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Fluorescein sodium as a marker
for focused ultrasound-induced
blood-brain barrier disruption: a
case report in a porcine model
Yuan Xu, Thomas J. On and Mark C. Preul*

The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute,
St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
Transcranial low-intensity focused ultrasound (FUS) enables noninvasive, targeted,
and reversible blood-brain barrier (BBB) disruption, facilitating drug delivery and
liquid biopsy of the brain. Using fluorescein sodium (FNa) with macroscopic
widefield fluorescence and microscopic confocal laser endomicroscopy (CLE)
imaging, we assessed BBB permeability after applying a frameless,
electromagnetic-guided FUS system in a porcine model and confirmed with
established MRI protocol and conventional histology. Both macroscopic and
microscopic FNa fluorescence imaging findings correlated with contrast-
enhanced MRI, providing direct evidence of BBB disruption. This approach
demonstrates the utility of FNa for evaluating BBB permeability in preclinical studies.
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Introduction

Assessing blood-brain barrier (BBB) disruption necessitates reliable methods to confirm

targeted permeability changes and evaluate tissue effects. Contrast-enhanced MRI, a

common approach, utilizes gadolinium’s ability to cross the disrupted BBB and enhance

imaging of affected regions (1). However, while conventionally used, this approach

depends on indirect digital reconstruction of MRI signals and lacks image resolution at

the cellular level. Alternatively, fluorescein sodium (FNa) is a safe, low-molecular-weight

fluorophore administered intravenously that typically does not penetrate an intact BBB

but has been demonstrated to cross a disrupted BBB under various pathological

conditions (2, 3). This property makes FNa an excellent option for directly visualizing

BBB disruption in areas where the barrier has been compromised. In the surgical setting,

its fluorescence can be detected with a widefield operating microscope and confocal laser

endomicroscopy (CLE), a new FDA-approved cellular-level imaging system (4–6).

Transcranial low-intensity focused ultrasound (FUS), paired with intravenously injected

microbubbles, allows for noninvasive, reversible, and targeted disruption of the blood-brain

barrier (BBB) with millimeter precision (7). This technique utilizes FUS-induced

cavitation, where microbubbles oscillate and produce mechanical forces on the vasculature,

temporarily increasing BBB permeability (8). This effect typically lasts from hours to a few

days, enabling the controlled delivery of therapeutic agents to specific brain regions.

Preclinical and clinical studies have demonstrated the safety and therapeutic potential of

FUS-mediated BBB modulation for improving drug delivery to the brain and enabling

liquid biopsy of the brain in various neurological and neurodegenerative diseases (9–14).
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This study describes an experimental case involving a

prototype portable FUS system designed to induce BBB

disruption (15) in a porcine model in which intravenous FNa

was used to assess changes in BBB permeability in the area of

FUS-induced disruption. The brain was evaluated macroscopically

with widefield operating microscope imaging and microscopically

with CLE, both detecting the FNa-induced fluorescence. The

fluorescence imaging results were correlated with gadolinium-

enhanced MRI and histological examination to characterize the

extent of BBB disruption more comprehensively.
Methods

Microbubble formulation and delivery

Lumason (Bracco, Princeton, NJ, USA), a sulfur hexafluoride

lipid-type microsphere suspension, served as the microbubble

contrast agent. It was activated according to the manufacturer’s

instructions by adding 5 ml of saline to the vial, shaking

vigorously for 20 s, and then withdrawing the required amount

into a syringe. The entire vial of suspension was then diluted with

55 ml of sterile saline, resulting in a total of 60 ml of microbubble

solution. This solution was infused intravenously at a rate of 4 ml/

min. The infusion started 2 min before FUS initiation and

continued until a total volume of 8 ml was delivered. FUS was

initiated immediately after reaching this volume to ensure optimal

microbubble circulation during sonication.
Focused ultrasound procedure

One Yorkshire pig (Premier BioSource, Ramona, CA, USA)

was utilized for the focused ultrasound procedure. The study

involving animal participants were reviewed and approved by St.

Joseph’s Hospital and Medical Center Institutional Animal Care

and Use Committee. General anesthesia was induced with an

intramuscular injection of 0.6 ml/10 kg Telazol (50 mg tiletamine

and 50 mg zolazepam per ml) and maintained with inhaled

isofluorane at 2.5% and 3.5–4.5 L/min flow rate through an

endotracheal tube. Two-millimeter head CT scans and one-

millimeter contrast-enhanced T1-weighted and T2-weighted MRI

scans were conducted one week prior to the FUS procedure for

skull and brain 3D reconstruction and trajectory planning. The

FUS system (Cordance Medical, Mountain View, CA, USA)

employs a frameless neuronavigation approach with a permanent

magnet-based tracking. A signal generator generates an

electromagnetic field for real-time sensor tracking, with sensors

positioned on the ultrasound transducer and the subject.

