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Integrative prognostic modeling
for stage III lung adenosquamous
carcinoma post-tumor resection:
machine learning insights and
web-based implementation
Min Liang1,2*, Peimiao Li3, Shangyu Xie2, Xiaoying Huang2,
Xiaocai Li2 and Shifan Tan1*, for The Lung Care Innovator Team
1Department of Respiratory and Critical Care Medicine, Maoming People’s Hospital, Maoming, China,
2Center of Respiratory Research, Maoming People’s Hospital, Maoming, China, 3Department of General
Internal Medicine, Kangmei Hospital, Puning, China
Introduction: The prognostic landscape of stage III Lung Adenosquamous
Carcinoma (ASC) following primary tumor resection remains underexplored. A
thoughtfully developed prognostic model has the potential to guide clinicians
in patient counseling and the formulation of effective therapeutic strategies.
Methods: Utilizing data from the Surveillance, Epidemiology, and End Results
database spanning 2000 to 2018, this study identified independent prognostic
factors influencing Overall Survival (OS) in ASC using Boruta analysis. Employing
Gradient Boosting, Random Forest, and Neural Network algorithms, predictive
models were constructed. Model performance was assessed through key
metrics, including Area Under the Receiver Operating Characteristic Curve
(AUC), calibration plot, Brier score, and Decision Curve Analysis (DCA).
Results: Among 241 eligible patients, seven clinical parameters—age, sex, primary
tumor size, N stage, primary tumor site, chemotherapy, and systemic therapy—
were identified as significant predictors of OS. Advanced age, male gender, larger
tumor size, absence of chemotherapy, and lack of systemic therapy were
associated with poorer survival. The Random Forest model outperformed others,
achieving 3- and 5-year AUCs of 0.80/0.79 (training) and 0.74/0.65 (validation). It
also demonstrated better calibration, lower Brier scores (training: 0.189/0.171;
validation: 0.207/0.199), and more favorable DCA. SHAP values enhanced model
interpretability by highlighting the impact of each parameter on survival
predictions. To facilitate clinical application, the Random Forest model was
deployed on a web-based server for accessible prognostic assessments.
Conclusions: This study presents a robust machine learning model and a web-
based tool that assist healthcare practitioners in personalized clinical decision-
making and treatment optimization for ASC patients following primary
tumor resection.
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Abbreviations

ASC, adenosquamous carcinoma; ADC, adenocarcinoma; SCC, squamous cell carcinoma; NSCLC, non-
small cell lung cancer; ICD-O, international classification of diseases for oncology; OS, overall survival;
ROC, receiver operating characteristic; DCA, decision curve analysis; AUC, area under the curve; SEER,
surveillance, epidemiology, and end results; NCI, National Cancer Institute; RSF, random forest; NN,
neural network; GBM, gradient boosting machine; SMOTE, synthetic minority over-sampling technique;
SHAP, shapley additive explanations; IoT, internet of things.
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Introduction

Globally, lung cancer persists as a substantial public health

challenge. According to the Global Burden of Disease Study report,

the year 2019 witnessed an incidence of over 2.26 million new

cases and 2.04 million deaths attributed to lung cancer (1, 2).

Primary lung adenosquamous carcinoma (ASC) constitutes a rare

subtype, representing approximately 0.4%–4% of all lung

carcinoma (3, 4). The 2015 World Health Organization (WHO)

classification of lung tumors characterizes ASC as “a carcinoma

demonstrating features of both squamous cell carcinoma (SCC)

and adenocarcinoma (ADC), with each component constituting at

least 10% of the tumor” (5). Notwithstanding its composite nature

incorporating both ADC and SCC elements, ASC exhibits a more

aggressive histological comportment, and the reported overall

cumulative 5-year survival rate is only 6.2% (6, 7). Therefore, early

diagnosis and timely medical intervention are crucial for

improving outcomes in ASC.

In accordance with the National Comprehensive Cancer Network

Guidelines (Version 1.2020, 2019), individuals identified as suitable

candidates for intervention at stages I to II of non-small cell lung

cancer (NSCLC) may receive recommendations for surgical

intervention, positioned as an optimal therapeutic modality with

curative potential in the context of NSCLC (8). However, the lack

of a clear recommendation regarding the suitability of surgical

treatment for patients with stage III NSCLC, especially those

classified as IIIA-N2, creates a significant gap in clinical guidance.

Additionally, due to the unique and uncommon nature of ASC, the

available research is limited, restricting our understanding of the

impact of surgical procedures on the prognosis of stage III patients

affected by this subtype. Therefore, a thorough examination of the

clinical characteristics and prognostic factors specific to stage III

ASC in patients who have undergone tumor resection is crucial.

Such an investigation is essential for optimizing the clinical

management strategies for this condition.

