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Untangling sporadic brain
arteriovenous malformations:
towards targeting the
KRAS/MAPK pathway
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Brain arteriovenous malformations (AVMs) are vascular lesions characterized by
abnormal connections between parenchymal arteries and veins, bypassing a
capillary bed, and forming a nidus. Brain AVMs are consequential as they are
prone to rupture and associated with significant morbidity. They can broadly
be subdivided into hereditary vs. sporadic lesions with sporadic brain AVMs
representing the majority of all brain AVMs. However, little had been known
about the pathogenesis of sporadic brain AVMs until the landmark discovery in
2018 that the majority of sporadic brain AVMs carry somatic activating
mutations of the oncogene, Kirsten rat sarcoma viral oncogene homologue
(KRAS), in their endothelial cells. Here, we review the history of brain AVMs,
their treatments, and recent advances in uncovering the pathogenesis of
sporadic brain AVMs. We specifically focus on the latest studies suggesting that
pharmacologically targeting the KRAS/MEK pathway may be a potentially
efficacious treatment for sporadic brain AVMs.
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Introduction

Brain arteriovenous malformations (AVMs) are vascular lesions characterized by an

abnormal, fistulous connection between parenchymal arteries and veins without an

intervening capillary network (1) (Figure 1). AVMs are prone to rupture due to the

direct shunting of high pressure arterial blood into veins designed to carry low pressure

post-capillary blood with an annual risk of rupture of 2%–4% and a lifetime risk of

rupture of 105 minus the patient’s current age in years (2, 3). In addition to

intracranial hemorrhage (ICH), AVMs can present with seizures, headaches, or a variety

of other neurologic deficits related to ischemic steal from adjacent brain parenchyma

(2). The best estimate of the incidence of AVMs is 0.94 per 100,000 person-years with

the most common presentation being ICH in nearly half of all patients (4–10). The

consequences of hemorrhage are devastating. Approximately 8% of patients die in

hospital after a single AVM hemorrhage event. Among survivors, 46% are discharged

from the hospital with mild to moderate neurologic deficits, while 23% have severe

neurologic deficits (11). The neurologic deficits sustained as a result of AVM

hemorrhage are associated with significant disability-adjusted life years as AVMs

typically present in young adults between the ages of 20–40 (12).
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FIGURE 1

Representative brain AVM. (A) Schematic of normal arteriovenous connection via a capillary bed. (B) Schematic of AVM with absence of intervening
capillary bed and instead presence of a nidus. (C) Lateral projection of cerebral angiogram of representative Spetzler-Martin grade 5 AVM showing
early arterial to venous phase from left to right. (D) Anterior-posterior projection of cerebral angiogram of representative Spetzler-Martin grade 5
AVM previously shown in (C) showing early arterial to venous phase from left to right. ICA, internal carotid artery; AP, antero-posterior.

Jabarkheel et al. 10.3389/fsurg.2024.1504612
Treatment of AVMs is challenging and largely dependent on their

Spetzler-Martin grade. The Spetzler-Martin grading scale scores AVMs

based on the size of their nidus, functional location within the brain,

and pattern of venous drainage (13). The Spetzler-Martin grade is

clinically consequential as it predicts the rate of favorable outcome

following any interventional treatment for a given AVM. Grade 1

and 2 AVMs are generally treated with curative microsurgery and

have favorable outcomes (14). Of note, the more recently developed

Lawton-Young supplement to the Spetzler-Martin grading scale

helps to further stratify surgical risk for operable AVMs by also

taking patient age, nidus architecture, and whether a patient

presented with hemorrhage into account (15). Management of grade

3 AVMs is more nuanced and typically involves a multi-modal

approach involving radiosurgery, endovascular embolization, and

microsurgery (16). Grade 4 and 5 AVMs are generally managed

conservatively as any treatment is associated with high rates of

morbidity and mortality (17). Some high grade AVMs can be

downgraded with radiosurgery or endovascular embolization to

make definitive surgery an option (18). It is difficult to estimate the
Frontiers in Surgery 02
exact prevalence of Grade 4 and 5 AVMs as most are not intervened

upon, however, based on data from historical surgical series, in

which Grade 4 and 5 AVMs represented 20% of all surgically treated

AVMs, it is likely that they comprise at least a third of all AVMs

(17). Importantly, no pharmacologic treatments are currently

approved to reduce the size or risk of hemorrhage of brain AVMs.

