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Background: In blunt chest trauma, patient management is challenging because
clinical guidelines miss tools for risk assessment. No clinical scale reliably
measures the severity of cases and the chance of complications.
Aim: The objective of the study was to optimize the management of patients
with blunt chest trauma by creating models prognosticating the transfer to the
intensive care unit and in-hospital length of stay (LOS).
Methods: The study cohort consisted of 212 cases. We retrieved information on
the cases from the hospital’s trauma registry. After segmenting the lungs with
Lung CT Analyzer, we performed volumetric feature extraction with data-
characterization algorithms in PyRadiomics.
Results: To predict whether the patient will require intensive care, we used the
three groups of findings: ambulance, admission, and radiomics data. When
trained on the ambulance data, the models exhibited a borderline
performance. The metrics improved after we retrained the models on a
combination of ambulance, laboratory, radiologic, and physical examination
data (81.5% vs. 94.4% Sn). Radiomics data were the top-accurate predictors
(96.3% Sn). Age, vital signs, anthropometrics, and first aid time were the best-
performing features collected by the ambulance service. Laboratory findings,
AIS scores for the lower extremity, abdomen, head, and thorax constituted the
top-rank predictors received on admission to the hospital. The original first-
order kurtosis had the highest predictive value among radiomics data. Top-
informative radiomics features were derived from the right hemithorax
because the right lung is larger. We constructed regression models that can
adequately reflect the in-hospital LOS. When trained on different groups of
data, the machine-learning regression models showed similar performance
(MAE/ROV≈8%). Anatomic scores for the body parts other than thorax and
laboratory markers of hemorrhage had the highest predictive value. Hence,
the number of injured body parts correlated with the case severity.
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Conclusion: The study findings can be used to optimize the management of
patients with a chest blunt injury as a specific case of monotrauma. The models
we built may help physicians to stratify patients by risk of worsening and
overcome the limitations of existing tools for risk assessment. High-quality AI
models trained on radiomics data demonstrate superior performance.

KEYWORDS

blunt chest trauma, injury severity score (ISS), abbreviated injury scale (AIS), radiomics,
chest CT scans, regression models, risk factors, patient management
1 Introduction

Each year, traumatic injuries cause more than 5 million deaths

globally with blunt chest injury - as a monotrauma - accounting for

nearly 25% of deaths (1, 2). The most common reasons for blunt

chest trauma (BCT) are motor vehicle accidents (MVA), falls,

violence, and blast injuries. The mortality rate is high: according

to literature findings, it ranges from 4 to 20% (3–5).

In BCT, patient management is challenging because clinical

guidelines miss tools for risk assessment. Typically, risk

assessment is based on the following clinical signs: orthopnea,

haemodynamic instability, respiratory problems, and high injury

scores (6, 7). Older age and multiple rib fractures suggest

admission to the Intensive Care Unit (ICU). Still, some

prognostic factors may not be apparent, which justifies the

practical necessity to optimize patient management by

introducing validated risk scales. Severe symptoms may develop

within 72 h, therefore close monitoring of BCT patients is

required (6). Early ICU admission may also reduce the in-

hospital length of stay (LOS), thus improving patients’ well-being

and maximizing the use of hospital resources (8, 9).

For risk stratification in BCT, healthcare professionals use two

major groups of clinical scales (10). The scales of the first group

measure the level of consciousness. However, a study showed

that the most common instrument for guiding immediate

medical care, monitoring hospitalized patients, and tracking their

level of consciousness - Glasgow coma scale (GCS) - inaccurately

reflects mortality and ICU admission (11). The scales of the

other group are anatomic scoring systems classifying each injury

by body region, they evaluate the physical condition of the whole

body and/or its parts. The final severity score is the sum of the

scale values for all anatomic regions, for instance, injury severity

score (ISS), new injury severity score (NISS), and abbreviated

injury scale (AIS). The weaknesses of these scoring systems are

multifold. First, the estimation of the total effect of a trauma

with a simple adding model is non-reliable. Second, these scores

do not consider age and pre-existing chronic pathology. Third,

they prognosticate short-term outcomes of a trauma (10), but the

long-term prognosis is not accurate (12). In patients with

isolated rib fractures, the AIS scores prognosticate respiratory
a; BMI, body mass index; CX
ray level dependence matrix;
ngth of stay; MAE, mean ab
e difference matrix; PACS, pi

02
complications with high sensitivity and low specificity: 94.43% vs.

18.79% (13).

