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Advancing presurgical non-
invasive spread through air
spaces prediction in clinical
stage IA lung adenocarcinoma
using artificial intelligence and
CT signatures
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Jianlin Wu5, Jun Fan6, Yu Qi7, Fan Yang2* and Yongde Liao1*
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Science and Technology, Wuhan, China, 2Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China, 3Department of Breast
Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 4Department of
Radiology, Dalian Public Health Clinical Center, Dalian, China, 5Department of Radiology, The Affiliated
Zhongshan Hospital of Dalian University, Dalian, China, 6Department of Pathology, Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 7Department
of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Background: To accurately identify spread through air spaces (STAS) in clinical stage
IA lung adenocarcinoma, our study developed a non-invasive and interpretable
biomarker combining clinical and radiomics features using preoperative CT.
Methods: The study included a cohort of 1,325 lung adenocarcinoma patients
from three centers, which was divided into four groups: a training cohort
(n= 930), a testing cohort (n= 238), an external validation 1 cohort (n= 93),
and 2 cohort (n= 64). We collected clinical characteristics and semantic
features, and extracted radiomics features. We utilized the LightGBM algorithm
to construct prediction models using the selected features. Quantifying the
contribution of radiomics features of CT to prediction model using Shapley
additive explanations (SHAP) method. The models’ performance was evaluated
using metrics such as the area under the receiver operating characteristic
curve (AUC), negative predictive value (NPV), positive predictive value (PPV),
sensitivity, specificity, calibration curve, and decision curve analysis (DCA).
Results: In the training cohort, the clinical model achieved an AUC value of 0.775,
the radiomics model achieved an AUC value of 0.836, and the combined model
achieved an AUC value of 0.837. In the testing cohort, the AUC values of the
models were 0.743, 0.755, and 0.768. In the external validation 1 cohort, the AUC
values of the models were 0.717, 0.758, and 0.765, while in the external validation
2 cohort, 0.725, 0.726 and 0.746. The DeLong test results indicated that the
combined model outperformed the clinical model (p < 0.05). DCA indicated that
the models provided a net benefit in predicting STAS. The SHAP algorithm
explains the contribution of each feature in the model, visually demonstrating the
impact of each feature on the model’s decisions.
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Conclusion: The combined model has the potential to serve as a biomarker for
predicting STAS using preoperative CT scans, determining the appropriate
surgical strategy, and guiding the extent of resection.
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Introduction

In 2015, Kadota introduced the concept of spread through air

spaces (STAS), which is characterized by the presence of tumor

cells in the air spaces of lung parenchyma beyond the main

tumor mass (1). The World Health Organization integrated the

concept of STAS into the novel invasion model for lung

adenocarcinoma, categorizing its pathological features into three

types: micropapillary cluster, solid tumor nest, and single

free tumor cell (2). Currently, the clinical significance of

STAS has garnered increasing attention. Numerous studies

have investigated the association between STAS and the

clinicopathological characteristics and semantic features of lung

cancer, as well as its prognostic implications for patients with

early-stage lung cancer treated with various surgical approaches

(3, 4). An increasing body of evidence demonstrated that the

presence of STAS substantially diminishes the overall survival

(OS) and recurrence-free survival (RFS) rates in lung cancer,

particularly in stage I lung adenocarcinoma (5–7).

Furthermore, due to the improved detection of small peripheral

lung cancer facilitated by thewidespread application of CT, sub-lobar

resection (including wedge resection and segmental resection) has

gained popularity for the management of clinical stage IA lung

cancer (8, 9). However, STAS is linked to locoregional recurrence

in patients undergoing sub-lobar resection for lung cancer (10).

Studies have reported a heightened risk of distant and local

recurrence following sub-lobar resection of STAS-positive tumors,

a risk not observed in patients undergoing lobectomy (1, 3).

Hence, preoperative identification of STAS aids in selecting the

most suitable surgical approach.

In clinical practice, the most frequently employed techniques for

intraoperative or preoperative diagnosis of STAS are chest CT scan,

biopsy, and intraoperative frozen section (FS) analysis (11).

