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This work presents the formulation of a two-stage stochastic mixed-integer linear

programming (MILP) model to include uncertainty in the design of renewable-based utility

plants. The model is based on a superstructure that integrates technologies to process

biomass, waste, solar radiation, and wind and considers uncertainty in availability of

the renewable resources and on the utility demands. The uncertain parameter space is

calculated based on a monthly probability density function for each uncertain parameter

and discretized into different levels. It is shown that as uncertainty is considered in the

model formulation, design flexibility improves with respect to the deterministic-based

designs, although the flexibility is achieved at the expense of higher underused facilities

and therefore unused investment cost.

Keywords: renewable resources, utility plants, uncertainty, stochastic optimization, flexible designs

INTRODUCTION

Renewable energy resources, such as solar and wind energy, are being considered with special
interest due to their contribution toward the development of a sustainable energy industry.
These types of energy sources are characterized for their intermittent behavior, which needs
to be considered during the design process of renewable-based energy systems. Some authors
have proposed the design of renewable-based systems that integrate different types of processing
technologies and storage systems to mitigate the intermittency of renewables. For instance, Peng
et al. (2020) proposed the use of fixed bed reactors to be integrated into concentrated solar
plants (CSPs) as a thermochemical energy storage. Three 3 types of gas-solid reversible reactions,
namely, redox, hydroxide, and carbonate reactions, were considered. In this configuration, a
heat transfer fluid, heated by solar energy, is used during the daytime operation to drive an
endothermic reaction, while during the night the working fluid, used in the power block, is sent
to the reactor to absorb the heat released by the exothermic reaction. Wang et al. (2017) addressed
the conceptual design of ammonia-based energy storage systems. Malheiro et al. (2015) formulated
an MILP model to design hybrid electrical systems that integrate wind turbines, photovoltaics,
diesel generators and batteries. The model provides the optimal sizing and scheduling of the
system. Ranaweera and Midtgård (2016) studied the economic and operational implications of
a system that couples PV technology with a battery system. They showed that such a scheme
increases the daily economics benefits while reducing over-voltage problems caused by reverse
power flow. Other authors have developed mathematical frameworks that include uncertainty as
an effective tool to evaluate the effect of variability of parameters on the system performance. On
this subject, one can distinguish two approaches to include uncertainty in an optimization model,
a robust optimization approach (Ben-Tal et al., 2011; Zhang et al., 2016; Saeedi et al., 2019) and a
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two-stage stochastic approach (Grossmann et al., 2017). The first
one consists of finding a feasible solution for every uncertain
scenario, while the second approach optimizes the expected
value over the possible realizations considered within a set of
uncertain parameters. Both approaches have been used aiming at
increasing the quality of the solutions of themathematical models
used to design renewable-based systems. For instance, Amusat
et al. (2018) formulated a mathematical model to determine
the optimal size and scheduling of a renewable-based integrated
system under uncertainty. A stratified random sampling method
was used to generate different scenarios to determine the best
structure of the system. Allman et al. (2019) formulated a robust
optimization approach to determine the optimal scheduling of
a wind-powered ammonia plant. Baringo and Conejo (2013)
used clustering methods to calculate representative structures
to design wind-power production plants. Mallapragada et al.
(2018) reported the impact of a model solution on the long-
term expansions of renewable-based electrical systems; the
variability of renewable resources was characterized by using two
approaches, namely, representative days and time slices. Cao et al.
(2018) used statistical extrapolation techniques to determine the
optimal control scheme of a wind turbine. Zhang and Conejo
(2017) formulated a model that considered long- and short-term
uncertainty to determine the expansion planning of electrical
systems. Long-term uncertainty was related to changes over time,
including demand growth and capacity expansions, while short-
term uncertainty considered renewable sources variability. The
problem was solved using the primal Bender’s decomposition
algorithm. Martín (2016) formulated a two-stage stochastic
approach to study the effect of uncertainty on the design and
operation of renewable-based facilities that produce chemicals as
a way to store wind and solar energy. Daneshvar et al. (2020)
addressed the problem of the optimal scheduling of systems
that integrate wind and thermal technologies with hydropower
pumped storage (PHS). In that work, first-stage variables were
defined in terms of production cost of electricity based on
thermal and PHS units, while second-stage variables were related
to dispatch costs of units.

In addition to the uncertain behavior of the supply of
renewable resources, the design of utility plants must also
consider the fluctuating demands of steam and electricity. On
this subject, some authors have included uncertainty in the design
of fossil fuel-based utility plants to improve their flexibility. For
instance, Sun et al. (2017) developed a two-stage stochastic model
to determine the best configuration of a utility plant that uses
natural gas as fuel, and took steam demands and electricity prices
as uncertain parameters. Zhao and You (2019) formulated a data-
driven robust optimization model to determine the operating
conditions that minimize the energy consumption of a fossil-
based utility plant. The model considered uncertainty on utility
demands (exogenous uncertainty) and on the efficiency of
the pieces of equipment (endogenous uncertainty), while the
uncertainty set was generated by fitting the Dirichlet process
mixturemodel to historical industrial data. Bungener et al. (2015)
evaluated the resilience of a steam network when unexpected
boilers shutdowns take place, for whichMonte-Carlo simulations
were used to randomly generate failure scenarios. The study of

resilience of utility plants under unexpected equipment failure
has also been addressed in other works (Luo et al., 2013; Sun and
Liu, 2015).