Given the disqualifying morbidity associated with contemporary

treatment options for high grade AVMs, and the intrinsically

invasive nature of surgery for low grade AVMs, there is a critical

need for the development of targeted pharmacologic therapies for

these complex lesions. Over the last decade significant progress

has been made in delineating the genetic basis of AVMs such that

targeted therapeutics for these complex lesions are now in sight.
A brief history of brain AVM treatment

To envision the future of brain AVM treatment, we must first

understand the history of treatment for these complex lesions.
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Brain AVMs were first reported in the mid 19th and early 20th

century with credit primarily given to either Hubert von Luschka

or Rudolf Virchow for the seminal report in the literature (19, 20).

Early descriptions of brain AVMs were challenged by lack of

photography and much less advanced imaging such as computed

tomography (CT), magnetic resonance imaging (MRI), or catheter

based angiography, making it difficult to distinguish true nidal

AVMs from similar vascular pathology such as dural arteriovenous

fistulas, slow flow vascular malformations such as cavernomas, and

hypervascular tumors such as hemangioblastomas (21). Harvey

Cushing and Percival Bailey in their landmark 1928 manuscript,

Tumors Arising from the Blood-vessels of the Brain, demarcated

AVMs, also known as “angioma arteriale” at the time, as unique

within the subclassification of “angiomatous malformations” and

separate from “angioblastomas”, or hypervascular tumors (21).

Early attempts at surgical resection of AVMs by the great

American pioneers of neurosurgery, Harvey Cushing and Walter

Dandy, who separately published their individual cases series in

1928, were met with abysmal results (21, 22). Cushing had the

following to say about the surgical management of AVMs at the

time (21):

“There is little to be said from our own experience in any way

encouraging in regard to the surgical attack on one of these

formidable lesions even in the absence of any participation of

the extracranial vessels in the increased vascularity. Elsewhere

in the body where tourniquets could be applied or pressure

be temporarily exerted against resistant tissues, bleeding from

an angioma can be controlled, but this is not true of the

brain. Forewarned is to be forearmed; and since an angioma

is likely to be exposed during the course of an exploratory

operation for a lesion of unknown character, the surgeon is

quite unprepared to meet the situation. Indeed, as the cases

reported in the literature bear evidence, the very attempt to

uncover the lesion may be disastrous.”

The first successful removal of an AVM was ultimately

performed in 1932 by the father of Swedish neurosurgery,

Herbert Olivecrona (23). Olivecrona’s technique for AVM

removal, consisting of circumferential ligation of feeding arteries

in a cone shaped fashion towards the depth of an AVM before

ligating any draining veins, is the basis for present-day AVM

resection technique (23, 24). Olivecrona’s improved outcomes

with surgical resection of AVMs was due not only to technique,

but also due in part to the rise of cerebral angiography, which

was developed in 1927 by the Portuguese neurologist, Egas

Moniz, and allowed for improved pre-operative characterization

of AVMs (25, 26). The next major advancement in the surgical

management of AVMs came with the introduction of the

microscope to neurosurgery in the 1960 s and −70 s (24, 27).

While in subsequent decades there have been further refinements

in the pre-operative evaluation of AVMs with the advent of

advanced CT and MRI imaging techniques, in addition to

further improvements in cerebral angiography, the fundamental

tenets and limits of surgical resection of AVMs have not changed

dramatically since the 1980 s (24, 26). Presently, microsurgery is
Frontiers in Surgery 03
an effective albeit invasive option for treating low grade AVMs

with minimal morbidity, however, it carries significant morbidity

for treating high grade AVMs (15, 17, 18).