Radiological scores have been mainly used to analyze

chest computed tomography (CT) findings in tuberculosis,

COVID-19-associated, and other pneumonia, but they are also

required in BCT for efficient risk stratification (14–17). The

existing chest trauma scores combine clinico-demographic

parameters with CT findings. For example, the thoracic

trauma severity score is calculated from the data on rib

fractures, lung contusions, PaO2/FiO2 ratio, age, and pleural

involvement (18). For risk assessment in pulmonary diseases,

bioengineers constructed structure-function association models

reflecting the level of lung impairment (19–22). Despite the

availability of clinical and radiologic scores for assessing the

severity of cases, no clinical tool can reliably measure the risks

of complications in BCT.
2 Objectives

The primary objective is to optimize the management of the

BCT monotrauma patients. The working hypothesis of the

current study is that, a combined analysis of the ambulance

and admission data allows us to build high-accurate

classifications and regressions to prognosticate trauma

outcomes. The predictors may include trauma anamnesis,

clinico-demographic parameters, laboratory findings, and

radiomics. With feature engineering, we will identify the top

risks of patient worsening and build reliable models to aid

physicians in decision-making.

To reach the aim, we formulated the following specific

objectives:

1. Study hospital statistics on the transfer of BCT patients to ICU

department.

2. Use ambulance and admission data to create a prediction

model for ICU hospitalization.

3. Train a regression model to prognosticate in-hospital length of

stay (LOS) from demographics, clinical risk scores, laboratory

data, and radiological findings.
R, chest x-ray; GCS, Glasgow coma scale; Hct, hematocrtit; Hgb, hemoglobin;
GLRLM, gray level run length matrix; GLSZM, gray level size zone; ICU,

solute error; ML, machine learning; MVA, motor vehicle accidents; NISS, new
cture archiving and communication system; ROV, range of values.
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TABLE 1 Groups of data taken for analysis.

1. Ambulance data
Numerical features: Age, BMI, Body, Heart rate, Height, Respiratory rate, Soft
tissue injury, Systolic blood pressure, Temperature, First aid time, O2 saturation,
Glasgow Coma Scale

Categorical features: Mechanism of trauma, Occupant seat in MVC, Place of
injury, Sex, Transfer from another facility, Type of MVC, Work related

2. Physical examination, lab & radiologic findings on admission
Numerical features: AIS Abdomen, AIS External, AIS Face, AIS Head, AIS Lower
Extremity, AIS Spine, AIS Thorax, AIS Upper Extremity, Hemoglobin,
Haematocrit,

Categorical features: Abdomen injury, Diaphragm injury, First and/or second rib
fracture, Flail chest, Great vessel injury, Hemothorax, Head injury, Multiple ribs
fracture, Single rib fracture, Spine injury, Sternum fracture, Surgical emphysema,
Upper extremity injury,

Hefny et al. 10.3389/fsurg.2024.1462692
3 Materials and methods

3.1 Study cohort

We analyzed the cases of admission to a community-based

hospital with BCT (Al Ain Hospital, United Arab Emirates) for 3

consecutive years. The inclusion criteria were inpatient admission

and confirmed diagnosis of BCT (ICD-9 959.11; ICD-10

S29.8XXA). Penetrating chest trauma was an exclusion criterion.

In total, 212 cases were selected for the analysis. The study

sample included 184 males and 28 females aged 31+ 15 and

33+ 18 years, respectively.
3. Radiomics data retrieved from early chest CT
firstorder: 10Percentile, 90Percentile, Energy, Entropy, InterquartileRange,
Kurtosis, Maximum, MeanAbsoluteDeviation, Mean, Median, Minimum, Range,
RobustMeanAbsoluteDeviation, RootMeanSquared, Skewness, TotalEnergy,
Uniformity, Variance

glcm: Autocorrelation, ClusterProminence, ClusterShade, ClusterTendency,
Contrast, Correlation, DifferenceAverage, DifferenceEntropy, DifferenceVariance,
Id, Idm, Idmn, Idn, Imc1, Imc2, InverseVariance, JointAverage, JointEnergy,
JointEntropy, MCC, MaximumProbability, SumAverage, SumEntropy, SumSquares

gldm: DependenceEntropy, DependenceNonUniformity,
DependenceNonUniformityNormalized, DependenceVariance,
GrayLevelNonUniformity, GrayLevelVariance, HighGrayLevelEmphasis,
LargeDependenceEmphasis, LargeDependenceHighGrayLevelEmphasis,
LargeDependenceLowGrayLevelEmphasis, LowGrayLevelEmphasis,
SmallDependenceEmphasis, SmallDependenceHighGrayLevelEmphasis,
SmallDependenceLowGrayLevelEmphasis