In recent years, there has been a growing emphasis on applying

advanced computational technologies such as artificial intelligence

(AI) (9), the Internet of Things (IoT) (10), and deep learning

algorithms in medicine (11). Machine learning methodologies,

renowned for their ability to autonomously extract insights from

extensive datasets, facilitate the identification of subtle relationships

between variables and clinical outcomes. This unique capability

allows for the creation of highly effective models proficient in

predicting outcomes for previously unexplored datasets (12).

However, despite these advancements, there is a noticeable gap in

the current body of knowledge concerning the development of

machine learning-based models tailored specifically to identify

independent prognostic features in surgical ASC patients. Similarly,

the application of machine learning methodologies to predict

survival probabilities within this specific patient cohort has not

received adequate attention in existing research.

In this study, we utilized data from the SEER database and

various machine learning techniques to develop prognostic

models for evaluating survival probability in stage III ASC

patients undergoing primary tumor resection. Additionally, we

conducted a comprehensive comparative analysis to evaluate the
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effectiveness of these machine learning models compared to the

concurrently used TNM staging and Cox regression systems. The

overarching objective was to identify the model that

demonstrated superior performance in prognostication. As a

result, this investigation culminated in the development of a web-

based classifier enriched with visual representations, enhancing

both accessibility and utility in the clinical context.

We acknowledge that the rarity of ASC and the retrospective

nature of SEER data present challenges, such as limited sample

sizes and potential biases inherent in registry data. Despite these

limitations, our study provides valuable insights and a foundation

for future research to improve prognostication and management

of stage III ASC patients.
Methods

Compliance with ethics guidelines

This article is dependent upon open-access databases and does

not involve original research incorporating human participants or

animals. To safeguard patient privacy and uphold ethical

principles, each author has formally affirmed the adherence to

the Surveillance, Epidemiology, and End Results (SEER) research

data agreement.
Data extraction

The present retrospective cohort study employs data extracted from

the Surveillance, Epidemiology, and End Results (SEER) database.

Administered by the National Cancer Institute (NCI), this database

comprises 18 population-based cancer registries, encompassing

almost 28% of the U.S. population. Capitalizing on the extensive

coverage afforded by the SEER program, our study derives advantage

from an inclusive depiction of clinicopathological details, tumor

characteristics, and therapeutic interventions. The clinical data of

patients were acquired through the utilization of the SEER Stat

software (version 8.4.0.1; https://seer.cancer.gov/data-software/) to

ensure the precision and reliability of the information obtained.
Study population

The inclusion criteria for this study were as follows: (i)

individuals who received a pathologically validated diagnosis of

ASC and underwent primary tumor resection from 2000 to 2018.

ASC was defined in accordance with the third edition of the

International Classification of Diseases for Oncology (ICD-O-3),

specifically identified by site codes C34.0-C34.9 and histological

type code 8560/3; (ii) patients with a solitary primary tumor and

no concurrent primary tumors in other anatomical sites; The

exclusion criteria encompassed the following: (i) inadequate

demographic particulars, involving incomplete data on age,

gender, ethnicity, and marital status; (ii) insufficient

clinicopathological details, including histologic classification,
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precise measurement of primary tumor dimensions, primary

tumor location, tumor laterality, histological differentiation grade,

as well as TNM stage; (iii) incomplete therapeutic information

concerning surgical methods for the primary tumor (such as

wedge, lobectomy, bilobectomy, and pneumonectomy), surgery of

other regions, regional nodes examination, systemic therapy

during the perioperative period, and chemotherapy or

radiotherapy during the disease course; and (iv) lack of data

regarding survival status and follow-up.
Baseline characteristics presentation

This study primarily focused on OS, meticulously defined as

the temporal interval from the date of cancer diagnosis to the

subsequent date of death, irrespective of the cause. Clinical and

demographic features at baseline were systematically presented,

with continuous variables summarized using mean and standard

deviation, and categorical variables delineated through

frequencies and percentages. A total of 18 variables were

incorporated in this study to discern independent prognostic

features among patients afflicted with ASC. The demographic

parameters included age, gender, ethnicity, and marital status.

The clinicopathological attributes of the tumor comprised tumor

laterality, primary tumor location, tumor size, tumor grade, T

stage, N stage, and treatment-related information, including

details on surgery, chemotherapy, and radiotherapy.
Segmentation of study cohort and
organization of data structure

To construct and validate the model, eligible patients underwent

systematic allocation into two cohorts, namely the training and

validation cohorts. This allocation, achieved at an 8:2 ratio using

computer-generated random numbers, laid the foundation for

subsequent analyses. The data from the training cohort played a

pivotal role in crafting a prognostic model and a risk assessment

classification system, thus contributing significantly to the robust

development of the analytical framework. In contrast, the validation

cohort, distinct from the training cohort, played a crucial role in

evaluating and validating the model’s performance, ensuring the

reliability of the study outcomes. In the realm of machine learning,

optimization of the classification threshold was carried out through

a 5-fold cross-validation procedure applied to the training cohort.

