric vehicles (Zivin et al.,

2014), and data centers (Dandres et al., 2017).

Therefore, the variability of the impacts of the electricity

technology mix enable the rescheduling of power-intensive

processes aimed at reducing potential environmental impacts.

Among the assessed impacts, the user could focus on a target

environmental performance for a specific LCA impact category.

Attempts to forecast medium-term system-wide energy mixes

have been reported (Sowiński, 2019). Nonetheless, short-term

forecasts are still required to allow for provisioning and

rescheduling of energy resources on electricity markets.

Within this context, the LCA Aware Scheduling framework

aims to enable efficient management of electricity consumption

of plants to reduce their consequent LCA impact (Cornago

et al., 2020). First, the framework relies on the possibility to

forecast the day-ahead hourly average impacts of electricity

consumption, focusing particularly on part of scope 2 emissions,

as referred by the GHG Protocol (Sotos, 2015). Second, the

forecast will be used in the next step of the framework,

i.e., the scheduling based on minimizing one or more LCA

impacts indicators. Here, the optimization of the production

scheduling is aimed at reducing the LCA impacts due to

electricity consumption, while respecting traditional scheduling

constraints, such as production goals, physical, and safety

Abbreviations: LCA, Life Cycle Assessment; LCI, Life Cycle Inventory; LCIA,

Life Cycle Impact Assessment; DLCI, Dynamic Life Cycle Inventory; DF,

Direct Forecasting; ETMF, Electricity Technology Mix Forecasting; ILCD,

International Reference Life Cycle Data System; LR, Linear Regression;

NN, Feed-forward Neural Network; RNN, Recurrent Neural Network;

NN32, Neural Network with 32 nodes; NN64, Neural Network with

64 nodes; RNN32, Recurrent Neural Network with 32 nodes; RNN64,

Recurrent Neural Network with 64 nodes; SMAPE, Symmetric Mean

Absolute Percentage Error; nRMSE, Normalized RootMean Squared Error;

RI, Relative Importance; CCGT, Combined Cycle Gas Turbine plants; OGT,

Open Gas Turbine plants.

limitations. The updated scheduling translates into a new day-

ahead electricity consumption profile. This new profile will

be communicated to the energy providers, who will then

consider the information when formulating bids for the day-

aheadmarket. These bids, aftermarket closure and optimization,

determine the operation identity, capacity, and schedule of the

power plants required. Finally, the transmission system operator

(TSO) or ENTSO-E publishes the ex-post hourly technology

mixes that will substitute the forecasts in a Dynamic Life Cycle

Inventory (DLCI). The LCA impact indicators obtained by

ex-post values can then have two functions. An LCA report,

for certification purposes, can be produced, as it requires

transparent data sources and therefore cannot rely on the

outputs of an in-house forecasting model. Second, they can be

compared to the forecasts and used to assess and improve the

accuracy of the forecasting model.

The forecasted environmental impacts should be made

available before the actual definition of the production plan

for two reasons. First, it should take into consideration the

operational constraints of the implementation of the production

scheduling into the production plant. Second, it should allow

for the provision of energy resources on a day-ahead market-

regulated electricity auctions and the possible modification of

their profile through intra-day purchases in order to follow

the optimized schedule. If the user of this framework fail to

communicate the variation in the electricity consumption profile

in time, it could result in hefty fees from the TSO.

Various studies have recently proposed models to address

this issue. Tranberg et al. (2019) proposed an accountingmethod

driven by flow tracing, that leveraged on power flows between

market zones in Europe to take into account the marginal

carbon intensity of each market. The said method was thereafter

employed by Bokde et al. (2021) and Leerbeck et al. (2020)

to achieve predictions through statistical modeling, in a Direct

Forecasting (DF) approach, where the forecasting parameter was

the hourly environmental impact intensity of a market zone.

Wang et al. (2016) chose a machine learning model to predict

the hourly marginal greenhouse gas emissions due to electricity

consumption in a East USA market area with a DF approach.

Additionally, Riekstin et al. (2020) adopted a database generated

with a previous work (Milovanoff et al., 2018) to forecast the

impact of electricity consumption in France on Climate change

with a DF approach, through a machine learning model and

obtained better results than in Wang et al. (2016). Hawkes

(2010) focused on Marginal Emission Factors (MEFs) estimates

which measured the Climate change impact signal related to

a modification of the demand-supply energy curve, using a

statistical DF approach.

In all the works that deploy DF approaches, the forecasting

parameter is limited to a single LCA impact indicator related

to the Climate change impact category (Hawkes, 2010; Wang

et al., 2016; Leerbeck et al., 2020; Riekstin et al., 2020; Bokde

et al., 2021). On the other hand, the Electricity Technological
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Mix Forecasting (ETMF) (Cornago et al., 2020) predicts part

of the foreground system of the LCI, the hourly average

technology mix for electricity production. Subsequently, the

output of the ETMF approach can be linearly combined with

unitary LCA impact indicators for each technology, which

are deterministic values, to calculate hourly LCA impact

indicator averages. Even if Cornago et al. (2020) only deals

with the Climate change impact category, the ETMF approach

can easily consider additional impact categories, due to the

computationally efficient linear combination step.

The consideration of all the impact categories of an

LCIA method avoids unintentional burden shifting between

impact categories, i.e., reducing a single impact indicator while

increasing those of other categories. Given that the DF approach

requires the development of a new forecasting model for every

LCA impact indicator, it would be useful to find a methodology

to select a small number of impact indicators to curb coding and

computational efforts, while trying to limit unintentional burden

shifting issues.

Berger and Finkbeiner (2011) studied the correlation

between individual LCA impact indicators. However, it was not

clear how to support the selection of a subset of LCA impact

indicators from an LCIAmethod, while limiting burden shifting.

Moreover, a limitation of the LCA Aware Scheduling approach

is its reliance on the fitness of the forecasting of the LCA impact

indicators. However, it is not clear which machine learning or

statistical method should be adopted to obtain the most accurate

trajectories of day-ahead hourly LCA impact indicators, nor the

preferred approach (ETMF or DF).

To address these research gaps, we describe a methodology

to select LCA impact indicators to reduce the number of

forecasting models while limiting burden shifting issues.

Additionally, we compare the performance of different

models while using ETMF and DF forecasting approaches, to

understand a potential solution to the problem. To test the

forecast model, we considered the Italy-North control zone of

the Italian electricity market as case study, due to its diversified

electricity technology mix. We limited our study on ETMF and

DF only, and obtained the absolute best possible forecasting

model for the case study will be beyond the scope of this work.

We also evaluated the advantages and disadvantages of the

ETMF and DF approaches but not limited to their forecasting

accuracy.