glrlm: GrayLevelNonUniformity, GrayLevelNonUniformityNormalized,
GrayLevelVariance, HighGrayLevelRunEmphasis, LongRunEmphasis,
LongRunHighGrayLevelEmphasis, LongRunLowGrayLevelEmphasis,
LowGrayLevelRunEmphasis, RunEntropy, RunLengthNonUniformity,
RunLengthNonUniformityNormalized, RunPercentage, RunVariance,
ShortRunEmphasis, ShortRunHighGrayLevelEmphasis,
ShortRunLowGrayLevelEmphasis

glszm: GrayLevelNonUniformity, GrayLevelNonUniformityNormalized,
GrayLevelVariance, HighGrayLevelZoneEmphasis, LargeAreaEmphasis,
LargeAreaHighGrayLevelEmphasis, LargeAreaLowGrayLevelEmphasis,
LowGrayLevelZoneEmphasis, SizeZoneNonUniformity,
SizeZoneNonUniformityNormalized, SmallAreaEmphasis,
SmallAreaHighGrayLevelEmphasis, SmallAreaLowGrayLevelEmphasis,
ZoneEntropy, ZonePercentage, ZoneVariance

ngtdm: Busyness, Coarseness, Complexity, Contrast, Strength

shape: Elongation, Flatness, LeastAxisLength, MajorAxisLength,
Maximum2DDiameterColumn, Maximum2DDiameterRow,
Maximum2DDiameterSlice, Maximum3DDiameter, MeshVolume,
MinorAxisLength, Sphericity, SurfaceArea, SurfaceVolumeRatio, VoxelVolume
3.2 Study data

Retrospectively, we collected the patient data. The injury details

were retrieved from the trauma registry of the hospital. The missing

information was supplemented by manual retrieval from patients’

electronic medical records. The data were classified into three

groups. The first group comprised the ambulance data: trauma

anamnesis, demographics, anthropometrics, vital signs, and GCS.

The second group included admission findings: the results of

laboratory (biochemical) tests, physical examination, reported CT

findings, and anatomical scores. Finally, the third group was the

radiomics data retrieved from the early chest CT with computer

frameworks. See Table 1 for the full list of features taken

into analysis.

For correlating radiological data with clinical outcomes, we

resorted to radiomics which uses advanced mathematical analysis

to enhance the data available to clinicians (23). We applied a two-

step approach to extract radiomics features from medical images.

To start with, we used a Lung CT Analyzer extension of 3D Slicer

application to segment the lungs. The extension utilizes a fully

convolutional network (U-Net) which yields precise segmentation

(24). U-net (R231) is a deep-learning model from this software,

and it automatically delineates the right and left hemithorax -

the cavities lateral to the mediastinum (25). After applying

segmentation masks to CT scans, we performed volumetric feature

extraction with data-characterization algorithms implemented in

the PyRadiomics package (26).

The radiomics package contains several categories of functions.

First-order statistics describe the distribution of voxel intensities

within the image region defined by the mask through commonly

used and basic metrics. Gray Level Co-occurrence Matrix

(GLCM) describes the second-order joint probability function of

the image region. Gray Level Dependence Matrix (GLDM)

quantifies gray level dependencies in the image. Gray Level Run

Length Matrix (GLRLM) quantifies gray level runs defined as the

length in some consecutive pixels of the same gray level. Gray

Level Size Zone (GLSZM) quantifies gray level zones in an image.

Neighbouring Gray Tone Difference Matrix (NGTDM) quantifies

the difference between the gray value of a pixel/voxel and the

average gray values of surrounding pixels/voxels. The last group

of functions is called ’shape’ since it describes the two-
Frontiers in Surgery 03
dimensional size and shape of the region of interest. The

radiomics features are independent of the distribution of gray

level intensity, therefore they are calculated only for non-derived

images and masks.
3.3 Study methodology

To address the first task, we explored the differences in trauma

circumstances, clinico-demographic variables, laboratory and

radiologic findings between ICU and non-ICU patients. A

regression-based imputation was used to handle the missing data.