The first use of radiation to treat a brain AVM was in 1914 by

Norwegian neurosurgeon Vilhelm Magnus (28). Conventional

fractionated radiotherapy, which was the primary form of

radiation therapy for treating AVMs for most of the 20th

century, was largely ineffective (24, 29, 30). With the

development of stereotactic radiosurgery in the 1970s by Swedish

neurosurgeon and Olivecrona disciple, Lars Leksell, there was

renewed interest in treating AVMs with radiation (30). By the

early 1990s, reports out of the University of Pittsburgh, the site

of the first stereotactic gamma knife unit in the United States,

showed high rates of obliteration with gamma knife treatment of

small volume AVMs (30–32). In subsequent decades despite

attempts to expand the indications for radiosurgery in the

management of AVMs its role has remained relatively limited at

most centers (33). One of the major drawbacks of radiosurgery is

that its mechanism of action, intimal hyperplasia, occurs in a

delayed fashion and it may take between 1 and 3 years to achieve

AVM obliteration, during which time the risk of hemorrhage

persists (33, 34). Another major drawback of radiosurgery is that

the larger the AVM is, the lower the marginal dose of radiation

that can be safely delivered without damaging adjacent brain

parenchyma (33). Presently, stereotactic radiosurgery serves as

(1) a modestly less efficacious but also less invasive alternative to

surgery in patients with low grade AVMs located in either deep

or eloquent locations, (2) a provisional option for downgrading

high grade AVMs for possible surgery, and (3) as a palliative

option for high grade AVMs (18, 33).

The first attempted endovascular embolization of a brain AVM

was performed in 1959 by American neurosurgeons Alfred

Luessenhop and William Spence (35). Luessenhop and Spence

cannulized the internal carotid artery at the carotid bifurcation,

and then released methyl methacrylate emboli, measured to be

just smaller than the approximate diameter of the patient’s major

AVM feeding artery. Importantly, their technique for AVM

embolization relied on the imperfect hypothesis that the

increased size and flow through an AVM’s feeding arteries would

selectively attract appropriately sized emboli that were released

from the cervical internal carotid artery (35). Endovascular

neurosurgery has come a long way since the time of Luessenhop

and Spence. Numerous advancements have been made with the

development of sophisticated catheters allowing for superselective

targeting of vessels, improved embolization materials allowing for

robust filling of involved vessels, and innovative transvenous

embolization techniques (24, 36, 37). Despite these advances,

however, angiographic AVM obliteration remains difficult to

achieve and is associated with high morbidity, thus the role of

endovascular approaches in AVM management remains limited

(24, 38–41). Presently, the role of endovascular embolization at

most centers is confined to either being (1) a pre-operative

surgical adjunct by targeting deep feeding arteries to make

surgery more facile, or (2) a salvage option in unresectable

lesions by targeting high-risk features, such as intra-nidal

aneurysms (38, 40).
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The genetics of brain AVMs

Given the limitations of surgical, radiosurgical, and endovascular

treatments for AVMs, as described above, a better understanding of

the underlying pathophysiology of AVMs is needed to provide a

potentially pharmacological treatment option. Until recently

however the pathogenesis of AVMs has been poorly understood.

Since their first descriptions in the literature the prevailing

paradigm has been that AVMs are static, non-neoplastic,

congenital anomalies (12, 18, 42–45). In recent decades, as

components of this paradigm have come into question, and DNA

sequencing techniques have advanced, a more dynamic view of

AVMs, as active lesions, secondary to aberrantly functioning

vascular endothelial cells has emerged, presenting opportunities for

pharmacologic intervention (42, 46, 47).