The overarching objective was to maximize the Area Under the

Receiver Operating Characteristic Curve (AUC), enhancing the

model’s predictive accuracy and generalizability.
Feature engineering and model
construction strategy

In our analysis, we employed the Boruta model, a wrapper

algorithm specifically designed for survival analysis tasks, to

assess determinants of survival. The Boruta model distinguishes
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and selects relevant features by comparing their importance to

that of shadow attributes—randomized or permuted versions of

the original variables. The retention of features deemed more

important than their shadows enhances the robustness of

prognostic models by eliminating irrelevant or redundant

variables. This contributes to improved interpretability and

predictive performance in survival prognosis. Following this, we

developed conventional prognostic models using Cox regression

methodology, incorporating the survival determinants identified

by the Boruta model. Simultaneously, the TNM staging model

employed its own determinants for development. To assess the

optimal prognostic framework, we utilized the mlr3 package in the

R programming environment to train Random Forest, Gradient

Boosting Machine, and Neural Network for survival analysis. All

models were trained using the same set of survival determinants,

and the objective was to determine the most effective prognostic

model for 3- and 5-year OS rates among these algorithms.

The study employed the Survival-Synthetic Minority Over-

sampling Technique (SMOTE) algorithm, implemented through

the “smotefamily” package, to balance the dataset before model

training. This algorithm, specifically designed for survival

analysis, addresses class imbalances by generating synthetic data

to bolster minority event cases. By interpolating new samples

between existing event observations, it enhances model sensitivity

and accuracy, which is particularly beneficial in fields like

medicine and engineering, where accurate prediction of time-to-

event outcomes is critical.

Random Forest constructs predictive models by aggregating the

outputs of multiple decision trees. We optimized the model using

grid search for hyperparameter tuning, adjusting the number of

trees (200–500), minimum samples required to split an internal

node (15–21), and the number of features considered at each

split (mtry, 3–5), tailoring the algorithm to our dataset.

Gradient Boosting builds models by sequentially combining

weak learners to minimize prediction errors. We fine-tuned

hyperparameters including the number of trees (n.trees, 100–

500), maximum interaction depth (1–5), minimum observations

in a terminal node (5–21), and the shrinkage parameter (0.001–

0.1). The model utilized the Kaplan-Meier estimator and

modeled proportional hazards, suitable for survival analysis.

Neural Networks model complex non-linear relationships

within data. We configured the network with the Adam

optimizer, early stopping with a patience of 20 epochs to prevent

overfitting, a batch size of 32, and a maximum of 500 training

epochs. Hyperparameters optimized included the number of

layers, nodes per layer, learning rate, dropout rate, and weight

decay. The trafo function transformed the search space by

combining the number of layers and nodes into a composite

parameter (num nodes), streamlining the hyperparameter

optimization process.
Model performance evaluation

The model’s performance was comprehensively assessed using

various evaluation metrics, including Receiver Operating
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https://doi.org/10.3389/fsurg.2024.1489040
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Liang et al. 10.3389/fsurg.2024.1489040
Characteristic (ROC) curve analysis, calibration curve analysis,

Decision Curve Analysis (DCA), and the Brier score. The ROC

curve, measuring the discriminatory capacity through the Area

Under the Curve (AUC), serves as an indicator of precision in

prognostication. Calibration analysis evaluates the alignment

between predicted and actual probabilities, with an optimal

model demonstrating close alignment with the 45° diagonal line

in the calibration plot. Decision Curve Analysis was employed to

assess clinical efficacy, calculating net benefits at different

threshold probabilities. The Brier score, computed by comparing

predicted and actual outcomes, represents the mean squared

difference and is crucial in evaluating predictive accuracy in

survival analysis. The formula for the Brier score in survival

analysis, expressed as:

Brier Score ¼ (1=N) � S(Pi� Oi)2

indicates that a lower score corresponds to better predictive

accuracy, with zero denoting perfect predictions. This

comprehensive evaluation framework ensures a nuanced

understanding of the model’s prognostic performance across

various dimensions.
Model interpretation

The SHAP (SHapley Additive exPlanations) package played a

pivotal role in unraveling the intricacies of machine learning

models. In particular, we employed the beeswarm summary plot

within the SHAP framework to visually represent the

contribution of variables to the model outcomes. Rooted in

game-theoretic principles, SHAP serves as a methodological tool

designed to provide insights into the outcomes produced by

machine learning models. This approach facilitates the

identification of predominant features that significantly influence

the model’s predictions, offering a nuanced understanding of

how these features impact the overall output of the model. By

leveraging SHAP, we enhance interpretability and transparency

in the complex landscape of machine learning, empowering

practitioners to gain valuable insights into the factors driving

model predictions.
Statistical analysis

All statistical analyses were executed using R software (version

4.2.1, https://www.r-project.org/). The conducted statistical tests

were two-tailed, and significance was determined with a

threshold of P < 0.05. The model development process

incorporated various R packages, namely “tidyverse,” “survival,”

“mlr3verse,” “mlr3proba,” “mlr3extralearners,” and “survex.”