If the percentage of the missing data exceeded 15%, we deleted
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the variable from the analysis. For other cases, we used a multiple

linear regression model to predict the values. The Shapiro–Wilk

test was used to assess data distribution. To compare normally-

distributed variables, we used parametric tests: Student’s t-test,

and the Pearson correlation coefficient. The variables that do not

show Gaussian distribution, were analyzed with non-parametric

Mann–Whitney and Wilcoxon signed-rank tests. Chi-square was

used to examine the differences between categorical variables. We

explored the following features of ICU and non-ICU cohorts:

trauma circumstances, clinico-demographic, radiologic, and

laboratory findings on admission.

The second task was multifold. First, we extracted radiomics

from chest CT images. For this, we acquired masks of

hemithoraces and calculated the radiomics data for each

hemithorax. Second, we investigated clinical, demographic,

radiomics and laboratory correlates of ICU admission. Third, we

trained classification algorithms to predict transfer to ICU with

tree-based machine learning (ML) methods such as XGBoost,

CatBoost, Random Forest and Decision Tree. Feature importance

was calculated with specific API functions of the LGBM

framework. The optimal classification model was selected

by calculating sensitivity (Sn), specificity (Sp), F1-score (F1), and

area under the curve (AUC) in receiver-operating characteristic

diagrams (ROC). Finally, we compared the accuracy of

the models trained on different groups of predictors and

their combinations.

Working on the third task, we employed the following

regressors: DecisionTree, RandomForest, XGB, LGBM, and

CatBoost. Regressor parameters were set to default values. To

raise model accuracy, we explored feature importance of the

predictors described in Subsection 3.2. The feature engineering

technique was the same as in the previous task. Then, we

calculated the final performance of the regression models

reflecting the in-hospital LOS from the three groups of

predictors: ambulance data, findings reported on admission and

radiomics data retrieved from early chest CT. The ratio of mean

absolute error (MAE) to the range of values (ROV) was the

metrics of success.
3.4 Acquiring and preprocessing of CT
findings

Radiotechicians used different protocols to acquire lung CT

scans, most of which had 512� 512 image resolution. The slice

thickness ranged from 1 to 1.25 mm. To ensure uniformity of

data across different machines with varying acquisition protocols,

we used a standard approach to data preprocessing (27, 28).

Before radiomics feature extraction, a bioengineer did the

computations in several steps. The first step was image

resampling. To standardize the spatial resolution, we resembled

all images to a uniform voxel size of 1� 1� 1 mm. It was

performed with linear interpolation, ensuring consistency of

spatial dimensions across all images.

As the second step of data preprocessing, we performed

normalization of signal intensity. The intensity varied due to the
Frontiers in Surgery 04
difference in the settings of acquisition protocols. To reduce the

variations, the intensity values of all images were normalized to a

consistent range and clipped to the interval from �1,000 to 400

Hounsfield units. This allowed us to exclude extreme outliers and

focus on the features relevant to the study. Then, the data were

linearly rescaled to the range of values from 0 to 1.

Histogram matching was the final step of data preprocessing. It

helped us to harmonize the distributions of intensities across the

images by aligning intensity with a reference. Thus, we ensured

consistency in data patterns and minimized a potential bias due

to varying imaging protocols.
4 Results

4.1 Characteristics of study cohort

Transfer to the ICU occurred in only 26% of the cases admitted

to the hospital. On average, the patients who went to ICU were

significantly younger than those who did not stay in the

intensive care department (27:86+ 14:72 vs. 32:76+ 16:68,

p ¼ 0:026). All the cases did not meet the criteria for polytrauma

since only the AIS thorax was greater than 2, and the severity

index was lower in the other parts of the body (29).

The majority of traumas occurred in the street (66%) and they

were more severe. The home traumas were significantly milder. A

prominent difference was observed among ICU and non-ICU

patients who received BCT at home (1 vs. 19 cases respectively,

p ¼ 0:023). The majority of injuries occurred as a result of traffic

accidents and falls from the height of over one meter (69% and

18%, respectively). In case of MVC, ICU and non-ICU patients

received a significant portion of traumas in car collisions (See

Table 2). Drivers of motor vehicles represented a majority of

patients with injury to the chest (30%).

ICU patients had a notably higher heart rate compared to non-

ICU group (100:11+ 27:54 vs. 89:58+ 19:87, p ¼ 0:008). Both

groups had a heart rate within the normal range for adults. A

respiratory rate was significantly faster in patients requiring

critical care (23:2+ 6:42). Both groups had an elevated

breathing rhythm: above 16 breaths per minute.