2. Methods and modeling

In Section 2.1, we discuss the choice of attributional or

consequential modeling, which impacts both the calculation of

the unitary LCA impacts and the forecasting models. Section 2.2

describes the computation of unitary LCA impacts for electricity

consumption, following the choice made in Section 2.1. In

Section 2.3, we define the methodology to select LCA indicators

needed by the DF approach to contain computational resources

while limiting unconscious burden-shifting. Subsequently, in

Section 2.4, we analyze the database used to train and validate

and test the forecasting models, while in Section 2.5, we describe

the forecasting models in detail. Finally, in Section 2.6, we

describe the metrics used to assess the forecasting performances

of the different models.

2.1. Attributional vs. consequential
forecasting

The choice to implement either an attributional or a

consequential assessment for potential impacts of electricity

consumption is important. Attributional assessment focuses

on the average electricity technology mix, while consequential

assessment deals with the marginal electricity technology mix,

even though the distinction is a general rule and not a strict

delimitation (Schaubroeck et al., 2021). In this section, we

discuss the advantages and disadvantages of the two modeling

alternatives and subsequently explain our choice to implement

an attributional assessment.

Table 1 lists the differences in themeaning of the LCAAware

Scheduling and the advantages and disadvantages of the two

approaches. An LCA Aware Scheduling with an attributional

forecasting would aim to minimize the electricity consumption-

related LCA impacts of the user. In contrast, a consequential

approach (Hawkes, 2010;Wang et al., 2016; Leerbeck et al., 2020;

Bokde et al., 2021) would forecast which marginal technology

mix is actually being turned online or put offline, respectively,

for a higher or lower electricity demand at a given hour, as a

consequence of the new scheduling plan. Therefore, using an

attributional approach can potentially result in an increase in

LCA impacts at the system level across the following day, as

demonstrated in the case of data centers (Dandres et al., 2017).

Though the consequential approach seems to be ideally

preferred, obstacles in its implementations limit its application

and led us to pursue the attributional approach. First, the non-

linearity of the environmental impact of the marginal mix

LCA stems from the fact that the order in the production

curve is based on the bid cost, and not on the consequent

environmental impact. Indeed, the production curve producers

are listed with an order of increasing bid value. However, this

economic evaluation does not fully reflect the LCA impact

order (Brondi et al., 2019). Therefore, bids of technologies

responsible for significantly different LCA impacts (i.e., a coal

plant and a pumped-hydro plant) could be priced similarly.

The environmental impact of the marginal mix is a non-

linear function of the consequent shifted consumption, and

has not been assessed as all previous approaches assumed a

linear function. Indeed, Mathiensen et al. (2009) detailed three

alternatives from literature to select the marginal technologies
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TABLE 1 Di�erences between an attributional and a consequential

approach for the forecasting.

Attributional Consequential

Aim of LCA

Aware

Scheduling

- Minimization of

electricity-related LCA

impacts due to user’s

electricity consumption

- Minimization of

electricity-related LCA

impacts at system level

Advantages - Relative hour by hour

stability of the average

technology mix

- Should avoid an increase of

LCA impacts at a system level

- Data availability

Disadvantages - Might lead to an

increase of LCA impacts

at a system level

- Marginal mix should be a

function of the shifted

electricity consumption

- Lack of appropriate data to

train a forecasting model

- Volatility of the marginal

mix

for LCA studies: it could be the same technology, a different

single technology every hour or a mix of technologies that

changes every hour. Mathiensen et al. (2009) also concluded

that the first two option were too simple and should only be

considered for decisions involving small electricity demand.

Dandres et al. (2017) built upon this finding and proposed the

marginal mix as the sum of the hourly variations in production

for each technology. This method was then improved by

adding regional import and export of electricity to the

electricity mix calculation (Milovanoff et al., 2018), resulting

in a regional marginal mix, which was not dependent on the

amount of electricity consumption shifts over time. However,

a consequential LCA Aware Scheduling would need to assess

a marginal mix as a function of the electricity consumption

shifted by the users. Indeed, a large scale implementation of LCA

Aware Scheduling based on the consequential approach, without

solving the issue of the non-linearity of the environmental

impacts of the marginal mix, might be victim of its own success.

A linear approximation for the environmental impact of the

marginal mix might work well for a kWh or even a MWh of

shifted demand, but it might not be robust for a shifted demand

of GWh scale. The result could be an increase of LCA impacts at

a system level, even though the consequential approach is ideally

designed to avoid it.

Second, for the case of North Italy during the considered

years, the time series of the marginal technology is not

continuous, as it was not identified for many hours of the

dataset. This would severely hamper the development of DF

models, which require a continuous time series input. Due to

the non-linearity of the marginal technology mix, hourly data

for technologies that are cut off from the merit order curve

is needed. These technologies would be employed to enter the

market with an increase in electricity demand and an increased

data availability would enable the modeling of the marginal

technology mix. However, the incomplete time series represents

only a single marginal technology, and not a mix of them.

Third, though used in previous studies (Hawkes, 2010;Wang

et al., 2016; Leerbeck et al., 2020; Bokde et al., 2021), the high

volatility of marginal mixes and the related LCA impacts results

in difficulties in accurate forecasting. This disadvantage of the

consequential approach was acknowledged in Dandres et al.

(2020). The relatively high volatility of LCA impacts linked to

marginal mixes as opposed to attributional ones is highlighted

for the Italian market in Brondi et al. (2019). Indeed, gas plants

and hydroelectric plants often represent themarginal technology

in this market, producing a signal that fluctuates significantly

due to the relevant difference among the environmental impact

of these technologies (Brondi et al., 2019). On the other hand,

an advantage of the attributional approach is that an average

forecast is considered more robust than the marginal one. This

is due to the difference in order of magnitude between the

electricity production shifted by the LCA Aware Scheduling and

the remaining electricity production within the selected market.

Even if the shifted electricity were to reach a few GWh per hour,

most of the electricity demand (in the order of tens of GWh per

hour) is linked to activities that cannot be rescheduled. However,

the same variation would affect the marginal mix composition

significantly, where impact is not averaged with the unchanged

regional demand.

Marginal forecasting risks providing to the user of the LCA

Aware Scheduling framework highly uncertain information

at best, until these three issues can be integrally addressed.

In a worst case scenario, the widespread use of LCA Aware

Scheduling based on the consequential approach might even

result in an increase of LCA impacts at system level.