Additionally, the construction of the web-based dynamic model

was facilitated by the “shinydashboard” R package. This

comprehensive utilization of R packages signifies the

incorporation of diverse statistical and machine learning tools,
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ensuring a robust and multifaceted approach in the development

and analysis of the model.
Results

Patient characteristics

Out of the initial cohort of 2,706 patients diagnosed with ASC

who were eligible for consideration, 241 individuals met the

predefined inclusion criteria and were included in the study. The

median survival duration was found to be 35 months, with a

significant 73.03% of the total cohort succumbing to mortality.

In terms of demographics, the majority of the cohort comprised

individuals of Caucasian ethnicity (83.82%) and those aged 65

years or older (71.78%).

The primary tumor was most commonly located in the upper

lobes of the lungs, accounting for over 68% of cases, followed by

occurrences in the lower lobes at 24.90%. Tumor sizes less than

3 cm were more prevalent, observed in 42.32% of patients

compared to other size subgroups. Regarding perioperative

interventions, over 65% of patients underwent lobectomy resection,

12.45% underwent wedge/segmental resection, 7.88% underwent

bilobectomy, and 13.69% underwent pneumonectomy. Only four

patients (1.66%) received surgery in other anatomical regions/sites.

Positive regional nodes were identified in over 80% of the patients,

of whom 56.85% had 1to 3 nodes positive, and 25.31% had more

than 3 nodes positive. Radiotherapy was administered to

approximately 40% of individuals during the perioperative period,

and systemic therapy was employed in over 67% of the surgical

population, with over 53% of them receiving therapy after surgery.

Throughout the course of oncological interventions, approximately

40% of patients received radiotherapy, while 67% underwent

chemotherapy. A comprehensive summary of baseline

characteristics is provided in Table 1.
Identification of prognostic features and
model development

Correlation analysis is commonly employed to examine the

interrelationships among data features. To ascertain the

independence of these features, we conducted a Spearman

correlation analysis and generated a correlation heat map. As

depicted in Figure 1, this visual representation clearly shows a

lack of significant correlation among the 18 features under

investigation. We then performed a comprehensive examination

of various features—including demographic characteristics, tumor

attributes, and treatment methods—using them as covariates in a

Boruta analysis. This analysis identified seven significant

determinants of survival for ASC patients: age, sex, primary

tumor size, N stage, chemotherapy, and systemic therapy. The

outcomes of this analysis are detailed in Figure 2.

Building upon these findings, we developed a traditional

prognostic model based on Cox regression. Furthermore, we

enhanced our approach by constructing three additional
frontiersin.org
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TABLE 1 Baseline characteristics of stage III ASC patients post-tumor
resection.

Features Total (n = 241)

Age (years), n (%)
<65 68 (28.22)

≥65 173 (71.78)

Sex, n (%)
Male 139 (57.68)

Female 102 (42.32)

Race, n (%)
White 202 (83.82)

Black 18 (7.47)

Others 21 (8.71)

Marital Status, n (%)
Married 140 (58.09)

Unmarried 92 (38.17)

Unknown 9 (3.73)

Primary tumor site, n (%)
Upper lobe 165 (68.46)

Middle lobe 9 (3.73)

Lower lobe 60 (24.90)

Overlapped lesions 7 (2.90)

Tumor size (cm), n (%)
0–3 102 (42.32)

3.1–5 74 (30.71)

5.1–7 30 (12.45)

>7.1 35 (14.52)

Tumor grade, n (%)
Grade I 2 (0.83)

Grade II 78 (32.37)

Grade III 147 (61.00)

Grade IV 2 (0.83)

Unknown 12 (4.98)

Tumor laterality, n (%)
Left 105 (43.57)

Right 136 (56.43)

T stage, n (%)
T1 35 (14.52)

T2 82 (34.02)

T3 78 (32.37)

T4 46 (19.09)

N stage, n (%)
N0 23 (9.54)

N1 59 (24.48)

N2 152 (63.07)

N3 7 (2.90)

AJCC stage
IIIA 222 (92.12)

IIIB 19 (7.88)

Surgery of primary tumor site, n (%)
Wedge/segmental resection 30 (12.45)