CT and MRI datasets were fused to create a 3D model,

highlighting the region of interest (ROI) and facial landmarks. The

FUS system then identified the optimal transducer position based

on the shortest and most effective route to the ROI. Registration

between the tracking system’s coordinate space and the CT/MRI

coordinates was established to align the subject’s anatomy with the

image data. Finally, the transducer, equipped with tracking
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sensors, was positioned according to these coordinates. An error

metric guided the operator to minimize deviations from the

planned location, ensuring precise alignment with the ROI.

The pig received gadolinium contrast immediately before the

FUS procedure. Following sonification, contrast-enhanced T1W

and T2W MRI scans were performed and compared with the

pre-procedural T1W and T2W MRI scans. The ultrasound

settings were 250 kHz frequency, 10 ms pulse duration, 1 Hz

pulse repetition frequency, 1% duty cycle, and in situ focal

pressures of 0.275–0.325 MPa.
Brain specimen harvest and processing

The first dose of FNa was administered intravenously at a

dosage of 5 mg/kg immediately following the FUS procedure.

After MRI imaging, a bilateral craniectomy was performed to

expose the entire brain. The dura was opened bilaterally with a

C-shaped incision and reflected toward the midline to reveal

both hemispheres. A second dose of 5 mg/kg of FNa was given

intravenously after the brain was exposed. Then, the swine was

euthanized with a 10 ml intravenous bolus of Euthazol (390 mg

pentobarbital sodium and 50 mg phenytoin sodium per ml).

Following the euthanization of the swine, both cerebral

hemispheres were separated from the brain stem and harvested.

They were placed in a 3D-printed brain matrix and sectioned

coronally into slices that were 0.5 cm thick. The slices were laid

flat on a tray covered with a moist drape for fluorescence imaging.
Widefield fluorescence imaging

After the brain was exposed, it was imaged with a Zeiss Kinevo

900 surgical microscope (Carl Zeiss Meditec AG, Oberkochen,

Germany) using the YELLOW 560 fluorescence module. The

lowest magnification and working distance settings were selected

to maximize fluorescence signal detection. After the brain was

harvested and sectioned, each slice affected by the FUS trajectory

was imaged using YELLOW 560 under the same magnification

and working distance settings.
Confocal laser endomicroscopy imaging

Confocal laser endomicroscopy (CLE) imaging was performed

using a ViewnVivo CLE imaging system (Optiscan Imaging Ltd.,

Melbourne, Australia). The imaging probe was positioned

perpendicular to the tissue surface in a holder and maintained in

firm contact with the tissue. Areas displaying positive widefield

fluorescence were scanned with the CLE probe. Optimal imaging

parameters were chosen based on the established parameters

from the previous studies using an older generation of the same

CLE imaging platform (16). The highest imaging resolution of

1,920 × 1,080 was selected for the 464 × 261 µm field of view,

resulting in 1.3 s per image scanning speed. Band pass 515–575

filter was chosen for best image contrast. Laser power was
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adjusted to 70%–100% of the maximum output (1,000 µW), and

the gain was set to 2,400 to enhance image quality. Normal brain

tissue that was unaffected by FUS and negative for widefield

fluorescence was also scanned using CLE.
Histology analysis

After widefield fluorescence and CLE imaging, the areas with

positive FNa fluorescence were sampled with the surrounding

normal brain tissue. Normal brain tissue was also sampled as a

control for histology processing. Sampled tissues were preserved

in 10% neutral buffered formalin. After routine processing and

paraffin embedding, all brain tissue samples were cut into 3 μm

sections and stained with hematoxylin and eosin.
Results

FUS sonication was successfully conducted in the frontal lobes

near the motor cortex on both sides. Immediately after the FUS

procedure, MRI imaging of the pig was performed. Post-

sonication T1W MRI sequences showed contrast enhancement in

the areas targeted by the FUS beams, which was not seen in the

pre-sonication MRI images (Figure 1).

Afterward, the brain was exposed through a bilateral

craniectomy, and a second dose of FNa was administered before

the swine was euthanized. The brain was then harvested,

coronally sliced, and examined using the widefield yellow

fluorescence module on a surgical microscope. Fluorescence

imaging was utilized to complement and confirm the MRI

findings. The fluorescence signal observed with the widefield
FIGURE 1

Contrast-enhanced T1W MRI images were acquired before and after the FU
MRI (A) but present bilaterally on the post-procedural MRI (B) The white ou
Used with permission from Barrow Neurological Institute, Phoenix, Arizona
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yellow fluorescence module enabled the localization of disrupted

regions. Strong, specific fluorescence was visibly noted in areas

corresponding to those targeted by FUS (Figure 2). CLE and

histological analysis further validated these findings.