Therefore, we temporarily solve this research gap by

implementing an attributional forecasting approach. As

previously mentioned, the main disadvantage of this approach

is that it cannot exclude increases in LCA impacts at system

level, as demonstrated in Dandres et al. (2020). This is because

the objective function would be the minimization of the LCA

impacts specific to the individual user, and not the overall

minimization of LCA impacts. However, it relies on available

data to train, forecast, and validate forecasting models, as well as

a relative hour by hour stability of the average technology mix.

The Guarantee of Origin system is another tool that targets a

user-centered approach (Parliament and of the EuropeanUnion,

2009). It aims to create a market of renewable electricity

certificates so that users can buy them to reduce their own

impact on Climate change. An attributional LCA Aware

Scheduling would bring forward an improvement relative to

other attributional schemes in the European electricity market.

Currently, Guarantee of Origin can be used in countries whose

electricity grid is not connected to the producing one (i.e.,
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Iceland and continental Europe). Additionally, the production

and consumption of the unit of electricity can be up to 12

months apart (Parliament and of the European Union, 2009).

On the other hand, attributional LCA Aware Scheduling would

require production and consumption of electricity coupled to

location and time.

Moreover, unless the dispatchment of renewable electricity

is not a constraint, increasing demand tends to result in an

increasing share of electricity generated from fossil fuels, as

described in Rovelli et al. (2021). However, as production

peaks of dispatchable technologies increase with the increasing

capacity of non-dispatchable renewable electricity, matching

demand, and supply will become increasingly difficult, which

might lead to curtailment of said renewable electricity and

increased network costs (Denholm et al., 2015). Attributional

LCA Aware Scheduling could help enabling the shift of

consumption toward hours in which a high amount of electricity

responsible for low LCA impacts is available, helping to match

the demand with the available production.

2.2. Computation of the environmental
impacts of the technologies of the
electricity mix

In this study, as well as in Elzein et al. (2019), Roux

et al. (2016), Kopsakangas-Savolainen et al. (2017), Riekstin

et al. (2020), and Zivin et al. (2014), the LCA is partially

dynamic, as defined in Sohn et al. (2020). For this study, only

the production of the technologies of the electricity mix was

temporally resolved. Since the Life Cycle Impact Assessment

(LCIA) phase is not dynamic, LCA impacts per unit of consumed

electricity are constant coefficients, as in static LCA studies.

Life Cycle Assessment impacts related to the production of a

kWh of electricity are assumed to take place during the hour of

production. This simplification is common in static LCA, where

all impacts occur at the time of the production of the functional

unit. This can be justified with our forecasting horizon of

24 h. A difference in impact within this forecasting horizon

will not affect categories, such as Climate change, in which the

time horizon considered is usually 100 years. We acknowledge

that the same might not hold true for toxicity-related impact

categories, whose results are strongly dependent on the chosen

temporal differentiation and on the related modeling (Shimako

et al., 2018).

We excluded the electricity generation plant construction

phase from the system boundaries, as this event would happen

well before any scheduling decision informed by the forecasting

model. Any scheduling decision based on the forecast model will

not impact the construction phase as it would have happened in

the relative past (Schaubroeck et al., 2021). Processes linked to

fuels production (extraction of raw materials, transformation,

transportation, and storage) will be included in the system

boundaries, for two reasons. First, there is no systematic data to

place these processes on the timescale, compared to the moment

of electricity production. This makes it difficult whether the

scheduling decision does affect the generation and timing of fuel

related impacts. Second, excluding these processes would over

complicate the modeling of pumped-hydro plants. Under this

assumption, only the LCA impacts due to pumping taking place

in the 24 h between the scheduling decision and the electricity

production would be included. Such level of detail is outside

the scope of this paper. We assume that the electricity used in

the pumping phase of pumped-hydro plants has yearly average

LCA impact, disregarding of the time it happened. Therefore,

the system boundaries for each technology in this study include

processes linked to fuels production and fuel consumption to

produce electricity.

The final step of LCA Aware Scheduling is the comparison

between forecast and retrospectively measured LCA impacts

(Cornago et al., 2020). Ex-post data is also available for the

electricity technology mix after electricity consumption. The

linear combination of the consumption and of the dynamic LCA

impact results in the effective cumulative LCA impacts. The

scope of this step is not the assessment of the fitness of the

forecasting models, but rather the computation of ex-post LCA

impacts where cradle-to-grave impacts are preferred. Ex-post

reporting is not influenced by a potential rescheduling decision

and needs to comply with reporting standards, which are usually

cradle-to-grave or cradle-to-gate. Since the scope of this work is

limited to the assessment of the fitness of the forecasting models,

this step of the LCA Aware Scheduling framework is excluded.

The LCA database considered for the present study is the

ecoinvent 3.6 cut-off database (Ecoinvent, 2019) and the LCIA

indicators consist of the 19 International Reference Life Cycle

Data System (ILCD) 2.0 2018 midpoint indicators (Fazio et al.,

2018). Fuel extraction, transportation, and electricity production

are included. Plant construction and electricity network losses

are not included.

2.3. Selection of LCA indicators

The DF approach requires a selection of impact categories

to limit the computational effort. Since a new model needs to

be trained for each LCA impact category for the DF approach,

the user could be unconscious of potential burden-shifting if

only one model was created. The selection of a small number of

categories that will be able to assess such burden-shifting should

be made to support decisions. A user may want to constrain

LCA indicators that are worsening due to burden-shifting to a

set value. The selection of LCA indicators is therefore supported

by the following four criteria.

First, we will select the Climate change total impact

category, as it is debated most. To select relevant impact
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categories while limiting burden shifting, we aimed to assess

the impact categories that correlated less with the Climate

change total impact category. Therefore, the unitary electricity

LCA impact indicators, computed in Section 2.2, are linearly

scaled for each hour of the dataset, based on each technology’s

hourly production. We then performed a correlation analysis

between the Climate change total indicator and the other 18

ILCD midpoint indicators for the hourly impacts of electricity

consumption throughout the full dataset. The correlation

analysis was customized as much as possible by limiting it to

our case study with the system boundaries and the temporal

boundaries, implied in the dataset. The customized correlation

analysis will provide a fitter decision support in the selection of

LCA indicators.

The Pearson coefficient was chosen to support the selection

methodology and identify the most suitable LCA impact

category in addition to the Climate change total. The Pearson

coefficient indicates the strength of the linear correlation among

two variables X and Y , and it is defined as the ratio between their

covariance and the product of their standard deviation:

Pearson = σXY

σXσY
(1)

The results will always have a value between −1 (inverse

linear dependency) and +1 (direct linear dependency). In the

case of no linear dependency between the variables, the result

is 0.

Second, we will refine the selection by considering the role of

the most impacting technologies for each LCA impact indicator.

It is interesting to investigate data points for which the market

share of said technology is high.We suggest the selection of LCA

impact indicators for which such data points do not cluster in the

correlation graph. This criterion is further discussed in Section

3.1.