Laboratory findings were within the normal range for both

groups of patients (See Table 3). The haemoglobin level was

considerably lower in the ICU cohort than in non-ICU patients

(131:8+ 23:95 vs. 143:38+ 19:63). The percentage of hematocrit

was notably higher in the non-ICU cohort. The statistical

difference could occur due to a greater blood loss in critical patients.

According to the results in anatomical scoring systems and

GCS, ICU cases were more severe than the others. GCS scores

were significantly lower in the ICU group suggesting a more

altered consciousness compared to non-ICU patients

(12:54+ 3:79 vs. 14:65+ 1:67, p , 0:05). ISS and NISS

indicated a greater severity of injuries in patients under intensive

therapy. The ICU cohort had considerably higher AIS scores for

the head, face, abdomen, spine, and lower extremity. The

traumas were minor in both groups according to the scoring

system. Thorax injuries can be categorized as severe (AIS¼ 3).
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TABLE 2 Statistics on trauma circumstances.

Parameter Total ICU Non-ICU p2�3

n1 ¼ 212 n2 ¼ 56 n3 ¼ 156

Place of injury
Work place 39 10 18% 29 19% 0.905

Desert 8 1 2% 7 4% 0.365

Home 20 1 2% 19 12% 0.023

Street 139 42 75% 97 62% 0.084

Others 6 2 4% 4 3% 0.701

Mechanism of trauma
Motor vehicle collisions 146 44 79% 102 65% 0.068

Fall from less than 1 meter 9 2 4% 7 4% 0.774

Fall from more than 1 meter 38 9 16% 29 19% 0.675

Hit by falling object 1 0 0% 1 1% 0.556

Others 18 1 2% 17 11% 0.037

Type of motor vehicle collisions
Car collisions 108 32 57% 76 49% 0.281

Motorcycle 7 3 5% 4 3% 0.319

Bicycle 6 1 2% 5 3% 0.587

Pedestrian 24 8 14% 16 10% 0.416

Occupied seat in MVC
Driver seat 64 16 29% 48 31% 0.760

Passenger front seat 30 10 21% 20 13% 0.356

Passenger back seat 13 6 11% 7 4% 0.097

Significant (p < 0.05) differences between ICU and non-ICU cohorts are marked in bold font.

Categorical data are expressed as n (%); continuous variables as mean+ SD.

Hefny et al. 10.3389/fsurg.2024.1462692
However, the difference in scores was not significant between ICU

and non-ICU patients. Variation of laboratory findings and clinical

parameters is illustrated in Figure 1.

A notably greater portion of ICU patients had surgical

emphysema compared to the non-ICU cohort (p ¼ 0:031). The

percentage of lower extremity and abdomen injuries was

substantially larger in ICU patients (p ¼ 0:023 and p ¼ 0:001

respectively). These findings correspond to the inter-group

difference in AIS scores for Abdomen and Lower Extremity.

A significantly greater portion of ICU-patients required

intubation and blood transfusion compared to non-critical

patients. The non-ICU cohort had a nearly three times shorter

length of in-hospital stay compared to ICU patients (5:25+ 4:76

vs. 15:8+ 11:47, p , 0:001).
4.2 Prediction of ICU admission

To predict whether the patient will require intensive care, we

trained a machine learning classification model on three groups

of findings collected at different time points (see Figure 2).

When trained on the ambulance data, the models produced

borderline performance: the patients who wouldn’t worsen were

identified with 81.5% sensitivity. We retrained the models on a

combination of the ambulance data, results in laboratory tests,

findings in physical and radiologic examinations. The accuracy

improved reaching the sensitivity level of 94.4%. If trained on the

radiomics data, the classification algorithms showed the optimal

performance with 96.3% sensitivity.
Frontiers in Surgery 05
The top risk factors were extracted with a feature selection

technique (see Figure 3). From the data collected in the ambulance,

the best-performing features were age, vital signs, anthropometrics,

and first aid time. From the admission data, the top-rank

predictors were the laboratory findings, AIS scores for the lower

extremity, abdomen, head, and thorax. The original first-order

kurtosis had the highest predictive value among the radiomics data.

The top-informative radiomics data were derived from the right

hemithorax. Presumably, the contribution of the right side

estimates to the prognosis is higher because the right lung is larger.
4.3 Prognostication of in-hospital length
of stay

Accurate prognosis on the duration of hospitalization can

improve patient management by recognizing health issues,

optimizing treatment plans, allocating hospital resources and

medical staff among patients. It also contributes to tracking the

recovery. We constructed regression models that reliably reflect

the LOS of the patients (see Figure 4 and Table 4). For this, the

following predictors were used: demographics, clinical risk scores,

radiomics data, laboratory and radiologic findings as well as their

combinations. When trained on different groups of data, the

machine-learning regression models showed similar performance

with MAE/ROV around 849%.