It has been dogma in neurosurgery that AVMs are congenital

anomalies (44, 48). The consensus has been that AVMs develop

at some point during embryogenesis, due to some unknown

error in brain vasculogenesis, such that they are present at the

time of birth, remain dormant until young adulthood, and only

become apparent either once an AVM becomes symptomatic, or

is incidentally found during cranial imaging for another

indication (12, 45). The notion that AVMs are congenital

stemmed from the early observation that AVMs present in young

adults. Cushing noted in his manuscript, Tumors Arising from

the Blood-vessels of the Brain, “the fact that the first symptoms

have usually occurred in young adult life may be taken as in

favour of a congenital lesion which for a period of years has

remained symptomatically dormant” (21). The concept of AVMs

as congenital anomalies carried with it the underlying

assumption that these lesions are static, irreversible,

developmentally primitive shunts, rather than active, proliferative

centers of vascular dysfunction. Despite a long held consensus

that AVMs are congenital there has been limited evidence to

support this theory (42, 44). For instance, despite advances in

the quality of fetal imaging techniques, and the frequency with

which they are obtained, prenatal diagnosis of parenchymal

AVMs is extremely rare (44, 49, 50). Moreover, as MRI studies

are obtained with increasing frequency in contemporary

medicine, increasing numbers of de novo cases of brain AVMs

are being reported (42, 44, 51, 52). Taken together, these findings

have opened the possibility that AVMs may be more than just

one-off errors in embryonic brain vasculogenesis (53).

The first major breakthrough in uncovering the pathogenesis

of brain AVMs came in the 1990s with the discovery of the

genetic basis of Rendu-Osler-Weber disease, also known as

hereditary hemorrhagic telangiectasia (HHT) (54–56). Rendu-

Osler-Weber disease was first described in the late 19th century,

but the term HHT wasn’t coined until 1909 (57). HHT was

initially described as a familial disease characterized by

epistaxis, mucocutaneous telangiectasias and anemia (57, 58).

For many decades an association between HHT and brain

AVMs was not well appreciated, as the overwhelming majority

of brain AVMs are not familial, and only a small fraction of

HHT patients develop brain AVMs (56, 58–61). Specifically,
Frontiers in Surgery 04
familial brain AVMs are estimated to represent approximately

5% of all brain AVMs, with the rest being sporadic, and only

about 10% of HHT patients ultimately develop brain AVMs

(48, 56, 62, 63). The finding that HHT is caused by germline,

loss of function mutations in either Endoglin (ENG), Activin

receptor-like kinase 1 (ALK1), or Mothers against

decapentaplegic homolog 4 (SMAD4) was of particular

significance because all three are involved in endothelial cell

specific receptor pathways of the transforming growth factor

beta (TGF-β) family of ligands, suggesting that vascular

endothelial cell dysfunction might be the driving force behind

AVM development (56, 64, 65). In the following decades since

the turn of the millennium, numerous transgenic HHT mouse

models have been developed to study AVM pathogenesis and

collectively have shown that (1) vascular endothelial cells are

indeed the principal drivers within the neurovascular unit of

AVM development, (2) ENG, ALK1, and SMAD4 promote

quiescence within vascular endothelial cells, (3) AVMs can be

induced by genetic manipulation at either the early postnatal or

adult timepoint, and (4) mosaic genetic perturbation of

endothelial cells is sufficient to cause AVMs (64–67).

Uncovering of the genetic basis of HHT spurred novel insights

into the pathogenesis of hereditary AVMs, however, the

generalizability of these findings to the pathogenesis of sporadic

AVMs remained indeterminate. Beyond the fact that hereditary

AVMs represent only 5% of brain AVMs, they are also more

likely to be low grade and may have a lower risk of rupture

compared to their sporadic counterparts (63, 68–70).