Third, we will evaluate the relevance of absolute LCA

impacts for a certain category within the specific geography of

the control zone.

Finally, we will look at the ILCD (Fazio et al., 2018)

classification of LCA categories, in terms of impact assessment

recommendation level, to further support our selection.

2.4. Data analysis of the dataset for the
forecasting models

The dataset used to train, validate, and test the model

that was retrieved from widely accessible sources, namely the

ENTSO-E Transparency Platform (ENTSO-E, 2019), which

provides open electricity generation data, and the ILCD 2.0

2018 midpoint indicators (Fazio et al., 2018) for the unitary

LCA impacts obtained in Section 2.2. Two separate approaches

are taken into consideration. In the first instance, we analyze

and forecast independent time series, each one referred to the

electricity production of a specific technology. For the second

approach, we aim to directly forecast the linear combination

of the electricity mix with the chosen set of LCA coefficients,

according to the formula:

iCO2,i =
n∑

j=1

kLCA,j ∗ Ei,j (2)

where iCO2,i is the unitary impact for the i-th hour of the

following day, while kLCA,j and Ej,i the LCA coefficient and the

system hourly generation, respectively, for the j-th technology.

Once the forecast indicator is obtained, it was then divided by

the respective hourly overall energy load for the Italy-North

control zone, which is provided on a day-ahead basis through

forecasts made by TSOs, Terna in our case. Therefore, for the

impact category Climate change total, the unit of measure is

tCO2eq perMWh, and analogously for other impact categories.

In this study, we considered the electricity demand of

the Italy-North control zone, which is available on a day-

ahead basis, instead of the Terna forecast. This is to provide

metrics that reflect the actual performance of our model

rather than indicators that are influenced by the quality of the

Terna forecasts. Additionally, we excluded imports and exports

from the electricity demand of the zone, allowing for a more

detailed analysis to future developments. This is due to relevant

gaps in the ENTSO-E dataset for such electricity flows that

would significantly hinder the exploitation of machine learning

algorithms. It is a simplification, since 12% of the electricity

demand in Italy is fulfilled by imports coming from abroad

(TERNA, 2019), leading to conflation of regional demand

and consumption. Italy is characterized by a heterogeneous

electricity mix, with 35.9% of local renewable generation,

with a large portion of the thermoelectric, hydroelectric, and

solar available capacity located in the Italy-North control zone

(TERNA, 2019). A display of the hourly distribution of Climate

change total impact indicator for the for the full dataset is

shown in Figure 1. The lower distributions in the central hours

of the the day highlight the role of Solar generation in the

electricity mix.

In Figure 2, the box plots represent the distribution of

hourly share of LCA impact of a certain technology on the total

hourly LCA impact, for each LCA impact category. Technologies

such as Geothermal, Solar, Wind onshore, and Hydro have a

negligible contribution to all LCA impact categories, due to

our assumption of the system boundaries to exclude the phase

of construction of the electricity generating plants. The sole

exception is the significant share of impact on the Dissipated

water category due to Hydro generation. In particular, Biomass

drives most of the impact for the Climate change biogenic and

Land use categories. Fossil natural gas and/or Fossil hard coal are

major drivers of impact, for 17 out of the 19 impact categories.

To cover a substantial set of states of the electricity grid,

we gathered data from 1 January 2016 to 15 September 2019,
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FIGURE 1

Hourly distributions of the Climate change total impact indicator for the electricity mix of the Italy-North control zone, samples from the full

dataset. The continuous line at the center of each boxplot is the median of the distribution, while the dotted line is the mean.

FIGURE 2

The distribution of hourly share of LCA impact of a certain technology on the hourly LCA impact represented by box plots, for each LCA impact

category.
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FIGURE 3

Partial auto-correlation function of the Climate change total impact time series. X-axis represents the hours that precede the hour where the

forecasting for the following day is performed. The area highlighted in light blue represents the interval where the auto-correlation of the signal

is not considered relevant.

resulting in a dataset composed by 1,346 hourly samples after

data cleaning, preprocessing, and standardization. The dataset

undergoes a conventional 80/10/10 split for training, validation,

and testing purposes. It is worth noting that missing data

and outliers were accounted for in the preprocessing phase, as

missing hours and days appear quite frequently in the database.

To avoid a drastic reduction of database size, missing hours

were replaced performing a linear interpolation on neighboring

timestamps, while missing days were superseded by data with

the same weekday belonging to the previous week.

After standardizing and removing outliers from the available

dataset, we select the set of endogenous features for each

time series for inclusion in the model’s input variables, by

analyzing the partial auto-correlation. Exogenous variables were

not considered and will be investigated in the future. Partial

auto-correlation is widely used to determine the order of auto-

regressive models, where the correlation between two time steps

is measured, conditioned on the interval in the middle. In

general, when machine learning methods are applied to data

structured as time series, this indicator identifies the maximum

lag used by the model as a predictor, namely its input. Figure 3

represents the partial auto-correlation function of the Climate

change total indicator. It is worth noting that the majority

of the correlation lies in the first 48 time steps with spikes

every 24 lags up until the 168th. Following this indication,

we use an input of 7 days of consecutive time step of the

variable to be predicted. For example, if we want to forecast

the production of natural gas, the only inputs we take for the

natural gas production model will be the 168 time steps before

the forecasting moment of the natural gas production time

series.

Therefore, the input is defined as 7 days, starting from 00.00

a.m. of the first day to 11.00 p.m. of the 7th, divided hourly, and

the output returned by the model will be a forecast of the next

24 h. This approach is needed by the framework, which will use

the output forecast in order to optimize the industrial footprint,
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placing bids on hours with cleaner energy in the day-ahead

energy market.

The list of conditioning variables, the results of the feature

selection process, and the full dataset are available on GitHub.

2.5. Forecasting models description

Three types of forecasting models were considered: a feed-

forward neural network (NN), a recurrent neural network

(RNN), and a linear regression (LR). These three types of models

have been applied to two different forecasting approaches,

namely DF and ETMF. In the former, the output of the model

is directly the indicator of the LCA impact category. Therefore,

one model accounts for each LCA impact category. In the latter,

the final output is composed by the forecast of the electricity mix

technology, with a model for each technology, which are then

linearly combined by the related unitary LCA impacts (Cornago

et al., 2020).

A LR model was chosen because of its simplicity and low

computational complexity for problems of this size. This model

fits the coefficient of a linear combination of the input to

estimate the output.