Preoperative CT scans facilitate non-invasive diagnosis of STAS,

assisting in the selection of a tailored surgical approach. Numerous

radiological studies rely on morphological (semantic) features,

including size, presence of solid components, spiculation, or

lobulation, to diagnose STAS (12, 13). However, the qualitative

interpretation of images is impeded by the subjective nature of

atypical radiological signs. Biopsy is an invasive examination that

further increases the possibility of tumor cell dissemination. The
RFS, recurrence-free survival;
vidual Prognosis or Diagnosis;
lection Operator; ROC, receive
tive predictive value; PPV, po
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sensitivity of intraoperative frozen identification of STAS needs to

be improved.

Radiomics provides a non-invasive method to capture additional

information that cannot be seen by the naked eye by extracting

high-throughput image features from a large number of medical

images and performing relevant analysis on these advanced features

(14). Based on the existing literature, a substantial number of

studies have investigated the relationship between radiomics

features and STAS, integrating these features into machine learning

algorithm to develop predictive models for STAS (15–18).

However, the non-interpretability of radiomics models hinders

their widespread use. The Shapley additive explanations (SHAP)

algorithm is currently the most recommended algorithm for model

interpretation, as it can explain how the values of each feature

affect the effects attributed to the model’s features and integrate the

effects of features attributed to individual responses through

visualization. Therefore, we investigate the use of SHAP algorithm

to visualize and interpret the STAS model based on its

construction, in order to understand the contribution of each

feature to the model’s decision-making. In addition, the current

study examined a cohort of 1,325 patients diagnosed with clinical

stage IA lung adenocarcinoma from three institutions, rendering it

the most extensive investigation thus far in terms of the number of

centers and cases.

Radiomics features were extracted from preoperative CT scans

and integrated with clinical characteristics through machine

learning algorithms to develop a predictive biomarker for STAS.

We use SHAP algorithm to further understand the internal

mechanism of the model, which has better interpretability and

facilitates clinical communication and interpretation. This non-

invasive and interpretable biomarker supports clinicians in

devising tailored treatment strategies and choosing personalized

surgical approaches, aided by artificial intelligence.
Materials and methods

Study population

This retrospective study, registered at http://clinicaltrials.gov

(identifier: NCT05400304), obtained approval from the

institutional review boards and the Ethics Committee of Union
FS, frozen section; SHAP, Shapley additive explanations; TRIPOD, Transparent
RQS, radiomics quality score; ROI, region of interest; ICCs, intraclass correlation
r operating characteristic curve; DCA, decision curve analysis; AUC, area under
sitive predictive value.
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Hospital, Tongji Medical College, Huazhong University of Science

and Technology (identifier: UHCT22749). Informed consent

requirements were waived.

This study employed the following inclusion criteria:

(1) preoperative CT examination indicating a lesion smaller

than 3 cm, and (2) Patients with postoperative pathological

confirmation of lung adenocarcinoma. The following exclusion

criteria were applied: (1) pure ground glass nodules, (2) patients

who underwent chemoradiotherapy, (3) patients who underwent

CT-guided biopsy prior to the CT examination, (4) Preoperative

CT examination was conducted within 2 weeks prior to surgery,

and no lesion puncture was performed. For cases with multiple

nodules, only the pulmonary nodules with definitive pathological

results were included for subsequent analysis. The process of

patient inclusion in this study is depicted in Figure 1.

This study collected clinical and pathological features such

as age, gender, smoking history, semantic characteristics,

pathological type, lymph node metastasis, neurovascular invasion,

pleural invasion, and STAS of patients for analysis. Transparent

Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD) guidelines were followed in

the study (19). The construction process of radiomics models is

evaluated using the radiomics quality score (RQS) (20).
Pathological diagnosis of STAS

After fixation in 10% formalin, the specimens were embedded

in paraffin using conventional methods for subsequent pathological

diagnosis by a pathologist. Following staining with hematoxylin

and eosin, the tumor section was assessed under a multiheaded

microscope. The diagnosis of STAS aligns with the 2015 World

Health Organization pathological classification of lung tumors
FIGURE 1

Flowchart for patients’ selection from three hospitals.
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(21). STAS infiltrates the alveoli of the peripheral lungs in the

form of clusters of micropapillary, solid nests, or single tumor cells.
CT acquisition, ROI segmentation, and
semantic characteristics