Pérez-Uresti et al. (2020) developed a multi-period MILP
model to design renewable-based utility plants. The model
considered the integration of wind, solar radiation, biomass,
and waste to produce steam and electricity, and was used to
study the effect of time discretization on the optimal design. The
flexibility of the model has already been tested in several case
studies including the design of utility plants located in Scotland
(Pérez-Uresti et al., 2019a), and Spain (Perez Uresti, 2020). The
model has also been used to estimate the production cost of
renewable-based steam at different pressures levels (Pérez-Uresti
et al., 2019b). One limitation of those works, however, is that
uncertainty was not considered. The incentive is to design a
system flexible enough to ensure continuous supply of steam and
electricity, even when an increased flexibility will probably be
achieved at the expense of bigger and more expensive designs.

The objective of this work is to include uncertainty in the
design of renewable-based utility plants to study the economic,
operational, and technical implications of developing a system
with increased flexibility. We formulate a two-stage multi-
period MILP stochastic model that considers wind velocity, solar
radiation, and utility demands as uncertain parameters. The
model is based on a superstructure that includes biomass, biogas,
and syngas boilers, a concentrated solar power plant (CSP), wind
turbines, and a waste heat recovery system consisting of syngas
and biogas turbines linked to a heat recovery steam generator
(HRSG). To characterize uncertainty, monthly tree scenarios
with probability density functions (PDF) are generated for each
uncertain parameter based on historical data. Then, a different
number of scenarios is considered to study the performance of
the system under more detailed time discretization, along with
its economic implications.

The rest of the paper is organized as follows. Section Overall
Superstructure Description shows a general description of the
superstructure. In section Problem Formulation the solution
procedure is discussed, while in section Case Study the case
study developed for the south-west region of Mexico is reported.
Results and discussion are presented in section Results, and in
section Conclusions, some conclusions of this work are given.

OVERALL SUPERSTRUCTURE
DESCRIPTION

Figure 1 shows the structure of the renewable-based utility plant.
In the first section, biomass, solar radiation, waste, and wind
energy are used as feedstocks to produce utilities. To process
each renewable resource, different technologies are included,
namely, biomass boilers, gasifiers, syngas, and biogas turbines, a
concentrated solar power (CSP) plant, and wind turbines. The
second section of the utility plant consists of a steam network
that includes a steam turbine, steam headers, heat exchangers,
and a cooling system. The optimal design of the plant is driven
by the minimization of the total annual cost (TAC). Solar
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FIGURE 1 | Superstructure of the renewable-based utility plant.

radiation, wind velocity, and utilities demand are considered
under uncertainty.

PROBLEM FORMULATION

The description of the problem formulation is presented in three
sections. In the first one, the model and main assumptions are
described. Section Definition of the First- and Second-Stage
Variables shows the definition of the first- and second-stage
variables involved in the two-stage stochastic approach. Finally,
in section Procedure to Generate Scenarios and to Calculate
Their Probabilities, the characterization of uncertainty including
the generation of scenarios and the estimation of frequencies of
occurrence is described.

Modeling Description
In this work, the model presented by Pérez-Uresti et al. (2019a)
was extended to include the uncertainty related to renewable
resources and utility demands. Uncertainty was included by
formulating a two-stage multi-period stochastic program. In this
section, only general aspects of the model are given; for a more
detailed description, the reader is referred to Pérez-Uresti et al.
(2019a).

Biomass Processing
The flowsheet of the biomass processing section is shown in
Figure 2. It is assumed that the lignocellulosic biomass generated
in a period of time can be stored or used in the same period to

produce utilities. There are two processing options. In the first
one, the biomass is burnt in a biomass boiler, which can produce
as many as four types of steam. The model is based on mass
and energy balances, and the production of any type of steam is
conditioned by the existence of the boiler.

In the second option, biomass is converted into syngas
through a gasification process. In this case, the model can select
between direct and indirect gasification. The syngas is sent to a
reforming stage, where the light hydrocarbons produced in the
gasifier reactor are converted into H2 and CO. The reforming of
hydrocarbons can be carried out by partial oxidation (POX) or
by steam reforming (SR). Syngas can then be sent to a turbine or
to a boiler. Within the syngas turbine, the syngas is compressed,
burnt in a combustion chamber, and finally expanded to produce
electricity. The flue gas leaving the turbine is sent to an HRSG
system to produce at most two types of steam. The modeling of
the gasification stage is based on a surrogate model that consists
of four steps: (a) development of mass and energy balances
to calculate the syngas composition exiting from gasifiers, (b)
simulation of the reformer reactors in Aspen plus, (c) simulation
of the syngas turbine in Aspen plus, and (d) development of an
optimization subroutine to design the HRSG system. From the
results, parameters needed for mass and energy balances for this
section are calculated.