Lobectomy 159 (65.98)

Bilobectomy 19 (7.88)

Pneumonectomy 33 (13.69)

Surgery of other region/sites, n (%)
Yes 4 (1.66)

No 237 (98.34)

(Continued)

TABLE 1 Continued

Features Total (n = 241)

Regional nodes examination, n (%)
Negative 35 (14.52)

1–3 node(s) positive 137 (56.85)

>3 nodes positive 61 (25.31)

Not examined 8 (3.32)

Radiation sequence with surgery, n (%)
No radiation 145 (60.17)

Radiation after surgery 87 (36.10)

Radiation prior to surgery 9 (3.73)

Systemic therapy and surgical procedures, n (%)
No systemic therapy 79 (32.78)

Systemic therapy after surgery 130 (53.94)

Systemic therapy before surgery 18 (7.47)

Systemic therapy both before and after surgery 14 (5.81)

Radiotherapy, n (%)
Yes 96 (39.83)

None/unknown 145 (60.17)

Chemotherapy, n (%)
Yes 162 (67.22)

None/unknown 79 (32.78)

Status, n (%)
Alive 65 (26.97)

Dead 176 (73.03)

Survival time(days), Mean ± SD 35.33 ± 28.6

SD, standard deviation.

Liang et al. 10.3389/fsurg.2024.1489040
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prognostic models using machine learning techniques, aiming to

improve the accuracy of patient survival predictions.
Discriminatory ability of the predictive
models

Referring to Figure 3, the results from the training cohort

highlight the robust discriminatory capabilities of the Cox

methodology, with notable AUC values of 0.761 (95% CI 0.692–

0.83) and 0.762 (95% CI 0.678–0.846) for 3- and 5-year OS,

respectively. However, in the validation cohort, the model showed

lower AUCs of 0.71 (95% CI 0.566–0.853) and 0.644 (95% CI

0.473–0.816) for 3- and 5-year OS, respectively. In contrast, the

TNM staging methodology exhibited comparatively lower

discriminative power, yielding AUCs of 0.607 (95% CI 0.526–

0.687) for 3-year and 0.651 (95% CI 0.557–0.745) for 5-year OS in

the training cohort. These trends persisted in the validation cohort,

where AUCs for 3-year and 5-year OS were 0.514 (95% CI 0.355–

0.673) and 0.533 (95% CI 0.355–0.711), respectively.

The Random Forest model demonstrated commendable

performance in both the training and validation cohorts, achieving

AUCs of 0.801 (95% CI 0.738–0.865) and 0.792 (95% CI 0.712–

0.872) for 3- and 5-year OS in the former, and 0.739 (95% CI

0.599–0.879) and 0.654 (95% CI 0.496–0.811) in the latter. The

Gradient Boosting model displayed good discrimination, producing

AUCs of 0.859 (95% CI 0.807–0.911) and 0.848 (95% CI 0.785–
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FIGURE 1

Heat map illustrating feature correlations. SOR/S, surgery of other region/sites; RSS, radiation sequence with surgery; SPS, surgery of primary site; RNE,
regional nodes examination.
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0.911) for 3- and 5-year OS in the training cohort, and 0.769 (95% CI

0.642–0.896) and 0.695 (95% CI 0.521–0.869) in the validation

cohort. Lastly, the Neural Network model demonstrated lower

discriminatory power with AUCs of 0.671 (95% CI 0.59–0.751)

and 0.669 (95% CI 0.57–0.767) for 3- and 5-year OS in the

training cohort, and 0.655 (95% CI 0.502–0.808) and 0.620 (95%

CI 0.406–0.834) in the validation cohort. Figure 4 illustrates the

process of hyperparameter optimization during the training of the

three machine learning models.
Assessment on calibration, brier score, and
DCA

As depicted in Supplementary Figure S1, the calibration plots

reveal a remarkable alignment between the predicted and

observed 3- and 5-year survival rates across both the Random

Forest and Cox models. Notably, while the gradient boosting

model achieved satisfactory AUC values, it exhibited the least

favorable performance in calibration. The Brier score analysis

detailed in Table 2 underscores the exceptional performance of

the Random Forest model in both the training and validation

cohorts. It registered indices of 0.189/0.171 (training) and 0.207/
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0.199 (validation) for 3- and 5-year OS predictions, respectively,

outclassing its counterparts. It is worth noting the comparative

performance of the Gradient Boosting model, which exhibited

the least favorable outcomes, followed by the TNM staging and

Neural Network models. Figure 5 provides a visual depiction of

the Brier scores across the models. Figure 6 further illustrates the

significantly positive outcome derived from the Random Forest

model’s assessment of mortality risk in the DCA, surpassing both

traditional and machine learning models within the datasets.