Neural networks are universal approximators (Hornik et al.,

1989). They are theoretically able to represent every possible

function passing the input through subsequent layers, each of

them composed by a linear combinations of the model weights

followed by non-linear activation functions. More recently,

these algorithms have been widely used in various applications

from computer vision (Pham et al., 2020) to natural language

processing (Brown et al., 2020), achieving state-of-the-art results

thanks to advances in computational technologies, and the

diffusion of easy-to-use software. The training of the model

consists in the optimization of a loss function, i.e., changing the

weights according to its gradient, which has to be chosen while

considering the type of output that the model has to estimate.

In this work, the mean square error was used as loss function,

commonly adopted in the case of regression and time series

forecasting (Woschnagg and Cipan, 2004).

Recurrent neural networks are a special type of neural

networks particularly suited for time-series data. Instead of

computing the output based only on the input, it also uses an

internal representation of the past data. A problem of the vanilla

RNNs applied to long sequences is the vanishing gradient,

which makes learning long-term dependencies difficult. This

issue has been solved by the Long-Short Term Memory (LSTM)

RNNs (Hochreiter and Schmidhuber, 1997), in which gates are

used to decide how much of the past has to be remembered and

forgotten, along with a cell that allows the gradient to back-

propagate and to train the model. The modeling power of a

model depends on the number of training weights (units in the

case of a neural network). Using too many units in comparison

to the number of training data will result in overfitting of

the dataset, resulting in the model’s inability to generalize the

prediction to cases not present in the examples used in the

training phase. However, using too few units leads to not fully

utilizing the models’ expressive power also called underfitting.

Usually, to better use the GPU, multiples of eight are used as

the number of weights. According to the dataset dimension, we

used two models with few units, respectively, 32 and 64, as in the

case of NN, to check if there are appreciable improvements. In

the ETMF case, every technology model has the same number of

units.

None of the models used exogenous inputs to estimate the

forecast and the inputs of all the models have been selected

through the analysis of the partial auto-correlation as stated

in Section 2.4. Limiting the size of the feature space avoids

well-known issues that arise when dealing with datasets with a

considerable feature space, such as the course of dimensionality

and the introduction of noise that may compromise the model’s

training phase.

All models have been developed in Python, using the

Tensorflow library for the neural networks and scikit-learn for

the LR. They are available on GitHub.

2.6. Forecasting performance metrics

To assess which of the models described in Section 2.5 has a

better forecasting performance, we evaluated metrics on the test

set prediction. The choice of said metrics fell on the Symmetric

Mean Absolute Percentage Error (SMAPE), widely used in

regression tasks and proven to provide unbiased benchmarks

when dealing with day-ahead point forecasts in the energy

field (Weron, 2014). Results with another common metric,

Normalized Root Mean Squared Error (nRMSE), are discussed

in Supplementary material. SMAPE is defined as:

SMAPE =
T∑

h=1

|ŷt − yt|
|ŷt| + |yt|

(3)

and takes in consideration both the error magnitude and the

absolute value of the time series. This metrics has both an upper

and lower bound, providing interpretable results in the range

0–100%. Additionally, having a in denominator the sum of the

absolute values of the forecasted and of the actual value of the

time series avoids hardly-explicable values above 100% typical of

metrics such as the Mean Average Percentage Error (MAPE).

In order to quantify the contributions of each technology in

terms of the share on the overall SMAPE, we defined the Relative

Importance (RI) metric as:

RIi =
SMAPEi ∗ sharei ∗ impacti∑N
i=1 SMAPEi ∗ sharei ∗ impacti

(4)

with N total number of technologies considered, sharei

fraction of the electricity production for the −ith technology,
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FIGURE 4

Scatter plots correlating the hourly impacts per kWh of electricity for Climate change total indicator (x-axis) and the remaining 18 impact

indicators. The graphs cover the full dataset, from 1 January 2016 to 15 September 2019. The gradient from purple to yellow signals an

increasing share of fossil natural gas in the electricity mix, from 10% to 80%. LULUC, Land Use and Land Use Change.

impacti LCA coefficient for the −ith technology for the

considered impact. Eventually, the result is normalized with

respect to the sum of the other technologies processed with the

same computations.

3. Results

This section is composed of two parts. In the first part,

we show how hourly electricity impacts of different LCA

impact categories correlate to those of the respective hour for

the Climate change total indicator. Based on these findings,

we justify our decision of selecting the Respiratory effects,

inorganics indicator as the second indicator of the DF. In the

second part of the section, we assess which model best forecast

the LCA impact of hourly electricity consumption, with both DF

and ETMF approaches. Additionally, we investigate reasons that

would make one of these forecasting approaches preferable.

3.1. Impact indicators selection

Figure 4 shows the correlations between the Climate change

total indicator and the remaining 18 impact indicators of the

LCIA method (ILCD 2.0 midpoint), for the hourly impacts

of electricity consumption throughout the full dataset. The

gradient from purple to yellow signals an increasing share of

Fossil natural gas plants in the electricity mix.

It is important to highlight that Figure 4 does not represent

the general correlation between impact indicators. It only

focuses on the correlation between the indicator of Climate

change total and others, for each hour of the datatset. Since our

system boundaries only include the electricity generation sector

(see Section 2.2), it is not surprising to see that the Climate

change Fossil and Fossils indicators show a perfect linear

correlation with the Climate change total indicator. Within the

assessed system, Climate change total impact is made up by:

• Climate change fossil: the main contributor to impact

within the assessed technologies (even for bioenergy);

• Climate change LULUC: negligible contributor to impact

within the assessed technologies;

• Climate change biogenic: negligible contributor to impact

within the assessed technologies, apart from bioenergy,

where it accounts for about 48% of the impact.

Since most of Climate change total impact in Italy are

determined by fossil fuels (because bio-energy share is very

low), it made sense that Climate change fossil is the main
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driver of Climate change total impact. To a lesser extent,

Carcinogenic effects, Marine eutrophication, Minerals and

metals, Photochemical ozone creation also showed a clear

correlation with the Climate change total indicator within the

assessed system.

The share of Fossil natural gas plants in the electricity

mix was chosen as secondary variable to further differentiate

interesting trends within the correlation graphs. Indeed, Fossil

natural gas production averages the highest share of impact

among all technologies, as shown in Figure 4. When assessing

the share of impacts at hourly level, electricity production from

Fossil natural gas or from Fossil hard coal were responsible

for the highest median share of hourly impacts in 16 of the

18 couples, as shown in Figure 4. Furthermore, one of these

two technologies was responsible for the highest variability of

share of hourly impacts in 15 of the 18 couples and assessed

as the distance between the box plot whiskers. However, the

variable of the share of Fossil natural gas production was

preferred to that of Fossil hard coal as data points in which

the production of Fossil natural gas was high did not cluster

much. Supplementary Figure S1 describes the equivalent of

Figure 4 for Fossil hard coal. This is particularly true for the

scatter plots correlating Climate change total, Climate change

biogenic, Dissipated water, Ionizing radiation, Land use, and

Respiratory effects, inorganics, as shown in Figure 4. A second

LCA impact category other than Climate change total for

the forecasting models should be chosen among these four

LCA impact categories. The influence of other variables, as

the share of electricity production from renewable sources

and night vs. day, on the correlations between the Climate

change total indicator and the remaining 18 impact indicators

was investigated (respectively, Supplementary Figures S2, S3).