The study utilized CT scans with a layer thickness ranging

from 0.625 to 1.25 mm, without the administration of contrast

medium. The bone reconstruction algorithm was employed for

reconstruction purposes. Supplementary S1 contains detailed

information regarding the acquisition and reconstruction

parameters. The chest CT images underwent retrospective analysis

by CT experts, possessing 5 and 10 years of experience, using a

window width of 1,600 HU and a window level of −600 HU. This

analysis aimed to determine semantic characteristics. The experts

performed manual layer-by-layer segmentation of the tumor outline

using ITK-SNAP (version 3.8.0, available at http://www.itksnap.org/

). Any differences in opinion among the experts were resolved

through discussion to achieve a consensus. Subsequently, the senior

radiologist assessed the quality of the region of interest (ROI) and

made necessary adjustments after the primary radiologist completed

tumor lesion segmentation. To increase the robustness, 50 cases

were randomly selected to estimate the intraclass correlation

coefficients (ICCs), with a value of ≥0.75 indicating robustness.

Figure 2 provides an illustration of the overall research design.
Radiomics features extraction, selection
and models construction

The “PyRadiomics” package in Python software was utilized for

extracting tumor ROI features. This encompassed the extraction of
frontiersin.org
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FIGURE 2

Workflow of radiomic analysis in this study.
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shape features, grayscale features, wavelet transform features, and

texture features. Supplementary S2 displays the classification and

quantity of extracted radiomics features.

Following feature extraction, all radiomics features were

standardized using the z-score for subsequent analysis. Moreover, we

performed a statistical test employing the Mann-Whitney U-test to

assess the significance of the features, selecting only those with a

p-value < 0.05 for further consideration. We calculated the Spearman

correlation coefficient to assess the correlation between features with

high repeatability. If the correlation coefficient between two features

exceeds 0.9, we keep only one feature to prevent redundancy.

Feature selection involves utilizing the Least Absolute Shrinkage and

Selection Operator (LASSO) to reduce feature dimensionality. The

final radiomics features were inputted into the machine learning

model, LightGBM.

The univariable and multivariable regression analysis was

employed to analyze clinical and semantic features, and the

variables ultimately included in the model demonstrated

significant associations with the STAS status. The LightGBM was

used for clinical model construction. To enhance the predictive

ability, a comprehensive model was constructed by integrating

radiomics signature with clinical signature. To evaluate the

stability of the constructed models, we validated both the

radiomics model and the clinical model across multiple cohorts.
Model explanation and visualization

SHAP is a method for interpreting prediction results based on

Shapley value theory, which decomposes the prediction results into

the influence of each feature, providing global and local

interpretability for the model. The core idea of SHAP is to allocate
Frontiers in Surgery 04
the contribution of feature values to different features, calculate the

Shapley value of each feature, and multiply it with the feature value

to obtain the contribution of that feature to the prediction result.

SHAP can be used in machine learning models to generate

visualized and quantitative interpretation results, helping doctors

explain the decision-making process of the model. This study uses

SHAP to interpret and visualize the LightGBM model.
Performance evaluation and statistical
analysis

In order to measure the accuracy of the models, receiver

operating characteristic curve (ROC) were plotted to determine

their diagnostic performance. Calibration curves were employed

to evaluate the calibration performance of the models, and their

calibration ability was further examined using the Hosmer-

Lemeshow test. Additionally, the clinical utility of the predictive

models was assessed through decision curve analysis (DCA). The

area under the receiver operating characteristic curve (AUC),

negative predictive value (NPV), positive predictive value (PPV),

specificity, and sensitivity, were employed to compare the

diagnostic performances of the three models in different cohorts.

The statistical analysis was conducted using SPSS and Python. The

quantitative data obtained from the clinical and imaging features of the

patients underwent normality tests using the Kolmogorov-Smirnov

test and homogeneity of variance tests using Levene’s test.

Independent sample T-tests were utilized for data that met the

assumptions of normality and homogeneity of variance. In cases

where the assumptions were not met, Mann-Whitney U-tests were

employed. For classification data, chi-square tests or Fisher tests

were applied. Multivariate logistic regression analysis is employed to
frontiersin.org

https://doi.org/10.3389/fsurg.2024.1511024
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Ye et al. 10.3389/fsurg.2024.1511024
incorporate clinical variables into the construction of clinical models.