Cumulatively, these observations underscore the substantial

clinical relevance of the Random Forest model in prognosticating

the OS of stage III ASC patients post-tumor resection.
Model interpretation

Given the remarkable efficacy demonstrated by Random Forest

model in predicting OS within the datasets, we employed SHAP

(SHapley Additive exPlanations) plots to elucidate the

hierarchical significance of features and understand their

respective impacts on prognosis within the established model. In

Figure 7A, a discernible pattern emerges, indicating that features

with higher SHAP values correspond to an increased probability
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FIGURE 2

Prognostic features sorted by the boruta analysis. SOR/S, surgery of other region/sites; RSS, radiation sequence with surgery; SPS, surgery of primary
site; RNE, regional nodes examination.
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of poor prognosis in stage III ASC patients post-tumor resection.

The color spectrum in the plot provides additional insight, with

green denoting small eigenvalues, light blue signifying

eigenvalues close to the mean, and dark blue indicating large

eigenvalues. Illustratively, the predominant feature in the figure

emphasizes that tumor size has a notable impact on mortality

incidence, followed by age, sex, and the primary tumor site.

Figure 7B displays the mean SHAP of the selected features,

further reinforcing the pivotal role of features in patients’ OS.

Consequently, a unique individual was purposefully selected from

the group to examine how various features would influence the

outcome for the patient. As depicted in Figure 8, factors such as

larger tumor size, absence of systemic therapy during the

perioperative period, male gender, advanced age, and lack of

chemotherapy throughout the disease course were identified as

negatively impacting survival rates. Conversely, tumor growth in

the upper lobe and the N2 stage were found to have a positive

effect on the patient’s prognosis. This comprehensive analysis is

intended to emphasize and elucidate the key features that

contribute to prognostic outcomes within the population under study.
Development of a predictive system on a
web server

Utilizing the Random Forest model as its foundation, a web-based

tool has been created to streamline the predictive analysis of survival

probabilities based on patient characteristics provided as input. This

tool is designed to assist researchers who may not have expertise in
Frontiers in Surgery 07
machine learning, incorporating an automated methodology to

configure, train, and evaluate the Random Forest model through a

user-friendly interface (see Supplementary Figure S2). The model

can be accessed through the following link: https://lungcare-

innovators.shinyapps.io/ResectedTumorSurvival-LASC/.
Discussion

In this comprehensive investigation, we conducted a

meticulous analysis utilizing a cohort of 241 patients diagnosed

with ASC who underwent primary tumor resection. Our study

reveals that the Random Forest model surpasses traditional

statistical methods like Cox regression and TNM staging, as well

as machine learning models like Gradient Boosting and Neural

Network, in its ability to predict OS among ASC patients. The

beeswarm summary plot for the Random Forest model unveils

tumor size as the most influential risk factor, followed by age,

sex, and the primary site tumor growth. This insightful

information enhances our understanding of prognostic factors in

this subset population. Notably, we have developed a web-based

individual prognostic tool based on the optimized Random

Forest model, which holds promising implications for integration

into clinical practice by providing clinicians with valuable

insights for personalized patient care. Importantly, this study

represents a pioneering exploration, marking the first instance in

the existing literature of utilizing a machine learning-based

prognostic model for ASC patients following primary

tumor resection.
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FIGURE 3

Comparison of prognostic models for 3- and 5-year overall survival (OS) prediction across various models: receiver operating characteristic curves
illustrating the prediction of 3-year (A,C) and 5-year (B,D) OS in the training cohort (A,B) and validation cohort (C,D). GBM, gradient boosting
model; RSF, random forest; NN, neural network.
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ASC poses a distinctive diagnostic challenge in contrast to

ADC and SCC, given its composite nature that incorporates

features of both entities. Inadequate sampling increases the risk

of misclassification, leading to an erroneous categorization as

either SCC or ADC (6). Existing literature has indicated that

ASC exhibits a relatively aggressive clinical course and portends

poorer survival outcomes compared to both ADC and SCC (3,

13). Therefore, a prompt and early intervention is important for

effective management in this population. For surgical

management in ASC, research conducted in two French centers

reveals that patients undergoing surgical resection experienced a

median OS of only 26 months, notably lower than the 46

months observed for ADC and 45 months for SCC (14). A

comparable outcome was also noted in a single-center study in

Japan, where ASC cases exhibited the least favorable survival

following surgery. The 5-year survival rates for all-stage cases

were 23.3% for ASC, 58.0% for ADC, and 40.8% for SCC (13).