However, the high clusterization of the data points relative to

a high share of electricity production from renewable sources

or relative to the night/day alternative did not translate into

additional useful insights.

With Pearson coefficient value of -0.35, Dissipated water

shows a negative correlation with the Climate change total

indicator. This can be attributed to the significant role of Hydro

in the dissipated water category and, conversely, to the fact that

Hydro drives a low share of impact for the Climate change

total category. In Italy-North, where the production of hydro

is significant, the production of Hydro tends to compete with

Fossil natural gas and Fossil hard coal. Ionizing radiation did not

strongly correlate with Climate change total (0.37). It is mostly

driven by Nuclear power production, which is not present in the

Italian production mix. Therefore, the absolute impact for this

category was low, in comparison to other control zones. Climate

change biogenic had a Pearson coefficient with Climate change

total of 0.16, which is the closest to zero among all LCA impact

indicators, indicating a low correlation between the two time

series. However, the electricity production from Biomass, which

drives the majority of the impact in this LCA impact category, is

not relevant.

TABLE 2 Summary of the analyzed correlations between the Climate

change total impact and Respiratory e�ects, inorganics indicators,

and the remaining 18 impact indicators for the hourly impacts of

electricity consumption throughout the full dataset, computed with

the Pearson coe�cient.

Impact Climate Respiratory

category change total effects, inorganics

Carcinogenic effects 0.89 0.78

Climate change biogenic 0.16 0.62

Climate change fossil 1.00 0.63

Climate change LULUC 0.79 0.83

Climate change total 1.00 0.63

Dissipated water -0.35 -0.07

Fossils 1.00 0.61

Freshwater and terrestrial acidification 0.73 0.81

Freshwater ecotoxicity 0.75 0.82

Freshwater eutrophication 0.63 0.80

Ionizing radiation 0.37 0.35

Land use 0.42 0.83

Marine eutrophication 0.82 0.80

Minerals and metals 0.85 0.81

Non-carcinogenic effects 0.66 0.76

Ozone layer depletion 0.63 -0.01

Photochemical ozone creation 0.87 0.88

Respiratory effects, inorganics 0.63 1.00

Terrestrial eutrophication 0.81 0.83

Looking at impact assessment classification of the four LCA

impact categories under consideration, Dissipated water is the

least recommended (or recommended, but to be applied with

caution), while Climate change biogenic, Respiratory effects,

inorganics are the most recommended (recommended and

satisfactory) (Fazio et al., 2018).

Having excluded three of the remaining four LCA impact

categories under consideration, we select the Respiratory effects

inorganic category. The unitary impacts of electricity for

the Respiratory effects inorganics indicator were driven by

different technologies, as presented in Figure 2. Fossil hard

coal and Fossil coal-derived gas drive the majority of the

shares of hourly impacts, while Fossil natural gas and Fossil

oil both contribute with a significant amount of outliers.

Table 2 shows the correlations between the Climate change

total impact and Respiratory effects, inorganics indicators

and the remaining 18 impact indicators. The correlation was

computed with the Pearson coefficient, with the hourly impacts

of electricity consumption accounted for throughout the

full dataset.

By considering all the Pearson coefficients of the two

selected impact categories, an assessment of a third LCA

impact category can be performed. The LCA indicator

selection methodology could be repeated iteratively. However,
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TABLE 3 Average test set performances for the daily SMAPE: Climate

change total and Respiratory e�ects, inorganics categories. For each

impact category, the value obtained with the best performing

forecasting model are shown in bold.

Forecasting model Climate Respiratory

change total effects, inorganics

DF ETMF DF ETMF

LR 3.75% 3.24% 3.90% 3.49%

NN32 3.57% 3.06% 3.96% 3.32%

NN64 3.58% 2.83% 3.91% 3.08%

RNN32 3.62% 4.64% 4.31% 3.93%

RNN64 4.14% 4.09% 4.34% 4.01%

the choice to stop after the selection of a certain number

of LCA impact categories will ultimately depend on the

user. In particular, it is critical how much the user is

determined to avoid unconscious burden shifting. In this work,

we limit the selection to the two mentioned LCA impact

categories, to prevent excessive complexity in the presentation of

the results.

3.2. Assessment of the forecasting
models

Given the selection of impact indicators necessary for the

DF approach made in Section 3.1, we evaluated the forecasting

models’ daily predictions both for the Climate change total and

the Respiratory effects, inorganics impact categories on the test

set. Therefore, we obtain the average of daily SMAPE values

reported in Table 3.

While an exhaustive comparison between model

architectures and hyperparameters search for the models

is beyond the scope of this article, the results reported above

show similar average performances between all the models

under study. The best outcomes were associated to the NN

with 64 units (NN64) model, particularly in its ETMF version.

It is worth noting that for the Climate change total category,

NN32 was the most accurate of the DF alternatives, barely

outperforming NN64. For the Respiratory effects inorganics

category, LR slightly edges out NN64 as most accurate among

the DF alternatives.

Nonetheless, ETMF models always outperform their DF

counterparts in all the experiments taken into consideration,

with RNN32 in the Climate change total category as an

exception.

Figure 5 represents the daily SMAPE over the test set for

the different models utilized in the present work both for the

Climate change total and Respiratory effects, inorganics impact

indicators, to graphically assess the robustness of such metric.

The box plot distributions were similar among all the models

under study, except for the RNN32 with ETMF approach, which

shows higher forecasting volatility and therefore wider quantile

ranges. In the Supplementary material, we report the same box

plot graphs for the nRMSE (Supplementary Figure S4).

The distribution of daily SMAPE for the NN64 model’s

forecasts that leverages the ETMF approach had both the lowest

and the most concentrated values among all the ones recorded

in the Climate change total impact category. Indeed, the 25th

and 75th quantiles statistics reach values of, respectively, 1.69%

and 3.39%, with a relative difference of 1.7% that contains half

of the population of the test set. The second-best performing

model for robustness was the NN32 model, which had the

same architecture of NN64 but different parameterization,

with a 25th percentile of 1.75% and 75th percentile

of 3.73%.