The Spearman correlation coefficient to assess the correlation

between features. The statistical significance of the results was

assessed using a two-tailed p-value threshold of less than 0.05.
Results

Patient characteristics

The study included 1,325 patients, 1,168 from hospital 1, 93 from

hospital 2, and 64 from hospital 3. Within the group of patients from

hospital 1, the study divided them into two cohorts: a training cohort

(n = 930) and a testing cohort (n = 238). External validation 1 involved

93 patients from hospital 2, while validation 2 encompassed 64

patients from hospital 3. Clinical and semantic features of the

patients are summarized in Table 1. Within the training group,

consisting of 930 patients, a division was made based on the

presence or absence of STAS. Statistical analysis was conducted to

evaluate the clinicopathologic characteristics, as presented in

Table 2. Logistic regression analyses demonstrated that gender,

nodule type, tumor size, and pleural indentation independently

predicted the presence of STAS, as indicated in Table 3.
TABLE 1 The distribution of clinical characteristics and semantic features of

Characteristics Total (n= 1,325) Hospital

Training (n= 930) Te
Age (years), mean ± SD 59.341 ± 9.678 58.843 ± 9.816

Gender, n (%)
Female 760 (57.4) 547 (58.8)

Male 565 (42.6) 383 (41.2)

Smoking, n (%)
Yes 295 (22.3) 193 (20.8)

No 1,030 (77.7) 737 (79.2)

Tumor size (mm), mean ± SD 17.793 ± 5.532 17.375 ± 5.367

Nodule type, n (%)
PSN 780 (58.9) 567 (61.0)

Solid 545 (41.1) 343 (39.0)

Spicule, n (%)
Yes 354 (26.7) 210 (22.6)

No 971 (73.3) 720 (77.4)

Lobulation, n (%)
Yes 856 (64.6) 632 (68.0)

No 469 (35.4) 298 (32.0)

Pleural indentation, n (%)
Yes 354 (26.7) 210 (22.6)

No 971 (73.3) 720 (77.4)

Bubble-like sign, n (%)
Yes 141 (10.6) 92 (9.9)

No 1,184 (89.4) 838 (90.1)

STAS, n (%)
Yes 510 (38.5) 351 (37.7)

No 815 (61.5) 579 (62.3)

SD, standard deviation; PSN, part-solid nodule; STAS, spread through air space.
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Radiomics features selection and radiomics
model construction

A total of 833 radiomics features were extracted from the

tumor ROI using PyRadiomics. 721 features were determined to

be reliable after assessing their reproducibility using ICCs.

Performing the Mann-Whitney U test resulted in the

identification of 599 radiomic features. Subsequent analysis using

the Spearman rank correlation test reduced the number of

features to 196. By using the LASSO algorithm to reduce the

dimensionality of features, 24 non zero coefficient radiomics

features were ultimately selected. Figure 3A–C present the

radiomics features with non-zero coefficients, as determined

through LASSO penalized regression analysis. The performance

of the radiomics model is depicted in Figure 3D, showing AUCs

of 0.836 (95% CI: 0.809–0.863) and 0.755 (95% CI: 0.693–0.817)

in the training cohort and the testing cohort. The corresponding

DCA plot, displayed in Figure 3E, illustrated that the model

consistently offers greater benefits in the majority of scenarios.

Furthermore, Figure 3F showcased the confusion matrix for the

radiomics model in the testing cohort, providing details such as

an accuracy of 0.714, specificity of 0.645, sensitivity of 0.789,

NPV of 0.769, and PPV of 0.672.
different cohorts.

1 Hospital 2 Hospital 3

sting (n = 238) Validation 1 (n = 93) Validation 2 (n = 64)
60.459 ± 9.431 60.412 ± 8.611 61.034 ± 9.565

116 (48.7) 56 (60.2) 41 (64.1)

122 (51.3) 37 (39.8) 23 (35.9)

68 (28.6) 21 (22.6) 13 (20.3)

170 (71.4) 72 (77.4) 51 (79.7)

19.364 ± 5.899 18.602 ± 5.535 17.368 ± 5.417

144 (60.5) 40 (43.0) 29 (45.3)

96 (39.5) 53 (57.0) 35 (54.7)

72 (30.3) 49 (52.7) 23 (35.9)

166 (69.7) 44 (47.3) 41 (64.1)

125 (52.5) 49 (52.7) 50 (78.1)

113 (47.5) 44 (47.3) 14 (21.9)

72 (30.3) 49 (52.7) 23 (35.9)

166 (69.7) 44 (47.3) 41 (64.1)

29 (12.2) 15 (16.1) 5 (7.8)

209 (87.8) 78 (83.9) 59 (92.2)

114 (47.9) 34 (36.6) 11 (17.2)

124 (52.1) 59 (63.4) 53 (82.8)
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TABLE 2 Baseline clinicopathological characteristics of lung adenocarcinoma patients in training cohort.