Similarly, a retrospective study conducted in Poland also

confirmed that the outcome of surgically treated ASC patients

was poorer than that of ADC, with a median OS of 20 months

compared to 28.5 months in the latter (15). Regrettably, despite
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these studies confirming the poorer prognosis of ASC compared

to ADC or SCC among patients undergoing surgical

management, none of the studies delved into more refined

subgroup analyses as well as developing prognostic models

tailored to the population. Due to the rarity of ASC cases and

the lack of clear management guidelines, particularly regarding

the optimal timing of surgery for stage III NSCLC, there is a

paucity of reports assessing the prognosis of stage III ASC

patients who have undergone primary tumor resection. The

management of stage III NSCLC is a subject of considerable

debate within the medical community, primarily concerning the

sequencing of surgery with chemotherapy and radiotherapy. This

controversy arises because stage III NSCLC is a heterogeneous

disease characterized by locally advanced tumors that may

involve mediastinal lymph nodes (N2 or N3 disease), making

treatment decisions complex and multifaceted. Consequently, it is

of paramount importance to delineate the determinants

influencing the prognosis of individuals and to construct robust

prognostic models tailored to this specific patient subset.

The TNM staging system, a prevalent tool in cancer staging

within clinical practice, encounters notable limitations that impact
frontiersin.org
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TABLE 2 Comparison of the brier score among the models.

Model Times Brier score SE 95%CI

Random forest
Training cohort

3-year 0.189 0.009 0.171–0.208

5-year 0.171 0.013 0.144–0.197

Validation cohort

3-year 0.207 0.019 0.170–0.244

5-year 0.199 0.026 0.148–0.250

Gradient boosting
Training cohort

3-year 0.215 0.018 0.180–0.250

5-year 0.228 0.017 0.194–0.262

Validation cohort

3-year 0.268 0.043 0.183–0.352

5-year 0.310 0.044 0.225–0.396

Neural network
Training cohort

3-year 0.224 0.009 0.205–0.243

5-year 0.197 0.014 0.170–0.227

Validation cohort

3-year 0.223 0.018 0.188–0.257

5-year 0.198 0.028 0.142–0.254

Coxph
Training cohort

3-year 0.195 0.012 0.171–0.219

5-year 0.176 0.015 0.146–0.206

Validation cohort

3-year 0.213 0.024 0.165–0.260

5-year 0.209 0.029 0.15–0.268

TNM staging
Training cohort

3-year 0.235 0.009 0.218–0.252

5-year 0.201 0.013 0.175–0.227

Validation cohort

3-year 0.244 0.022 0.200–0.288

5-year 0.205 0.031 0.144–0.265

SE, standard error; CI, confidence interval.

FIGURE 4

Refined hyperparameter optimization (HPO) process for three distinct machine learning models: random forest (A), gradient boosting (B), and neural
network (C).
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its prognostic efficacy. Firstly, it primarily relies on anatomical factors

such as tumor size, lymph node involvement, and metastasis,

neglecting important biological and molecular characteristics of

tumors. This oversimplification fails to capture the heterogeneity

within tumors, leading to inaccuracies in prognosis prediction.

Secondly, TNM staging lacks dynamic assessment of cancer

progression over time, as it is determined at a single point in time

based on initial diagnostic findings. Consequently, it may not

reflect changes in tumor behavior or response to treatment (16).

These limitations highlight the critical need to incorporate

additional clinical approaches and relevant parameters into cancer

prognosis to improve its accuracy within clinical settings. In the

realm of cancer prognosis modeling, machine learning holds

significant promise in revolutionizing oncology modeling by

surpassing the limitations of traditional methods such as COX

proportional hazards regression and TNM staging. Unlike COX

regression, which relies on assumptions of proportional hazards

and may struggle with capturing complex nonlinear relationships,

machine learning techniques can handle large, heterogeneous

datasets with diverse types of features, including genomic, imaging,

and clinical data. Machine learning models can uncover intricate

patterns and interactions within these datasets, offering superior

predictive accuracy and the potential for more personalized

prognostic assessments. Moreover, machine learning approaches

excel in integrating multiple sources of information, including

molecular and biological markers, beyond the anatomical factors

considered in TNM staging. This holistic approach enables a

deeper understanding of tumor biology and behavior, leading to

more precise prognostication and treatment recommendations (17–

19). However, it’s important to note that there’s currently a lack of

prognostic models tailored specifically for predicting survival

outcomes in stage III ASC patients who have undergone primary

tumor resection, whether utilizing advanced machine learning

techniques or conventional algorithms.

Currently, several prognostic models are available to assess

mortality risk integration and prognostication in individuals with
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FIGURE 5

Comparative analysis of brier scores for 3- and 5-year overall survival prediction across various models in training cohort (A) and validation cohort (B)
GBM, gradient boosting model; RSF, random forest; NN, neural network.