We used feature engineering to improve model performance,

explore how the model works, and increase the clinician’s trust in

the model that otherwise looks like a “black box” solution. In our
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TABLE 3 Clinicodemographic characteristics of patients with BCT.

Parameter Total ICU Non-ICU p2�3

n1 ¼ 212 n2 ¼ 56 n3 ¼ 156

Demographics and anthropometrics
Males 184 87% 46 82% 138 88% 0.149

Age, years 31:41+ 16:3 27:86+ 14:72 32:76+ 16:68 0.026

BMI, kg/m2 25:38+ 6:87 25:35+ 5:46 25:4+ 7:33 0.765

Vital signs
Systolic blood pressure, mm Hg 131+ 23 127:21+ 25:64 132:16+ 21:43 0.082

Heart rate, per min 92:00+ 23:00 100:11+ 27:54 89:58+ 19:87 0.008

Respiratory rate, per min 21:00+ 5:00 23:20+ 6:42 20:57+ 4:49 0.001

O2 saturation, % 97:81+ 3:07 97:02+ 4:75 98:09+ 2:13 0.812

Body temperature, C 36:71+ 0:29 36:68+ 0:37 36:72+ 0:25 0.812

Laboratory findings
Hemoglobin, g/L 140:33+ 21:42 131:80+ 23:95 143:38+ 19:63 0.002

Hematocrit, % 41:00+ 6:00 0:39+ 0:07 0:42+ 0:05 0.002

Clinical scores
GCS 14:09+ 2:59 12:54+ 3:79 14:65+ 1:67 <0.001

ISS 16:52+ 8:59 22:11+ 9:86 14:52+ 7:12 <0.001

NISS 19:04+ 9:78 25:25+ 10:73 16:81+ 8:40 <0.001

AIS Head 0:62+ 1:21 1:16+ 1:72 0:43+ 0:89 0.009

AIS Face 0:26+ 0:59 0:45+ 0:76 0:19+ 0:50 0.017

AIS Neck 0:05+ 0:22 0:02+ 0:13 0:06+ 0:24 0.182

AIS Thorax 3:00+ 0:91 3:12+ 0:79 2:96+ 0:95 0.367

AIS Abdomen 0:48+ 1:02 0:91+ 1:42 0:33+ 0:78 0.007

AIS Spine 0:63+ 0:94 0:88+ 1:03 0:54+ 0:89 0.028

AIS Upper Extremity 0:65+ 1:00 0:77+ 1:06 0:61+ 0:97 0.358

AIS Lower Extremity 0:73+ 1:11 1:09+ 1:19 0:60+ 1:05 0.004

AIS External 0:03+ 0:19 0:07+ 0:32 0:01+ 0:11 0.084

CT findings reported by radiologist
Hemothorax 27 13% 11 20% 17 11% 0.098

Pneumothorax 76 36% 24 43% 52 33% 0.203

Single rib fracture 16 8% 3 5% 16 10% 0.329

Multiple ribs fracture 69 33% 23 41% 46 29% 0.114

Soft tissue injury 65 31% 15 27% 52 33% 0.414

Sternum fracture 6 % 2 4% 8 5% 0.641

Surgical emphysema 18 9% 9 16% 9 6% 0.031

Injuries of other body parts
Head 114 54% 34 62% 80 51% 0.128

Neck 50 24% 18 32% 33 21% 0.100

Upper extremity 31 15% 10 18% 22 14% 0.503

Lower extremity 61 29% 23 41% 39 25% 0.023

Spine 61 29% 21 38% 41 26% 0.114

Abdomen 50 24% 21 39% 28 18% 0.001

Patient management
Intubation 31 15% 25 45% 6 4% <0.001

Blood transfusion 42 20% 30 55% 13 8% <0.001

Length of stay, days 8:04+ 8:53 15:80+ 11:49 5:25+ 4:76 <0.001

Significant (p < 0.05) differences between ICU and non-ICU cohorts are marked in bold font.

Categorical data are expressed as n (%); continuous variables as mean+ SD.