Variable Total (n = 930) STAS (+) (n= 351) STAS (−) (n = 579) p-value
Age (years), mean ± SD 58.843 ± 9.816 58.758 ± 9.909 58.881 ± 9.767 0.854

Gender, n (%) <0.001*
Female 547 (58.8) 178 (50.7) 369 (63.7)

Male 383 (41.2) 173 (49.3) 210 (36.3)

Smoking, n (%) 0.001*
Yes 193 (20.8) 92 (26.2) 101 (17.4)

No 737 (79.2) 259 (73.8) 478 (82.6)

Tumor size (mm), mean ± SD 17.372 ± 5.367 18.473 ± 5.399 16.654 ± 5.234 <0.001*

Nodule type, n (%) <0.001*
PSN 567 (61.0) 109 (31.1) 458 (79.1)

Solid 363 (39.0) 242 (68.9) 121 (20.9)

Spicule, n (%) <0.001*
Yes 223 (24.0) 136 (38.7) 87 (15.0)

No 707 (76.0) 215 (61.3) 492 (85.0)

Lobulation, n (%) <0.001*
Yes 632 (68.0) 283 (80.6) 349 (60.3)

No 298 (32.0) 68 (19.4) 230 (39.7)

Pleural indentation, n (%) 0.275
Yes 210 (22.6) 86 (24.5) 124 (21.4)

No 720 (77.4) 265 (75.5) 455 (78.6)

Bubble-like sign, n (%) 0.458
Yes 92 (9.9) 38 (10.8) 54 (9.3)

No 838 (90.1) 313 (89.2) 525 (90.7)

Histologic subtype, n (%) <0.001*
AIS 7 (0.8) 0 (0.0) 7 (1.2)

MIA 84 (9.0) 0 (0.0) 84 (14.5)

IA 839 (90.2) 351 (100.0) 488 (84.3)

Micropapillary, n (%) <0.001*
Yes 269 (28.9) 203 (57.8) 66 (11.4)

No 661 (71.1) 148 (42.2) 513 (88.6)

Solid, n (%) <0.001*
Yes 185 (19.9) 128 (36.5) 57 (9.8)

No 745 (80.1) 223 (63.5) 522 (90.2)

Lymph node metastasis, n (%) <0.001*
Yes 94 (10.1) 82 (23.4) 12 (2.1)

No 836 (89.9) 269 (76.6) 567 (97.9)

Lymphovascular invasion, n (%) <0.001*
Yes 77 (8.3) 66 (18.8) 11 (1.9)

No 853 (91.7) 285 (81.2) 568 (98.1)

Visceral pleural invasion, n (%) <0.001*
Yes 93 (10.0) 69 (19.7) 24 (4.1)

No 837 (90.0) 282 (80.3) 555 (95.9)

Perineural invasion, n (%) 0.146
Yes 7 (0.8) 5 (1.4) 2 (0.3)

No 923 (99.2) 346 (98.6) 577 (99.7)

PSN, part-solid nodule; STAS, spread through air space; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma.

*Represents p < 0.05.

Ye et al. 10.3389/fsurg.2024.1511024
Development of clinical model and
combined model

Multivariable logistic regression analyses demonstrated that

gender, nodule type, tumor size, and pleural indentation

independently predicted the presence of STAS. These four
Frontiers in Surgery 06
clinical semantic features were used to construct a clinical model

integrated into the LightGBM algorithm.

Figure 3G displays the performance of the clinical model, with

AUCs of 0.775 (95% CI: 0.743–0.806) in the training cohort and

0.743 (95% CI: 0.680–0.806) in the testing cohort. Figure 3H

showcases the predictive capability of the models in forecasting
frontiersin.org
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TABLE 3 Univariate and multivariable logistic regression analyses for
selecting clinical features of model development.