Concentrated Solar Power
The concentrated solar power plant (CSP) consists of two
sections, the heliostat field and the steam generation section,
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FIGURE 2 | Flowsheet of the biomass processing.

see Figure 3. In the first section, solar radiation is captured by
the heliostats and redirected to the top of a solar tower, where
a heat exchanger, called receiver, is placed. The concentrated
solar energy is used to heat a heat transfer fluid (in this
case molten salts) from 290 to 565◦C (Martín and Martín,
2013). Thereafter, the molten salts are sent to the thermal
storage tanks, from which a fraction is sent to the second
section of the plant. This section was modeled using energy
balances to calculate the area of the heliostat field, with
lower and upper bounds taken as 120 and 1,500,000 m2

(National Renewable Energy Laboratory, 2017). A value of 55%
as the global efficiency for the heliostat field was considered
(Martín and Martín, 2013).

The steam generation section consists of a set of heat
exchangers that produce steam at different pressure levels
(as many as four types) and reheat the steam coming
from the steam turbine. The production of any type of
steam is restricted by the existence of the plant. The
modeling of the CSP plant is based on mass and energy
balances in the splitting points shown in Figure 3, and on
design equations to calculate the heat transfer area of each
heat exchanger.

Biogas Processing
Biogas can be produced by using either municipal solid waste
(MSW) or cattle manure (CM) as feedstock, processed in an
anaerobic digestor (see Figure 4). In addition to methane, carbon
dioxide, NH3, and H2S are also produced. These compounds
are then removed in a purification stage. The biogas can be
sent to a biogas boiler or to a waste heat recovery system
that consists of a boiler linked to a heat recovery steam
generator. This section of the plant is modeled based on a
surrogate model that consists of three steps: (a) computation
of mass and energy balances for the digestor using the yield
data of each waste reported by León and Martín (2016);
(b) simulation and sensitivity analysis (power produced vs.
compression ratio) of the biogas turbine using Aspen plus;
and (c) development of an optimization subroutine to design
the HRSG.

Wind Farm
The wind farm was modeled based on power output curves of
wind turbines fitted to the following correlation (De la Cruz and
Martín, 2016),

Pwindsc,t =
PnomNturbsc,t

1+ e(−(vsc,t−a)mp)
∀ t ∈ T , ∀ sc ∈ SC (1)

where vsc,t is the wind velocity in period t and scenario
sc. The selected design of wind turbine is characterized by
Pnom = 1,500, a = 8.08 m/s, mp = 0.78 s/m. Finally,
Nturbsc,t is the number of wind turbines used over time for

each scenario. For wind farms, a lower bound of 28D2
WT

(where DWT is the diameter of the wind turbine) and an
upper bound of 36 km2 (Aspen Environmental Group, 2018)
were considered.

Steam Network
The steam network includes a steam turbine with multiple
extractions, a set of steam headers, a cooling tower, and a
condenser. The steam produced by the renewable resources
is sent to this section to be expanded through the steam
turbine and, if needed, to be reheated. The model of this
section is based on mass and energy balances. The steam
network also provides different pathways to produce steam,
which can be done through multiple extractions of the
steam turbine with pressures corresponding to HP, MP, and
LP steam.

Definition of the First- and Second-Stage
Variables
The formulation of the two-stage stochastic program considers
the following first- and second-stage decisions.

First-Stage Decisions
First-stage decisions are made before uncertainty is considered,
and are related to the number and size of the units (i.e.,
investment or design variables). They remain fixed over all
the scenarios. In this work, the first-stage variables are defined
as follows.
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FIGURE 3 | Flowsheet of the CSP plant.

FIGURE 4 | Flowsheet of the biogas processing.

Biomass Processing
Equations (2)–(6) are related to the biomass boiler, gasifiers,
syngas turbine, syngas boiler, and the HRSG system, respectively.

(Qc)D ≥ Qsteam
ct,sc

+ Qreheat
ct,sc

∀ t ∈ T ∀ sc ∈ SC (2)
(

SYq,j

)

D
≥ SYq,j,t,sc ∀ q ∈ Q, ∀ j ∈ J, ∀ t ∈ T ∀ sc ∈ SC (3)

(

Pq,j,k
)

D
≥ Pq,j,k,t,sc ∀ q ∈ Q, ∀ j ∈ J, ∀ k ∈ K,

∀ t ∈ T ∀ sc ∈ SC (4)
(

QSBq,j

)

D
≥ Qsteam

SBq,j, t,sc
+ Qreheat

SBqj,t,sc
∀ q ∈ Q, ∀ j ∈ J, (5)

∀ t ∈ T ∀ sc ∈ SC
(

Fn
q,j,k

)

D
≥

∑

s∈S F
n,s
q,j,k,t,sc

∀ q ∈ Q, ∀ j ∈ J, ∀ k ∈ K,

∀ n ∈ N, ∀ t ∈ T, ∀ sc ∈ SC (6)

CSP Plant
The design area for each heat exchanger in the steam generation
section is restricted by Equation (7), while Equations (8) and (9)
account for limits on the flowrate of molten salts and the design
area of the heliostat field.