FIGURE 6

Comparison of prognostic models for 3- and 5-year clinical utility. Decision curve analysis illustrating the 3-year (A,C) and 5-year (B,D) outcomes in
the training (A,B) and validation (C,D) cohorts. Models compared include Gradient Boosting (GBM), Random Forest (RSF), and Neural Network (NN).
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Frontiers in Surgery 10 frontiersin.org

https://doi.org/10.3389/fsurg.2024.1489040
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 7

Summary plots of SHAP values in the random forest model. Sorted by sum of SHAP values across all patients (A); Standard bar chart sorted by average
absolute Shapley value (B).

FIGURE 8

Prediction analysis utilizing features derived from the first member of the cohort in the random forest model.

Liang et al. 10.3389/fsurg.2024.1489040
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ASC. For example, Liang et al. developed a nomogram specifically

designed to prognosticate OS in ASC patients, leveraging a dataset

of 4,600 patient records extracted from the SEER database. Their

study identified nine key clinical factors influencing patient

prognosis. The resulting model demonstrated a C-statistic of

0.755 in the training cohort and 0.721 in the validation cohort

(20). Similarly, Wu et al. found that factors such as elderly age,

male gender, absence of surgery, and advanced TNM stages

independently predicted both OS and cancer-specific survival in

ASC. Their model achieved a C-index of 0.79 for predicting OS

probabilities in the cohort (21). Despite the robustness of these

studies, the determinants associated with OS were found to be

more broadly applicable to the general ASC population rather

than offering precise insights tailored to specific substage ASC

patients who have undergone particular interventions. This

limitation likely stems from the varied determinants influencing

OS within specific subgroups of lung cancer, such as tumor

stage, degree of tumor differentiation, and responsiveness to

treatment. In contrast, our model is uniquely designed to address

the distinct characteristics of stage III ASC patients who have

undergone surgery. This tailored approach enhances the

precision of survival estimation within this cohort. Moreover, our

model benefits from broad geographical coverage within the

database and demonstrates commendable performance in

machine learning prediction, further enhancing its prospective

applicability to a wider population.

Regarding the prognostic assessment of patients with ASC, the

Boruta algorithm identified age, sex, tumor size, primary tumor

site, N stage, chemotherapy, and systemic therapy as independent

prognostic features. These findings are consistent with findings

from certain prior studies (20–23). Furthermore, some studies

revealed that the histological subtype of ADC in ASC, visceral

pleura involvement, and EGFR mutation had an influence on

patients’ survival (15, 24, 25). However, due to the absence of

such parameters in the database, our ability to delve into the

nuanced impacts of these parameters on cancer prognosis is

further hindered. It is crucial to acknowledge that the absence of

such pivotal information may impact the predictive efficacy of

the model.

To thoroughly evaluate the effectiveness of our model, we

employed a robust 5-fold cross-validation approach to address

concerns regarding overfitting and to validate its ability to

generalize across diverse population subsets. The calibration

curves, which illustrate the agreement between predicted and

actual survival probabilities, serve as compelling evidence of

the reliability of our Random Forest model. This confidence is

further bolstered by the observation that the Brier Score

demonstrated more favorable performance compared to

alternative models considered. To reinforce the clinical

relevance of our model, we conducted a comprehensive

assessment using DCA curves to explore potential clinical

implications. When compared to conventional models and two

contemporaneously developed machine learning models, the

Random Forest model exhibited superior performance,

yielding higher net benefits in the validation cohort. This
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outcome highlights its considerable potential for

implementation in clinical practice, suggesting it could

significantly enhance decision-making processes and ultimately

improve patient outcomes.

While our study successfully developed a machine learning

model with commendable predictive efficacy for a specific patient

subset, it is important to acknowledge several inherent

limitations affecting various aspects of our investigation,

including study design, data acquisition, model validation, and

interpretation. Firstly, the retrospective nature of our study

introduces potential selection bias due to reliance on historical

data. Secondly, despite the extensive scope of the SEER database,

it lacks detailed information on radiation regimens, dosages,

specific chemotherapy and systemic therapy agents, and essential

patient factors such as genetic mutations, blood test results, and

comorbidities. Additionally, although we employed 5-fold cross-

validation to mitigate overfitting, external validation is necessary

to ensure the generalizability of our model beyond the current

dataset. Recognizing these limitations is crucial for judicious

interpretation of our findings and underscores the need for

caution and further research to refine and validate our model for

broader clinical applicability.
Conclusions

This study marks the first instance of employing machine

learning models to evaluate prognosis in patients who have

undergone tumor resection for stage III ASC. By introducing this

innovative personalized predictive tool, clinicians gain the

capability to design treatment protocols precisely customized to

the unique characteristics of individuals within this patient

cohort. Furthermore, this tool facilitates the development of

optimal follow-up schedules, thereby enhancing the efficacy and

individualization of patient care strategies.
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