The NN64 with ETMF approach displayed robust

forecasting performances in the Respiratory effects, inorganics

category as well: half of the data points in the test set have

a SMAPE between 1.91% (25th percentile) and 3.65% (75th

percentile), representing the tightest interval among all

the assessed models. For this category impact, the second-

most robust model is NN32 ETMF, with 25th and 75th

percentile metrics equal to 1.92% and 3.75%, respectively.

It is worth noting that in both assessed LCA impact

categories NN32 ETMF has a median value slightly lower

than NN64.

A model’s residuals are defined as the difference between

the predicted values and the actual time series, namely yh −
ŷh. The distribution of a model’s residuals is indicative of

the amount of useful information exploited. A model that

fully utilizes the useful information should have random noise

residuals, which follow a zero mean gaussian distribution.

Using the python library SciPy, we performed a normality

test based on (D’Agostino and Pearson, 1973). None of the

residual distributions passed the test with a significance level

of 0.001, implying that the they were not zero mean gaussian

distributions and that the forecasting performances can be

improved. This could be done by including other meaningful

predictors within the set of input variables or by implementing

different preprocessing techniques to handlemissing data, which

is left for future developments. A discrete visualization of the

distributions of the ETMF and DF model residuals can be found

in Supplementary Figures S6, S7, respectively.

Figure 6 shows the RI of the different technologies toward

the daily SMAPE of the NN64 ETMF model, for the assessed

LCA impact categories.

The greatest contributions in terms of prediction error

for the Climate change total category comes from the Hard

Coal and Fossil Gas technologies, both of which have a

high penetration in the North Italian energy mix (TERNA,

2019) and a relatively high unitary impact. Despite having a

substantial share in the control zone under study, renewable
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FIGURE 5

Box plots of the SMAPE for the Climate change total (left) and Respiratory e�ects, inorganics (right) LCA impact indicators. DF approach is

shown in red, while ETMF in blue. The continuous line at the center of each boxplot is the median of the distribution, while the dotted line is the

mean.

FIGURE 6

Box plots representing the relative importance (RI) of the di�erent technologies toward the daily SMAPE of the NN64 ETMF model. On the left,

the Climate change total category and on the right the Respiratory e�ects, inorganics category. The continuous line at the center of each

boxplot is the median of the distribution, while the dotted line is the mean.

energy sources, such as solar, wind, and hydro have minor

contributions on the overall forecasting error due to their low

Climate change total impact, particularly under our system

boundaries assumption.

Considering the Respiratory effects, inorganics category, we

can see how important unitary impacts are in the determination

of the single RIs: while hard coal still plays an important role,

fossil gas shows a remarkable reduction. RI is the highest for

fossil oil, despite its low penetration in the energy mix, due to

its high unitary impact in this category and to the high number

of outliers in the distribution of hourly share this impact (see

Figure 2).

Frontiers in Sustainability 13 frontiersin.org

https://doi.org/10.3389/frsus.2022.1037497
https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org


Portolani et al. 10.3389/frsus.2022.1037497

4. Discussion

The full exploitation of LCA aware scheduling is dependent

on the availability of reliable data sources, both for the unitary

LCA impacts and the electricity productions by technology.

First, unitary LCA impacts are represented by static data: an

update would only be needed if a new version of the LCA

database or LCIA method is released. Second, the missing

timestamps and outliers in the ENTSO-E database will need

to be preprocessed appropriately. However, this preprocessing

reduces the overall number of available samples for models’

training, validation, and testing. Forecasting performance can be

reasonably improved without these issues.

The availability of data that spans over several years will

result in a database of a considerable size. This could enable

the use of models characterized by a higher number of learnable

parameters, and be able to encapsulate a wider variety of states

of the generating processes under study (i.e., the electricity

technology mix or the LCA impact of the desired category).

The application of the models under study on mature energy

markets, such as theDK2’s zone in theNordPool grid analyzed in

Leerbeck et al. (2020) and Bokde et al. (2021), where the energy

generation mix is relatively stable over the years, will benefit

from an increase of the database size. Indeed, the stability of

the underlying processes over time allows one to fully leverage

the increased number of learnable states while keeping the

generalization performances on the test set. On the contrary,

due the continuous evolution of the Italian technology mix,

this market is not stable and an increase in the dataset size

(i.e., collecting more years worth of data) may not result in an

increase of model performances.

In light of the results reported in Section 3.2, the NN

architecture seems to be the one that produces the best results for

the forecasting problem, if correctly parameterized. Moreover,

it was again surprising that the LR performance was almost

in line with NN and even better than RNN. The simplicity

of implementing LR models could attract users with moderate

risk tolerance toward forecasting errors. However, in the case

of very risk adverse users of the LCA Aware Framework,

further hyperparameter optimization and dataset preprocessing

could lead to improve NN and RNN performances. In the case

of LR, the improvement potential would be limited to that

related to dataset preprocessing. Finally, it was surprising to see

RNN models as the worst performers, as they were specifically

developed to deal with time-series. However, the relatively small

dataset seems to hinder their performance.

The ETMF approach has three advantages over the DF

approach. First, with the sole exception of the RNN for the

Climate change total category, ETMF models perform better

than the corresponding DF models. This is clear from Figure 5,

considering mean, median, and distance between the 25th and

the 75th percentiles.

Second, the ETMF approach guarantees increased flexibility

and scalability in the choice of the assessed LCA impact

indicators. Indeed, the ETMF approach allows for a change of

LCA indicators or LCIAmethods at any time of the development

and application of the LCA Aware Scheduling framework. This

is because the ETMF approach leaves this step outside of the

data preprocessing phase and limits its implementation to a

mere linear combination between the forecast production of

each technology with their respective unitary LCA impacts. The

DF forecast approach, on the other hand, required selecting

the LCIA method and the LCA impact indicators during the

preprocessing phase. This approach was not flexible because an

update of the LCIA method would result in the need to retrain

the model. Moreover, the DF approach was not scalable as the

implementation of any additional LCA impact indicator would

require the training, validation, and testing of an additional

model. However, in our study, the contextual requirement for

said flexibility and scalability translated in a more demanding

computational burden for the ETMF approach, since it implies

the training of a dedicated model for every technology. In

contrast, the DF approach requires to train just one model

for every LCA category. This is a disadvantage for the DF

approach only if the number of forecast LCA impact indicators

is higher than the number of technologies considered in the

ETMF. Otherwise, the DF approach implied fewer models to

train. However, it is worth noting that this should not be a

significant issue when considering a possible application in a

real environment. The limited size of the models means that the

training phase is in the order of minutes (with a computer with

CPU Intel i7, a 16 GB RAM, and a NVIDIA 1050Ti GPU), which

is a reasonable amount of time if the prediction is needed once a

day.