Variable Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value
Gender 1.154

(1.101, 1.209)
<0.001* 1.077

(1.023, 1.133)
0.017*

Age 0.999
(0.997, 1.002)

0.550

Smoking 1.143
(1.080, 1.209)

<0.001* 1.021
(0.961, 1.084)

0.576

Tumor size 1.016
(1.011, 1.020)

<0.001* 1.009
(1.005, 1.013)

<0.001*

Nodule type 1.585
(1.517, 1.654)

<0.001* 1.529
(1.449, 1.613)

<0.001*

Pleural
indentation

1.076
(1.019, 1.138)

0.028* 0.939
(0.891, 0.988)

0.044*

Lobulation 1.235
(1.177, 1.297)

<0.001* 1.030
(0.981, 1.080)

0.321

Spicule 1.378
(1.306, 1.454)

<0.001* 1.019
(0.958, 1.084)

0.619

Bubble-like sign 1.016
(0.938, 1.100)

0.745

OR, odds ratio; CI, confidence interval.

*Represents p < 0.05.

Ye et al. 10.3389/fsurg.2024.1511024
STAS, emphasizing their net benefit. Figure 3I presents the confusion

matrix for the clinical model in the testing cohort, revealing an

accuracy of 0.718, specificity of 0.847, sensitivity of 0.579, NPV of

0.686, and PPV of 0.776. Additionally, the combined model

achieved AUCs of 0.837 (95% CI: 0.810–0.863) in the training

cohort and 0.768 (95% CI: 0.707–0.829) in the testing cohort.
Comparison of clinical model, radiomics
model, and combined model

In both the training and testing cohorts, the clinical model,

radiomics model, and combined model were compared. The clinical

model achieved an AUC of 0.775 in the training cohort and 0.743 in

the testing cohort, as depicted in Figure 4A,D, respectively.

Similarly, the radiomics model achieved an AUC of 0.836 in the

training cohort and 0.755 in the testing cohort. The combined

model, which integrated radiomics features, demonstrated an AUC

of 0.837 in the training cohort and 0.768 in the testing cohort.

Figure 4B,Epresent theDCAof the threemodels, indicating that the

combinedmodel provided a net benefit in predicting STAS. Calibration

curves in Figure 4C,F demonstrated agreement between the predicted

and observed STAS in both cohorts. The Hosmer–Lemeshow

p-values for the clinical model, radiomics model, and combined

model were 0.421, 0.738, and 0.704, respectively. The DeLong test

results indicated that the combined model outperformed the clinical

model (p < 0.05), while no statistically significant differences were

observed between the combined model and the radiomics model.
Models validation and performance
evaluation

The AUC of clinical model was 0.717 (Figure 5A) in the

validation 1 cohort, whereas the radiomics model (Figure 5B)
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and the combined model (Figure 5C) achieved AUCs of 0.758

and 0.765, respectively. In the validation 2 cohort, The AUC

of the clinical model (Figure 5D) was 0.725, while the radiomics

model (Figure 5E) and the combined model (Figure 5F) achieved

AUCs of 0.726 and 0.746, respectively. The performance of

the clinical model, radiomics model, and combined model

in the training cohort, testing cohort, validation 1 cohort, and

validation 2 cohort is summarized in Table 4. This study

received 18 RQS points and achieved a total score of 50%.

According to Supplementary S4, this signature is classified

as TRIPOD 3.
Explanation and visualization of
radiomics model

SHAP is used to visualize the global interpretation of each

feature contribution in the LightGBM model. In Figure 6A,

Arrange the importance of features from top to bottom, and the

horizontal axis of the graph displays the SHAP values of

the features, with each point representing a patient. The color of

a point is determined by its feature value, with the redder the

color, the higher the feature value, and the bluer the color,

the lower the feature value. Wavelet-LLL_glcm_ClutureShde is

considered the most important feature. As shown in Figure 6B,

the waterfall visualization LightGBM model generated by SHAP

is used to describe the decision-making process of whether two

lung adenocarcinoma patients have STAS. Based on the

contribution of each feature to the decision, all features are

arranged in order, and the direction of their contribution is

displayed by color. The score calculation starts from E[ f (x)],

and then the SHAP values are added together. Red indicates an

increase in the probability of STAS, blue indicates a decrease in

the probability of STAS, and ends with individual prediction.
Discussion

This multicenter study focused on the development of a

prediction biomarker for noninvasive preoperative detection of

STAS in patients with clinical stage IA lung adenocarcinoma.

Our model integrated clinical independent risk factors and

radiomics features, demonstrating excellent predictive ability and

reproducibility across diverse cohorts.