(

As
l

)

D
≥ As

l,t,sc ∀ s ∈ S, ∀ l ∈ L, ∀ t ∈ T ∀ sc ∈ SC (7)
(

Ftotalsalt

)

D
≥ Fsteamsaltt,sc

+ Freheatsaltt,sc
∀ t ∈ T, ∀ sc ∈ SC (8)

(

Asf

)

D
≥ Asft,sc ∀ t ∈ T, ∀ sc ∈ S (9)

Biogas Processing
The design variables for biogas processing are constrained by
Equations (10)–(13), which are related to the digestor, the biogas
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boiler, the biogas turbine and the HRSG system.

(Wastez)D ≥ Wastez,t,sc ∀ t ∈ T, ∀ z ∈ Z , ∀ sc ∈ SC (10)

(QBGB)D ≥ Qsteam
BGBt,sc

+ Qreheat
BGBt,sc

∀ t ∈ T, ∀ sc ∈ SC (11)
(

P
biog

kb

)

D
≥ P

biog

kbt,sc
∀ kb ∈ KB, ∀ t ∈ T, ∀ sc ∈ SC (12)

(

F
biog

kb,nb

)

D
≥

∑

s∈S

Fsbiokb,nb,t,sc
∀ kb ∈ KB, ∀ nb ∈ NB,

∀ t ∈ T, ∀ sc ∈ SC (13)

Wind Farm
A restriction for the wind farm is given by Equation (14).

(Nturb)D ≥ Nturbt,sc ∀ t ∈ T, ∀ sc ∈ SC (14)

Steam Network
Equation (15) applies to the heat exchangers involved in the
steam network, while Equations (16), (17) are used for the steam
turbine and the cooling tower.

(ACUn)D ≥ Acunt,sc ∀ cun ∈ CUN, ∀ t ∈ T, ∀ sc ∈ SC (15)

(PowerST)D ≥ PowerSTt,sc ∀ t ∈ T, ∀ sc ∈ SC (16)
(

Qcooling

)

D
≥ Qcoolingt,sc ∀ t ∈ T, ∀ sc ∈ SC (17)

After the structure of the system is obtained, the cost of each
equipment unit is estimated from correlations of the form,

Cost = A
(

Desing variable
)

D
+ By (18)

where A is a coefficient related to the scaling of the equipment
unit, B is the fixed cost related to the unit, and y is a binary
variable used to indicate the existence or selection of the unit. The
total investment of the plant is calculated by adding the cost of the
units involved in each processing section multiplied by a factor of
3.3 to consider costs of instrumentation, ancillary buildings and
other components (El-Halwagi, 2012).

Second-Stage Decisions
Second-stage decisions are taken when uncertainty is considered
and are associated to control variables. They depend on the
scenario realization (i.e., operating variables such as flowrates of
steam, power, and biomass). The definition of the second-stage
variables as a function of each realization is shown below.

a) Production of steam under uncertainty. The production
of any type of steam depends on each scenario realization
as follows,

Mass balance for biomass-based steam

FsBsc,t =
∑

q∈Q

∑

j∈J

∑

k∈K

∑

n∈N

Fn,s
q,j,k,sc,t

+ Fscsc,t +
∑

q∈Q

∑

j∈J

FsSBq,j,sc,t

+
∑

q∈Q

∑

n∈N

Fn,sDq,sc,t
∀ s ∈ S, ∀ t ∈ T, ∀ sc ∈ SC (19)

Mass balance for biogas-based steam

Fsbiosc,t = FsBGBsc,t +
∑

kb∈KB

∑

nb∈NB

Fsbiokb,nb,sc,t
∀ s ∈ S, ∀ t ∈ T,

∀ sc ∈ SC (20)

Global mass balance for the renewable-base steam

FsTsc,t = FsBsc,t + FsCSPsc,t + Fsbiosc,t ≥ FsDemandsc,t

∀ s ∈ S, ∀ t ∈ T, ∀ sc ∈ SC (21)

The procedure to generate the scenarios and their probabilities
of occurrence is explained in section Procedure to Generate
Scenarios and to Calculate Their Probabilities.

b) Operating cost. The expected operating cost of each
section over all of the possible realizations is calculated as follows.

Biomass processing

OpCostbiom =
∑

sc∈SC

∑

t∈T

∑

q∈Q

∑

j∈J

πsc,t ∗ OpcostGasfq,j,sc,t

+
∑

sc∈SC

∑

t∈T

πsc,t ∗

(

Binsc,t + Busedsc,t

)

Cbiom

+
∑

sc∈SC

∑

t∈T

πsc,t ∗ B
Storage
sc,t Cstorage (22)

where πsc,t is the probability associated with each scenario, Cbiom

is the cost of biomass in $/t and Cstorage is the cost of storage of
biomass, set equal to 6.5 $/t (Idaho National Laboratory, 2019).