Nonetheless, the discovery that hereditary AVMs were driven by

germline mutations affecting brain vascular endothelial cell

function led to the novel hypothesis that sporadic AVMs may in

a parallel fashion be due to acquired somatic mutations of brain

vascular endothelial cells (63). In 2018, a landmark study, which

involved paired exome sequencing of human brain AVM and

blood samples, found that most human brain AVMs carry

somatic activating mutations of the oncogene, Kirsten rat

sarcoma viral oncogene homologue (KRAS), in their endothelial

cells (47). A high prevalence of KRAS mutations was

subsequently validated in multiple other large cohorts of human

brain AVMs (71–73). Building upon this work, it has recently

been shown that either early postnatal or adult induction of

activating KRAS mutations in brain endothelial cells is sufficient

to induce formation of AVMs in transgenic mouse models

(74–76). Much work remains to further elucidate the specific

mechanisms by which activating KRAS mutations and

consequent downstream stimulation of the mitogen-active

protein kinase (MEK) and extracellular signal-related kinase

(ERK) pathway leads to the development brain AVMs, however,

it is known that this pathway is broadly involved in cell

proliferation, as evidence by its involvement in up to 50% of all

human cancers (77) (Figure 2). Another question which requires

further investigation is how exactly loss of function mutations in

the ENG/ALK1/SMAD4 pathway converge with gain of function

mutations in the KRAS/MEK pathway to similarly confer an

AVM phenotype (78).
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FIGURE 2

KRAS/MEK pathway. Simplified schematic of KRAS/MEK pathway. VEGF receptor activation triggers KRAS activation, followed by RAF, MEK and ERK
activation, ultimately leading vascular endothelial cell proliferative changes.
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Future of brain AVM treatment

Since the establishment of activating KRAS mutations as the

genetic basis of sporadic human brain AVMs there has been a

push to apply therapeutics, initially designed to target

dysregulated KRAS pathway signaling in the context of cancer, to

AVMs (79). The hope is that by targeting aberrant KRAS

pathway signaling in AVMs we may be able to either (1) induce

complete regression of these lesions, (2) induce partial regression

to make surgery feasible, or (3) reduce the risk of hemorrhage.

In 2020, it was shown in zebrafish that pharmacologic MEK

inhibition can not only prevent the formation of KRAS induced

brain AVMs, but also prompt their regression (76). In 2021, it

was shown in mice that pharmacologic MEK inhibition can

prevent the formation of KRAS induced brain AVMs (75, 80).

Just this year, in 2024, it was shown in mice that either

pharmacologic KRAS or MEK inhibition may potentially cause

brain AVM regression (74, 81).

While much work remains to further assess whether KRAS/

MEK pathway inhibition can truly offer hemorrhage risk

reduction or induce human brain AVM regression, there is

reason for optimism when we look at early results of MEK

inhibition in the context of extracranial sporadic AVMs. Similar

to intracranial AVMs, in 2017 it was found that the majority of

extracranial AVMs carry somatic KRAS/MEK pathway mutations

(82, 83). KRAS and MEK inhibition have subsequently been

found to induce regression of extracranial AVMs in humans and

there are currently two phase II clinical trials in the United

States investigating MEK inhibition for extracranial AVMs
Frontiers in Surgery 05
(81, 84). Additionally, a group in Canada is investigating the

effect of 60 days of MEK inhibition on intracranial AVM

architecture for patients already scheduled for microsurgical

resection of their lesions (NCT06098872).

The development of novel targeted therapeutics of the KRAS/

MEK pathway is an active area of investigation (77, 85, 86).

Tremendous progress has been made over the past decade since

trametinib, the first MEK inhibitor, received Food and Drug

Administration (FDA) approval in 2013 for the treatment of

v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutated

metastatic melanoma (87). In recent years direct KRAS inhibitors

have been developed. Sotorasib was the first KRAS inhibitor to

receive FDA approval for the treatment of KRAS G12C mutated

non-small cell lung cancer (88). Additional mutant allele specific

KRAS inhibitors, such as MRTX1133 for the treatment of KRAS

G12D mutated solid tumors, are in clinical trials (89, 90). The

application of KRAS/MEK pathway inhibition for the treatment

of sporadic brain AVMs can benefit from lessons learnt from

their use in the context of cancer. Namely, resistance can develop

to single agent KRAS/MEK pathway inhibition and combination

therapies may offer more durable efficacy (85, 86, 89).
Discussion

The majority of sporadic brain AVMs are driven by somatic

activating KRAS mutations in brain vascular endothelial cells.

Targeting the KRAS/MEK pathway represents a promising

therapeutic option for patients with sporadic brain AVMs.
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