Third, the ETMF approach makes the separate accounting

and quantifying the error of the forecast of each technology

in the electricity mix possible. This could be useful to debug

and improve the forecasting models for each technology. It

could also support a prioritization of resources, where those

models that were responsible for high shares of the overall

forecasting error can be addressed early and adequately for

improvement. Therefore, the ETMF can be used to assess the

relevance of a technology on the LCA impacts resulting from the

technology mix, something that would not be possible with the

DF approach.

We recommend the use of the ETMF approach as the

advantages of the ETMF approach are not solely dependent on

the dataset. However, more comparison studies like the present

one are needed to confirm if the superior accuracy of the ETMF

model over the DF ones can be generalized. Since the accuracy

and reliability of the forecast is themost important parameter for

the diffusion of LCAAware Scheduling, the DF approach should

not be abandoned yet. The DF approach could prove to be more

accurate for certain datasets or be more convenient for users that
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do not value avoiding unforeseen burden shifts among impact

categories.

It is worth noting that our prediction performances are of

the same order of magnitude with the ones obtained by Leerbeck

et al. (2020), with a nRMSE in the 0.095–0.183 range reached

by the MWA1,2, MARIMA6, and MWA7−24 models that is close

to the 0.073 for NN64 (see Supplementary Table S1). However,

we highlight that the results are referring to different zones,

Italy-North instead of DK2, and therefore cannot be directly

compared. For the same reason, we cannot directly compare our

results to the forecasts obtained in other studies that focus on

other market zones (Hawkes, 2010; Wang et al., 2016; Riekstin

et al., 2020; Bokde et al., 2021).

Our findings on the better performance of NN models,

and in general, the ETMF approach over their respective

DFs cannot be generalized without proof from other datasets

with different geographic or temporal boundaries. Conversely,

the methodology to select LCA indicators to support the DF

approach can be considered valid for other datasets. The fact

that the ETMF approach is preferred over the DF approach,

even for other datasets, represents the desired advantages of the

flexibility and scalability, as well as for the possibility to account

and quantify the error of the forecast of each technology in the

mix.

Finally, we should highlight a limitation in the ENTSO-E

dataset, which we hope could be addressed. In the Italian case

study, the gas production is a relevant source of variability,

also because two different technologies—Combined Cycle Gas

Turbine plants (CCGT) andOpenGas Turbine plants (OGT) are

represented under the same “Gas-fossil” label. However, the two

technologies provide starkly different functions. Indeed, OGT

mainly operates during peak demand hours with high electricity

prices, due to their high operational costs and capability to

steeply ramp-up and rump-down production. This would not

be profitable with CCGT plants, due to the thermal inertia

of the combined steam cycle. Hence, they mainly provide the

base load production. However, these two technologies are

characterized by significantly different LCA impacts per kWh.

Using the ecoinvent database (version 3.6, allocation, cut-off by

classification) (Wernet et al., 2016), it can be seen that CCGT

and OGT technologies show a cradle-to-gate Climate change

total impact indicator of 0.46 and 0.78 kg CO2-eq, respectively,

when evaluated with the IPCC 2013 method. Therefore, a more

detailed data reporting for different technologies could reduce

the model’s simplification while improving its robustness and

accuracy.

5. Conclusion

The present study focused on two aims. First, we aimed to

define a methodology to select LCA impact indicators, which

was necessary in the DF approach to limit computational effort

and issues of unconscious burden-shifting. Second, we aimed

at comparing 10 different machine learning models for the

forecast of the hourly average LCA impacts due to electricity

consumption. The models include LR, two variants of feed-

forward neural networks (with 32 or 64 units) and two variants

of RNN (with 32 or 64 units). For each of these models, both the

ETMF and the DF approaches have been implemented.

Our contribution is three-fold. First, we propose a

methodology to select LCA impact indicators in the DF

approach, in which the modeling of all the categories of a

LCIA method was too computationally heavy. We decided to

select two of the 19 ILCD 2.0 2018 midpoint indicators, one of

which would be the Climate change total, since it is the most

widely used. The first criterion of the methodology directly aims

to limit problems of burden shifting across impact categories.

Thus, we propose to use the Pearson correlation coefficient

between indicators for each hour of the electricity production

dataset. Visualization of the correlation between Climate change

total and the other indicators was then possible. The second

criterion relied on the role of technologies that drive a significant

portion of LCA impacts. Investigation of the data points for

technologies with high market share proved to be interesting.

We suggest the selection of LCA impact indicators for which

such data points do not cluster in the correlation graph. Third,

we evaluated the relevance of absolute LCA impacts for a certain

category within the specific geography of the control zone.

Finally, we considered the recommendation level of the LCA

impact indicators according to the ILCD classification. Based

on the this methodology, we selected the Respiratory effects

inorganics impact indicator.

Second, we compared the 10 models and we demonstrated

that both for the Climate change total and Respiratory effects,

inorganics indicators, the NN64 with ETMF approach was on

average the best performing model, with SMAPE values for the

test set that are, respectively, 2.83% and 3.08%. This model was

least prone to outliers in the daily SMAPE, which leads to a

lower average, and it was also more robust. Significantly, the

distributions of the daily SMAPE for the feed-forward neural

network with 64 units are the ones in which the difference

between the 75th and 25th percentiles of the distribution is

lower.

Third, we show how the ETMF approach was preferable

to the DF one for three reasons. For our dataset, the ETMF

models were generally more accurate and robust than the

respective DF models. Then, we considered the ETMF more

flexible and scalable as the LCIA methods can be changed

without model retraining, and it can consider all LCA indicators

simultaneously, without adding significant computational effort.

Finally, the ETMF approach enables the accounting and

quantification of the error of the forecast of each technology in

the electricity mix.

In our future work, we aim to apply the outcomes of this

work on the best performing forecasting model within a full
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modeling of LCA Aware Scheduling, to test the potential of

LCA impacts reduction within a specific case study. Further

developments also include the application of forecasting models

on other countries and the inclusion of exogenous variables. To

better test the efficiency of NNs for this forecasting task, it would

be interesting to evaluate the influence of variables such as the

quality of the input parameters, the quantity of available data,

the pattern of NNs, the number of neurons, and choice of the

training algorithm. Finally, we aim to study the performance of

the LCA impacts reduction, within the LCA Aware Scheduling

framework, in case the same forecast model is available to several

companies with a significant cumulative demand. Consequently,

these companies would use the outputs of the forecast to

independently reschedule several plants, potentially increasing

the distance between forecast and actual LCA impact indicators.
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