Hefny et al. 10.3389/fsurg.2024.1462692
study, the clinical scores describing thoracic trauma were weak

predictors of the LOS. Contrarily, the anatomic scores for other body

parts and laboratory markers of hemorrhage were strong correlates

of the targeted variable. AIS_lower_extremity, laboratory findings,

AIS abdomen, AIS spine, and AIS head were top informative

predictors of the in-hospital stay (see Figure 5). Hence, the higher

the number of injured body parts the more severe the case is.
Frontiers in Surgery 06
5 Discussion

The prevalence of BCT in the studied population was

0.690=0000. Information on other populations and countries is

scarce. For instance, a study in New Zealand reported a

higher incidence of thoracic injury (2.490=0000) since it

included both blunt and penetrating injuries of the
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FIGURE 1

Variations in clinical and laboratory parameters in ICU and non-ICU patients.

Hefny et al. 10.3389/fsurg.2024.1462692
thorax (30). The statistics on penetrating injuries were missing

for our population, which did not allow us to perform a

comparative analysis.

In our study, traffic accidents accounted for most BCT

traumas (69%). We also considered injuries caused by falls

from a height of over one meter (18%). Only 26% cases

admitted to the hospital were transferred to the ICU. We

observed a pronounced between-group difference in AIS scores

for head, face, abdomen, spine, and lower extremity damages

(p , 0:05). The ICU cohort had higher chances of developing

surgical emphysema. Patients who required intensive care
Frontiers in Surgery 07
stayed in the hospital three times longer (15:8+ 11:47 vs.

5:25+ 4:76, p , 0:001).

Commonly, thoracic injuries are studied in the context of

polytraumas (31–33). Risk assessment in severe chest

monotrauma is also an issue of ongoing studies. Researchers

investigate the effect of severe chest injury on mortality in

trauma patients admitted to the ICU (32). The number of

articles on BCT is lower than those on traumas in other

anatomic regions. Contrarily, we focused on moderate to severe

thoracic trauma (AIS thorax ¼ 3:0+ 0:91) to assess the impact

of BCT on patients’ outcomes.
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FIGURE 2

Classification matrices showing performance of models predicting ICU admission from ambulance data (A), admission findings (B), radiomics (C), and
their combinations (D,E).
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5.1 Statistics on ICU patients with BCT

Herein, we describe patient profiles of those requiring intensive

care for BCT. Trauma management starts with history taking. In

our study, 65.5% of the cases hospitalized in the ICU sustained

their injuries in the street. The most common mechanisms of
Frontiers in Surgery 08
trauma were motor vehicle collisions (MVCs) such as car crashes

and pedestrian accidents. Other authors also identified MVCs as

the most common cause for BCT (33–35). Falls and criminal

activity were other leading reasons for these injuries (36–38).

The assessment of the clinicodemographic profile is the next step

in risk stratification. Therefore we included clinicodemographic
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FIGURE 3

Feature importance in prediction of ICU transfer: data on admission, ambulance data (A), and radiomics findings (B).
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FIGURE 4

Performance of regression models in predicting in-hospital length of stay from different groups of variables.
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features in the analysis of the risks of ICU admission. In other

studies, researchers focused on trauma complications that

developed after admission to the ICU. For example, Lin et al.

distinguished complications between patients requiring standard

and prolonged ICU stay. The latter was associated with a head

injury, multiple rib fractures, chest drain placement, spinal

surgery, and extremity surgery (39). Ekpe et al. compared deceased

and survived BCT patients and identified the delayed presentation

to the emergency department as a determinant of morbidity

and mortality (40). As these authors did not consider

clinicodemographic parameters, this may reduce the performance

of their models.

We also studied laboratory predictors of patients’ outcomes in

BCT. In our dataset, ICU patients had a lower concentration of

hemoglobin and hematocrit in the blood compared to the non-

ICU cohort. However, the average values in each group were

within the normal range, since laboratory findings may not

reflect the case severity. A study on pneumothorax showed

minor differences in the red blood cell parameters between the

patients with and without air in the pleural cavity. The

parameters also ranged within the reference norm (41). Another

study on BCT reported a drop in hemoglobin and hematocrit.

Still, the levels did not vary across groups of patients with

different chest AIS and ISS (42). As seen from our findings and

the findings of our colleagues, the reliability of laboratory

predictors in forecasting BCT outcomes is questionable.