Biogas Processing

Opbiog =
∑

sc∈SC

∑

t∈T

Opbiogassc,t ∗ π sc,t (23)

CSP plant

OpCSP =
∑

sc∈SC

∑

t∈T

0.028 ($USD/kWh)Qprodsc,t ∗ π sc,t (24)

Wind Farm

OpWind =
∑

sc∈SC

∑

t∈T

0.02 ($USD/kWh)Pwindsc,t ∗ π sc,t (25)

Procedure to Generate Scenarios and to
Calculate Their Probabilities
Figure 5 shows a schematic representation for the calculation
of the occurrence probability of each scenario. The procedure
consists of five stages.

1. Generate monthly probability density functions for each

uncertain parameter. As a first step, historical data, wθ ,t ,
are used to estimate the monthly probability density function
(PDF) of solar radiation, wind velocity, and electricity
and steam demands, which are considered as uncertain
parameters. The PDF helps to see how scattered the data
of the uncertain parameters are over time. In addition, it is
used to calculate the probability associated with the uncertain
parameter, θ , taking a value of wθ ,t , which is defined as P

wθ ,t

θ .
2. Discretize the probability distribution of uncertain

parameters. The probability function of each uncertain
parameter can be approximated by discretization into a set
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FIGURE 5 | Schematic representation of procedure to generate scenarios and to calculate their probabilities.

of finite values ranging at different levels, represented by eθ .
Each level is associated with the probability of occurrence of
low, medium, and high values of each uncertain parameter.
Once the number of levels is set, upper, and lower bounds,
UB

eθ
t and LB

eθ
t are established.

3. Assign a nominal value to represent each level of the

uncertain parameters. A nominal value, NV
eθ
θ ,t , that can

represent each level is calculated as the weighted sum of the
data included in each level

NV
eθ
θ ,t =

wθ ,t=UB
eθ
t

∑

wθ ,t=LB
eθ
t

wθ ,tf
wθ ,t

θ

∑wθ ,t=UB
eθ
t

wθ ,t=LB
eθ
t

f
wθ ,t

θ

∀ θ ∈ θ , eθ ∈ E, t ∈ T (26)

where wθ ,t is the value that the uncertain parameter, θ , takes in
the period of time t, f

wθ ,t

θ represents the frequency of occurrence
of the value wθ ,t within that period of time, and UB

eθ
t and LB

eθ
t

represent the upper and lower bounds that define the level eθ .

4. Calculate the probability of occurrence of the nominal

value. The probability associated with the nominal value
is calculated as the accumulated probability of the values
included in each level,

P
eθ
θ ,t =

wθ ,t=UB
eθ
t

∑

wθ ,t=LB
eθ
t

P
wθ ,t

θ ∀ θ ∈ θ , eθ ∈ E, t ∈ T (27)

where P
wθ ,t

θ is the probability calculated from the PDF and
associated with the uncertain parameter, θ , with a value of wθ ,t ,
UB

eθ
t and LB

eθ
t represent the upper and lower bounds that define

the level eθ .

5. Generate the possible scenarios and their probabilities of

occurrence. The number of scenarios that are generated for
each period of time, SCt , are calculated. They are given by
the Cartesian product of the levels selected to discretize the
probability function of each uncertain parameter.

|SCt| =

θ
∏

θ ,t

eθ ∀ t ∈ T (28)

Finally, the probability associated with each scenario, πsc,t , is
calculated as follows,

πsc,t =

θ
∏

θ ,t

P
eθ
θ ,t ∀ t ∈ T (29)

A condition to meet is that the summation of the probabilities of
each scenario generated in the period of time t has to be equal
to one.

Objective Function
The objective function consists of minimizing the total annual
cost (TAC) of the utility plant, defined as the summation of the
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FIGURE 6 | Optimal structure of the plant.

annualized first-stage cost (investment cost) plus the expected
second-stage cost (operating cost).

min TAC=
1

3
INV+

∑

sc∈SC

∑

t∈T

πsc,t
∗OpCostt,sc (30)

s.t.

Contraints

{

h
(

d,t,x (t,θsc) ,θsc,y
)

=0

g
(

d,t,x (t,θsc) ,θsc,y
)

≤ 0
(31)

where d are the design variables, x are flows, y are integer
variables, and θsc is the uncertain parameter for scenario sc.

CASE STUDY

The model was applied to design a renewable-based utility
plant located in the south-west region of Mexico. The utility
plant is assumed to supply LP steam to a bioethanol plant
while delivering electricity to a city. Wind velocity, solar
radiation, LP steam demand and electricity demand were taken
as uncertain parameters, for which historical data for the years
2015–2018 (Centro Nacional de Control de Energía, 2019;
National Renewable Energy Laboratory, 2019) were used to
calculate the probability of each scenario. LP steam demand
was calculated by correlating the monthly gasoline consumption
(Secretaria de Energía, 2018) with the LP steam consumption
of a typical bioethanol plant (Karuppiah et al., 2008) and
assuming a 5.8% blend of bioethanol in gasoline (Secretaria
de Energía, 2016). For a more detailed description of the case

study, the reader is referred to Pérez-Uresti et al. (2019a).
To solve the problem, four levels of wind velocity, and three
levels for solar radiation and demands for electricity and LP
steam were considered, which resulted in a total number
of scenarios per month of 108. The problem consists of
963,960 continuous variables, 1,634,964 equations and 200 binary
variables. It was coded in the GAMS software environment,
and solved using CPLEX in 149,827 s of CPU time, with a
gap below 1%.