Lung cancer, one of the most prevalent malignancies (22), has

seen an increased detection rate of early-stage cases thanks to CT

screening of high-risk groups in recent years (23). Histologically,

most early-stage lung cancers are confirmed as adenocarcinomas

(24). Studies have established sub-lobar resection with selective

lymph node dissection, as a viable alternative to the standard

treatments of anatomical lobectomy and systematic lymph node

dissection for early-stage lung cancer (25). However, sub-lobar

resection can lead to high recurrence and metastasis rates,

resulting in a poor prognosis for some patients (26).

Advancements in pathological research have revealed STAS as

another form of invasion or metastasis, in addition to lymph
frontiersin.org
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FIGURE 3

Radiomics feature selection based on LASSO algorithm and performance of the radiomics signature model. (A) LASSO coefficient profiles of the
features. Different color line shows corresponding coefficient of each feature. (B) Tuning parameter (λ) selection in LASSO model. (C) Selected
features weight coefficients. (D) The ROC curves of the radiomics signature model in the training and validation cohorts. (E) DCA for radiomics
signature model. (F) Confusion matrix for radiomics signature model. (G) The ROC curves of the clinical model in the training cohort and testing
cohort. (H) DCA for the clinical model. (I) Confusion matrix forthe clinical model.
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node metastasis, hematogenous metastasis, and local implantation

metastasis (27). STAS status has shown associations with various

pathologic characteristics. In our study, we observed a significant

correlation between STAS and the micropapillary growth pattern,

solid components, lymph node metastasis, and lymphovascular

invasion, consistent with previous findings (28, 29). Previous studies

have reported STAS incidence in lung adenocarcinoma ranging

from 14.8% to 56.4%, identifying it as a risk factor for postoperative

survival and recurrence (1, 6, 30). Among our cohort of 1,325

patients, pathologically confirmed STAS was present in 510 (38.5%)

cases. Interestingly, our investigation revealed a higher prevalence of

STAS in male smokers. The duration and quantity of tobacco

consumption are closely associated with lung cancer development

(31). The impact of smoking on pulmonary nodules’ biological

characteristics can result in increased invasiveness. Our research

findings indicate that gender and smoking can serve as predictive

factors for identifying STAS, as determined through univariate

logistic regression analyses.

Previous studies have established that CT features can serve as

predictive indicators of STAS, including nodule type, tumor size,
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spiculation, lobulation, and pleural indentation (29). Thoracic

surgeons consider nodule type and tumor size crucial factors

when choosing surgical strategies, as they have been identified as

predictors for STAS in previous studies (12, 32). Our research

findings confirm the independent predictive value of tumor size

and nodule type for identifying STAS, as determined through

univariate and multivariate logistic regression analyses. Regarding

radiological features, our study found that spicule and lobulation

were more common in the positive STAS group. Univariate

analysis demonstrated their predictive value for STAS, although

the multivariate analysis did not reach statistical significance.

Although there was no statistically significant difference in

pleural indentation between the STAS positive and STAS

negative groups. Pleural indentation was identified as an

independent predictive factor for STAS in both univariate and

multivariate logistic regression analyses. Furthermore, we

constructed a clinical prediction model by incorporating clinical

characteristics with statistically significant differences in the

multivariate logistic regression. The AUC values for the training,

testing, external validation 1, and validation 2 cohorts were
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FIGURE 4

The performance of clinical model, radiomics model and combined model in the training and testing cohorts. The AUC, DCA and Calibration curves of
clinical model, radiomics model, and combined model in the training cohort (A–C) and the testing cohort (D–F).
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0.775, 0.743, 0.717, and 0.725, respectively. These features, along

with radiomics features, were used to develop and validate a

combined model to discriminate STAS. In all datasets, the

combined model exhibited a higher AUC compared to the

radiomics model, while the radiomics model yielded a higher

AUC than the clinical model. Statistical differences were

observed between the combined model and clinical models, as

well as between the radiomics model and clinical models.

However, no statistical differences were found between the

combined model and the radiomics model. These research

findings suggest that the inclusion of clinical features in the

combined model does not significantly enhance its performance,

emphasizing the potential of radiomics features as valuable

biomarkers for preoperative CT-based prediction of STAS.