Microscopic analysis using CLE demonstrated that regions of

high fluorescence observed correlatively corresponded to cellular

vacuolization and vascular involvement in the FUS-targeted

areas. Signals were detected from vacuolated cells and blood

vessels (Figures 3A–C). In contrast, CLE imaging of normal

brain tissue exhibited no signal, consistent with the absence of

FNa in non-sonicated brain tissue (Figure 3D). Histological

examination validated these findings, revealing red blood cell

extravasation in the sonicated regions with no indication of

significant vascular or cellular injury (Figures 4A–D). Non-sonicated

areas appeared normal, showing no signs of vascular or cellular

changes (Figure 4E).
Discussion

FNa, as an imaging marker, provides information about the

spatial accuracy of FUS-induced changes. Under normal

conditions, FNa does not cross intact BBB. Thus, FNa

fluorescence in brain tissue detected by the widefield surgical

microscope and CLE that would otherwise not be present

directly indicates the BBB permeability changes at both gross and

microscopic levels (3). This aids in refining sonication

parameters and optimizing drug delivery and liquid biopsy

strategies. Previous preclinical studies applied FNa-based CLE

imaging to evaluate brain microcirculation and injury-induced

BBB change (17). In our experimental setting, fluorescence
S procedure. Contrast enhancement was absent on the pre-procedural
tlines in both images indicate the planned target for the FUS procedure.
.
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FIGURE 2

Widefield FNa fluorescence images of the brain. The brain was sectioned coronally to expose the sonicated areas. The blue arrowheads indicate the
area with positive fluorescence. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.
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imaging was conducted ex vivo after the euthanasia of the swine

and extraction of the brain because we aimed to image the entire

area affected by FUS that extended deep beyond the brain’s

surface. Although this scenario describes ex vivo FNa imaging, in

vivo imaging of FUS targets may be feasible. Live imaging,

particularly through widefield and especially by CLE imaging of

deeper brain regions, could trace the path of FUS and enable

analysis of tissue effects. This would require careful surgical

hemostasis, as active bleeding may obscure FNa localization due

to the presence of erythrocyte masses. Incorporating FNa into

preclinical workflows for in vivo imaging could enhance our

approaches to understanding BBB permeability and guide the

development of more effective, targeted interventions.

FNa fluorescence imaging with both widefield and CLE has been

performed in situ in real time during surgeries after the adequate

exposure of the surgical target. Following intravenous administration,

FNa rapidly circulates systemically, and its fluorescence signal can be

detected within seconds, making it ideal for evaluating BBB

disruption in a surgical setting without procedural delays. Widefield

fluorescence imaging reveals FNa accumulation in exposed tissue,
Frontiers in Surgery 04
whereas CLE offers high-resolution microscopic visualization upon

direct tissue contact. Both imaging modalities yield results in real

time without the need for postprocessing.

Our effort was to showcase the effect of the FUS procedure on

the BBB using fluorescence imaging in addition to the established

MRI protocol. The microbleeding seen in the histology is

consistent with previous reports of histological changes after FUS

treatment and not associated with significant insult to the

brain tissue (18, 19). The FUS-induced cellular effects were

microscopic and confined to the sonication channel. Although

patchy enhancement was noted in one FUS-targeted region on

MRI, our widefield and confocal examinations did not reveal

fluorescence patterns that correspond to the appearance of the

MRI signal. Instead, FNa extravasation appeared consistent

across both targeted sites, suggesting potential modality

differences or MR imaging artifacts.

Being a technical report with observations derived from a

single porcine model, this study has limitations. The study only

showed acute BBB disruption without evaluating longer-term

outcomes such as tissue recovery or sustained permeability
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FIGURE 3

CLE images revealed evidence of the FUS effect. The fluorescence signals indicated by the blue arrowheads in (A,B), as well as small caliber capillaries
seen in (C), are present in FUS-treated areas but not in areas not affected by FUS (D). Used with permission from Barrow Neurological Institute,
Phoenix, Arizona.

FIGURE 4

Histological features of the FUS effect from two areas are shown. In the first area (A,B), perivascular extravasations of red blood cells were observed,
indicating successful BBB disruption. High power magnification further revealed intravascular fibrin deposits (indicated by red arrowheads) and cellular
vacuolization (indicated by blue arrowheads). In the second area (C,D), perivascular extravasations were present, but no intravascular deposits nor
cellular vacuolization was seen. No histological evidence of FUS effect was identified in normal non-sonicated areas of the brain (E). Used with
permission from Barrow Neurological Institute, Phoenix, Arizona.

Xu et al. 10.3389/fsurg.2025.1559195
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changes. The potential impact of prolonged anesthesia on

histological findings cannot be excluded. Physiological changes

may influence tissue characteristics and the interpretation of

results, although the animal remained within normal

cardiorespiratory parameters.
Conclusions

These findings demonstrate that FNa offers a direct and reliable

means of visualizing FUS-induced BBB disruption at both gross

and microscopic levels. This complements traditional MRI-based

approaches by allowing more direct identification of permeability

changes. The improved visualization can help refine therapeutic

strategies that leverage FUS for targeted drug delivery or

liquid biopsy.
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