RESULTS

Section Design of a Renewable-Based Utility Plant Under
Uncertainty shows the optimal design of the utility plant
that includes uncertainty, along with an analysis of the effect
of reducing the discretization level of the uncertainty on
the optimal solution. In section A Comparison Between
Deterministic Solutions and Solutions Including Uncertainty,
a comparative analysis between a design based on a
deterministic formulation and the one that includes uncertainty
is reported.

Design of a Renewable-Based Utility Plant
Under Uncertainty
When 108 scenarios were considered, the utility plant integrated
a CSP plant and a biomass boiler, see Figure 6. The CSP
plant, consisting of 7,017 heliostats, is used to produce VHP
steam and to reheat the steam coming from the steam turbine.
Figure 7A shows the average monthly use of heliostats, out of
which, on average, 30% remain idle over the year. The CSP
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FIGURE 7 | Results for the 108sc-based design: (A) Average monthly heliostats usage over year, (B) Average monthly production of power, (C) contribution

percentage of each renewable resource (D) profile of biomass over the year.

TABLE 1 | Number of scenarios for the analysis.

Levels

Wind

velocity

Solar

radiation

Electricity

demand

LP steam

demand

Monthly

scenarios

4 3 3 3 108

3 3 3 3 81

4 3 2 2 48

2 2 2 2 16

Bold means scenarios used for the two-stage stochastic model.

plant supplies 86% of the total electricity requirements, and
the rest is supplied by the biomass boiler (see Figures 7B,C).
One can also observe that the biomass is used as a backup
for the CSP plant. Figure 7D shows that biomass is consumed
over the year (and a fraction is stored) reaching its highest
level in June, when the electricity demand is also the highest.
Results also showed that the LP steam required by the bioethanol
plant is produced by expanding some of the VHP steam in the
steam turbine.

Effect of the Discretization Level of the Uncertainty
As mentioned above, the previous results were based on
108 scenarios generated by discretizing the PDF of uncertain
parameters into different levels. Under a two-stage stochastic
approach, care must be taken not to use a number of scenarios
so high that it could lead to intractable problems, with very
expensive CPU burdens. To handle this problem, Peng et al.
(2019) characterized the solar radiance variability by classifying it
at two scales, low- and high-frequency. The former was related to
seasonal variability represented through representative periods,
while the latter was related to daily variations represented
through different modes (i.e., day and night modes) using
time periods within a day. In this work, we use a coarse
time discretization considering different values of demand and
renewable resources. In this way, we ensure the inclusion of wider
ranges of values for the uncertain parameters, while avoiding
intractable problems. Then, we implement a reduction of the
discretization level of the uncertainty to analyze its effect on
the first-stage decisions and objective function values, as well as
on the associated CPU burden. The levels of PDF discretization
for each uncertainty parameter are shown in Table 1. Overall,
one can observe that the reduction of scenarios did not have
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a significant effect on the selection of the renewable resources
(see Table 2). The topology of the plant showed minor changes,
the most important of which was related to the size of CSP
plants (i.e., first-stage variables). It was observed that as a lower
level of discretization for the uncertainty was considered, the
solution included a smaller CSP plant, for which the number
of heliostats were reduced from 7,017 (when considering 108
sc) to 6,271 (when considering 16 sc). However, it is worthy
of mention that the effect on the TAC was not significant, as
it was only reduced by 2.6%. On the other hand, the number
of scenarios affected CPU times significantly. In the extreme
case, when 16 scenarios were considered, the CPU time was
reduced by 99% with respect to the case with 108 scenarios (see
Table 3).

A Comparison Between Deterministic
Solutions and Solutions Including
Uncertainty
In this section, a comparative analysis is conducted between
the solutions considering uncertainty and the deterministic
formulations based on monthly and weekly time discretization.
The selection of renewable resources and their flexibility are
compared, along with the economic implications.

Renewable Resources Selection and Economic

Implications
Results show that including uncertainty provides more flexibility
since demands are met under a wider range of operating
conditions, aided by a larger CSP plant (see Table 2). Similarly
to the weekly-based design, when wider ranges of wind velocity
and utility demands are considered wind energy becomes less
attractive than CSP plants to produce utilities. The absence
of wind turbines lowers the investment requirements from
$150.8 MMUSD for the monthly-based-deterministic solution
to $137.3 MMUSD for the stochastic-based solutions. However,
the integration of a larger CSP plant increases the operating
costs and, consequently, the total annual cost of the plant by
19.8%. Biomass is used in both types of solutions as a backup
unit for the CSP plant. However, when comparing biomass
usage profiles, stochastic solutions show a lower amount of
biomass storage than the ones from the deterministic-based
designs (see Table 2). This result is due to the recourse actions
involved in the two-stage stochastic approach to minimize
the expected cost of the second-stage variables, i.e., the
operating costs.