Several studies have consistently shown that limited resection

in stage IA lung adenocarcinoma patients with STAS leads to

significantly lower rates of RFS and OS compared to lobectomy

(3). Notably, STAS in stage IA lung cancer patients treated with

lobectomy no longer poses a significant risk for recurrence and

overall survival (33). Therefore, accurately predicting the

presence of STAS is crucial for guiding surgical strategies in

early-stage lung cancer. To date, several studies have focused on

preoperative prediction of STAS. Previous research has explored

the use of clinical factors and CT characteristics to predict STAS

status. Ding et al. developed a nomogram prediction model using

clinical features that achieved an AUC of 0.724 for diagnosing

STAS (34). Intraoperative freezing has also been suggested as a

diagnostic method for STAS, but it exhibits low sensitivity
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(11, 35, 36). Furthermore, research has described the development

of a stepwise flowchart for decision-making on sublobar resection

in early-stage lung cancer, based on preoperative PET-CT and

frozen section analysis to estimate the extent of spread through air

space. However, the AUC of GGO (2D) on CT was 0.70, and the

AUC of PET-CT T/L ratio was 0.72 (37), which are lower than

the prediction models constructed in our study. The precise

preoperative assessment of STAS plays a crucial role in guiding

surgeons towards appropriate surgical strategies. In this study,

machine learning algorithms were employed to develop a CT

radiomics model for the prediction of STAS. The AUCs of model

were 0.758 and 0.726 in the external validation 1 and validation 2

datasets, respectively. These findings hold significant clinical

application value as they can serve as a reference for formulating

individualized diagnostic and treatment approaches for early-stage

lung adenocarcinoma patients.

In machine learning and data science, the interpretability of

models has always been a concern. Explainable Artificial

Intelligence (XAI) enhances trust in models by increasing model

transparency. The SHAP library is an important tool that

provides visualization functionality by quantifying the

contribution of features to prediction. The advantages of SHAP

include strong interpretability, high accuracy, and applicability to

various models and feature types. Our research visualizes the

decision-making process of the LightGBM model through SHAP,

which can help doctors better understand the prediction results

of machine learning models, identify model weaknesses, and

improve the model.
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FIGURE 5

The performance of models in external validation. The ROC of the clinical model in validation 1 cohort and validation 2 cohort (A,D). The ROC of the
radiomics signature model in validation 1 cohort and validation 2 cohort (B,E). The comparison of clinical model, radiomics model, and combined
model in validation 1 cohort and validation 2 cohort (C,F).

TABLE 4 The model performances in the training cohort, testing cohort, validation 1 cohort and validation 2 cohort.

AUC 95% CI Sensitivity Specificity PPV NPV

Training cohort
Clinical model 0.775 0.743–0.806 0.681 0.801 0.675 0.806

Radiomics model 0.836 0.809–0.863 0.718 0.831 0.720 0.829

Combined model 0.837 0.810–0.863 0.729 0.812 0.701 0.832

Testing cohort
Clinical model 0.743 0.680–0.806 0.579 0.847 0.776 0.686

Radiomics model 0.755 0.693–0.817 0.789 0.645 0.672 0.769

Combined model 0.768 0.707–0.829 0.623 0.846 0.780 0.707

Validation 1 cohort
Clinical model 0.717 0.608–0.827 0.882 0.542 0.526 0.889

Radiomics model 0.758 0.657–0.858 0.882 0.678 0.612 0.909

Combined model 0.765 0.666–0.865 0.853 0.678 0.604 0.889

Validation 2 cohort
Clinical model 0.725 0.592–0.858 1.000 0.510 0.297 1.000

Radiomics model 0.726 0.555–0.896 0.727 0.808 0.421 0.933

Combined model 0.746 0.604–0.888 0.909 0.615 0.323 0.323

AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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The present study had several limitations. Firstly, this study is

retrospective in nature, which may introduce potential selection

bias. Future research aims to validate the model’s feasibility

through prospective experiments. Secondly, the study exclusively
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focused on adenocarcinoma and did not encompass other tumor

types. Our future plan involves extracting features from various

pathological types of lung cancer to build models and evaluate

the efficacy of radiomics in predicting STAS in those categories.
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FIGURE 6

Model interpretability display and case application analysis. (A) Shapley summary diagram of the LightGBM model. (B) Application analysis for two
patients with STAS (+) and STAS (−).
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Thirdly, controversies exist regarding the subjective nature of

manually defining segmentation boundaries. Our future goal is to

attain full automation through deep learning.
Conclusion

The CT-based radiomics model demonstrated satisfactory

diagnostic performance in predicting STAS in clinical stage IA

lung adenocarcinoma. This approach exhibits potential as a non-

invasive biomarker for preoperatively predicting STAS in clinical

surgical decision making.
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