Design Flexibility
A flexibility test similar to the one by García-Herreros et al.
(2014) was conducted for each design to analyze the solutions
obtained from each approach (i.e., deterministic and two-stage
stochastic). First, the values of the first-stage variables, such as
the number of heliostats, wind turbines and equipment size,
were fixed. Then, simulations of the monthly-based designs with
weekly variations of the renewable resources and utility demands
were conducted and compared to the deterministic monthly-
based design reported by Pérez-Uresti et al. (2020). The results
are shown in Figure 8, and it can be observed that under weekly

variations the deterministic solution does not offer the flexibility
needed to meet the demand, which makes electricity imports
necessary in the amount of 68,716 MWh. On the other hand,
when the formulation considers uncertainty the flexibility of the
design improves, with sufficient slack capacity to meet the weekly
demands without imports.

Economic Implications of Design Flexibility
The design of the renewable-based utility plant that included
uncertainty was able tomeet a wider range of demands because of
its larger slack capacity at the cost of larger fractions of underused
facilities, and therefore larger unused investment costs. The
economic implications of improving the design flexibility can
be estimated as the summation of units that remain idle during
each period of time multiplied by their unit investment costs.
For comparison purposes, two scenarios were considered for
the stochastic solutions, one with the highest and the other
one with the lowest facility usage. From the results shown in
Figure 9, it can be observed that the monthly percentage of
unused investment for the monthly-based design is, on average,
16%, while that for the 108sc-based design is 35% (Figure 9A),
which causes an increase of the unused investment from $168.7
MMUSD for the monthly-based design to $569.6 MMUSD for
the 108sc-based design (Figure 9B).

CONCLUSIONS

The design of sustainable utility plants based on renewable
resources is hampered by the inherent uncertainty of the
availability of resources such as wind and solar sources. An
approach to the design of utility plants that includes uncertainty
in renewable energy resources has been presented, for which
a two-stage stochastic programming has been formulated. The
model is based on a superstructure that considers the integration
of different technologies to process wind, solar radiation,
biomass, and waste to produce steam and electricity. Monthly
probability distribution functions, PDF, based on historical
data of each uncertain parameter were developed to generate
scenarios and to calculate their probability of occurrence. In
particular, the effect of uncertainty on the optimal topology of
the plant and on its flexibility was studied. For this purpose,
a case study for the south-west region of Mexico was taken.
Results showed that when uncertainty was included in the model
formulation, the optimal solution for the plant integrated a larger
CSP plant with respect to deterministic-based designs, which
allowed the plant to have enough slack capacity to meet a wider
range of utility demands. This item was tested by studying the
performance of design under a more detailed time discretization.
Results showed that, unlike the monthly-based deterministic
design, the stochastic-based design was able to meet the demands
predicted under a weekly time discretization. However, increased
flexibility also implied an increase in underused facilities. It
was observed that, on average, the unused investment for
the stochastic-based design was more than twice larger than
the one for the monthly-based deterministic design. Moreover,
environmental advantages of the proposed approach were shown
to be remarkable, as the CO2 emissions were 2,580% lower than
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TABLE 2 | Comparison of results for stochastic and deterministic-based designs.

Deterministic Stochastic (scenarios)

Monthly Weekly 16 48 81 108

TAC ($MMUSD/y) 73.3 83.0 89.1 90.1 90.4 91.4

Investment cost ($MMUSD) 150.8 115.20 130.9 134.2 135.5 137.3

Heliostats 2,653 5,365 6,271 6,756.0 6,827 7,017

Wind turbines 30.0 0.0 0.0 0.0 0.0 0.0

Max. Average monthly biomass consumption (kg/s) 6.8 5.9 3.1 2.6 2.5 2.5

TABLE 3 | Comparison of results for stochastic and deterministic-based designs.

Deterministic Stochastic (scenarios)

Monthly Weekly 16 48 81 108

Problem type MILP MILP MILP MILP MILP MILP

No. of continuous variables 39,400.0 55,039.0 149,208 729,204.0 724,848.0 963,960.0

No. of equations 12,956.0 39,400.0 246,192 432,600.0 1,227,372 1,634,964.0

No. of binary variables 200.0 200.0 200.0 200.0 200.0 200.0

CPU time (s) 30.4 124.7 1,065.19 18,342.09 66,749.48 149,827.21

FIGURE 8 | Results for the designs under weekly variations: (A) deterministic monthly-based design, (B) stochastic 108sc-based design.
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FIGURE 9 | Economic implications of design flexibility. (A) Monthly percentage of unused investment, (B) accumulated cost of unused investment cost.

the ones generated by a fossil fuel-based system. This type of
analysis provides policy-makers with valuable information to
make well-informed decisions.
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NOMENCLATURE

Parameters

πsc,t : probability associated with scenario sc in period t
Variables

FsBsc,t : total of steam, s, flowrate produced by biomass processing

in period t and scenario sc (kg/s)
Fscsc,t : flowrate of steam, s generated in biomass boiler in period t
and scenario sc (kg/s)
Fn,s
q,j,k,sc,t

: flowrate of steam, s, produced in HRSG, n, by using

exhaust gas, Gn
q,j,k

in period t and scenario sc (kg/s)

FsSBq,j,sc,t : flowrate of steam, s, produced by a syngas boiler which

uses syngas, SYq,j in period t and scenario sc (kg/s)
Fn,sDq,sc,t

: flowrate of steam, s, generated in HRSG, n by recovery

heat from flue gas, Dq in period t and scenario sc (kg/s)
Fs
biosc,t

: total flowrate of biogas-based steam, s, flowrate produced

in period t and scenario sc (kg/s)
FsBGBsc,t : flowrate of steam, s generated in biogas boiler in period
t and scenario sc (kg/s)
Fs
biokb,nb,sc,t

: flowrate of biogas-based steam, s, produced in HRSG,

nb, by using exhaust gas, G
biogas

kb,nb
in period t and scenario sc (kg/s)

Binsc,t : biomass that is sent to the storage plant in period t and
scenario sc (kg/s)
Busedsc,t : biomass that is sent directly to the utility plant in period t
and scenario sc (kg/s)

B
Storage
sc,t : inventory of biomass in period t and scenario sc (kg/s)

Qsteam
CSPt

: heat required to produce steam in period t(kJ/s)

Qreheat
CSPt

: heat required to reheat steam in period t (kJ/s)

(Qc)D: design variable for the biomass boiler (kJ/s)
SYq,j,t : flowrate of syngas produced in the gasifier, q and reformer,
j, in period t (kg/s)
(

SYq,j

)

D
: design variable for the gasification process (kg/s)

(

Pq,j,k
)

D
: design variable for the syngas turbine, k

Qsteam
SBq,j, t

: heat required to produce steam in syngas boiler in

period t (kJ/s)
Qreheat
SBqj,t

: heat required to reheat steam in the syngas boiler in

period t (kJ/s)

(

QSBq,j

)

D
: design variable for the syngas boiler (kJ/s)

(

Fn
q,j,k

)

D
: design variable for the HRSG, n (kg/s)

(

As
l

)

D
: design variable for the heat exchanger, l, of the CSP

plant (m2)
(

Asf

)

D
: design variable for the heliostat field (m2)

(Wastez)D: design variable for the digestor (kg/s)

(QBGB)D: design variable for the biogas boiler (kJ/s)
(

P
biog

kb

)

D
: design variable for the syngas turbine, kb

(

F
biog

kb,nb

)

D
: design variable for the HRSG, n (kg/s)

(Nturb)D: design variable for the wind farm

(ACUn)D: design variable for heat exchanger, CUn, of the steam
network (m2)

(PowerST)D: design variable for the steam turbine (kW)
(

Qcooling

)

D
: design variable for the cooling tower (kJ/s)

Fn,s
q,j,k,t

: flowrate of steam, s, produced in HRSG, n, by using

exhaust gas, Gn
q,j,k

in period t (kg/s)

Fn,sDq,t
: flowrate of steam, s, generated in HRSG, n by recovery heat

from flue gas, Dq in period t (kg/s)
FsSBq,j,t : flowrate of steam, s, produced by a syngas boiler which

uses syngas, SYq,j in period t (kg/s)

Sets

SC: set for scenarios ({sc|sc = 1, . . . , SC} )

T: set for time period ({t|t = 1, . . . ,T} )

S: set for types of steam produced ({s|s = LP,MP,HP,VHP} )

N: set for possible HRSG configuration in the syngas processing
section to produce steam ({n|n = 1, ...,N} )

J: set for reforming stage
({

j
∣

∣j = Pox, SR
} )

Q: set for gasification stage
({

q
∣

∣q = IG, DG
} )

K: set for syngas turbine
({

k
∣

∣k = GT − 10, GT − 20, GT − 50
} )

Z: set for waste used to produce biogas ({z|z = MW, CM} )

L: set for heat exchanger units in the CSP
plant (

{

l
∣

∣l = EC1 EV1, ..., L
}

)
KB: set for biogas turbine
({

kb
∣

∣kb = GTB− 10, GTB− 20, GTB− 50
} )

NB: set for possible HRSG configuration in the biogas processing
section to produce steam

({

nb
∣

∣nb = 1, ...,NB
})

Frontiers in Sustainability | www.frontiersin.org 14 November 2021 | Volume 2 | Article 779174

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles

	Design of Sustainable Renewable-Based Utility Plants in the Face of Uncertainty
	Introduction
	Overall Superstructure Description
	Problem Formulation
	Modeling Description
	Biomass Processing
	Concentrated Solar Power
	Biogas Processing
	Wind Farm
	Steam Network

	Definition of the First- and Second-Stage Variables
	First-Stage Decisions
	Biomass Processing
	CSP Plant
	Biogas Processing
	Wind Farm
	Steam Network
	Second-Stage Decisions

	Procedure to Generate Scenarios and to Calculate Their Probabilities
	Objective Function

	Case Study
	Results
	Design of a Renewable-Based Utility Plant Under Uncertainty
	Effect of the Discretization Level of the Uncertainty

	A Comparison Between Deterministic Solutions and Solutions Including Uncertainty
	Renewable Resources Selection and Economic Implications
	Design Flexibility
	Economic Implications of Design Flexibility


	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Nomenclature