Injuries to other parts of the body may aggravate the patient’s

status. Hildebrand et al. observed the multi-organ dysfunction

syndrome or sepsis in 14% of BCT patients with the AIS thorax

of 3 and above (35). The BCT death rate varies significantly

across studies. The proximity of the heart and big vessels to the

hemithorax results in their injury, complicates the prognosis of

BCT, and leads to conflicting statistics from studies in this
Frontiers in Surgery 10
category of patients (43). A variation in socio-demographic

parameters may also account for discrepant findings reported in

the literature (42, 44).
5.2 Reliability of machine learning in
predicting trauma outcomes: ICU admission
and in-hospital LOS

We applied a modern statistical approach to stratify patients

into severe and mild-to-moderate cases. Specifically, we trained

machine learning (ML) models prognosticating the in-hospital

LOS and clinical worsening which would require intensive care.

In this technique, we identified top informative predictors from a

set of data collected by the ambulance team, hospital staff of the

admission yard, and the bioengineers who performed radiomics

analysis of CT imaging findings. A strength of our research is the

fact that we considered a large amount of data including

radiomics (45–48).

Staziaki et al. also programmed ML algorithms to predict ICU

admission in patients with torso trauma (45). The authors trained

classification models on clinical findings and CT imaging data

separately and in combination. The best performance was

achieved with the Support Vector Machine classifier trained on a

combination of radiologic and clinical findings (AUC

0:87+ 0:03). Artificial neural networks (ANN) were the system

architecture of the models trained on raw CT data (AUC

0:81+ 0:06). In contrast to this study, we resorted to radiomics

and analyzed a big set of numeric data instead of imaging

findings. This allowed us to construct reliable classification and

regression models reflecting the disease course.

Recent studies focused on the optimal predictors of ICU

admission after injuries. For example, research on general trauma
frontiersin.org
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showed that a motor component of the GCS is the most critical

indicator in predicting the optimal use of ICU services in these

patients (46). In this research, models reached reputable

performance (ROC 0:883 4 0:945, accuracy over 90%), and the

ANN models trained on clinicodemographic parameters

outperformed logistic regression models. In another study on

traumatic thoracic injury, the top risk factors of ICU admission

were ISS 16, hemothorax, chest tube placement, head, abdominal,

and spinal injury (39). In our study, some of these risks served

as reliable predictors of the duration of hospitalization after BCT.

In the current research, the high accuracy of regression models

was reached due to the thorough analysis of data collected at each

time point: ambulance transportation, hospital admission, and

radiologic examination. Still, age-related risks and concomitant

trauma are the major factors that determine the duration of in-

hospital treatment. Specifically, systolic blood pressure and AIS

for lower extremities are top informative predictors according to

our data. In another study, systolic blood pressure over 90 was

also associated with the ICU stay after severe chest trauma (47).

Low arterial pressure indicates a high risk of mortality in severe

thorax injuries (36).

Another research reported the parameters linked with the in-

hospital LOS over 6 days in patients with any type of thorax

trauma. These are female gender, ICU hospitalization, oxygen

supplementation or mechanical ventilation at treatment, and ISS

scores (48). We did not consider these parameters as predictors

since most of them were unknown at hospitalization.
5.3 Chest injury in polytrauma

As we focused on the injury to the chest, the studied cases fell

under the criteria of mono- rather than polytrauma. Still, the

majority of patients had injuries to other body parts: the head,

lower extremities, and spine. Concomitant injuries were also

reported in other studies on BCT (6, 32, 36, 38). Authors showed

substantial concomitant damage to the head and extremities in

30% and 20% of BCT cases, respectively (32, 36). The injury to

other body parts can aggravate BCT.

From our data, MVC accounts for the majority of BCT cases. In

car accidents, MVC-associated forces directly or indirectly injure the

body (49). The chest collides with the steering wheel or airbag, and

the head may hit the windshield (36). A car crash test protocol

contains airbag deployment, head impact, injury testing, seat belt

strength and pull testing. However, crash-testing engineers should

pay particular attention to the contact between the chest and the

steering wheel, since our statistics show that the highest

proportion of BCT patients occupy the driver seat (29%).

Although the issue of the study was chest trauma, we failed to

find a significant difference in AIS thorax between ICU- and non-

ICU patients (3:12+ 0:79 vs. 2:96+ 0:95; p ¼ 0:367). However,

the indices for the head and face exhibited a pronounced

difference between the two groups of patients: 1:16+ 1:72 vs.

0:43+ 0:89, p ¼ 0:009 and 0:45+ 0:76 vs. 0:19+ 0:50,

p ¼ 0:017, respectively. A recent study on BCT also reported

high mortality due to concomitant head trauma (32, 34). In the
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FIGURE 5

Feature importance in prediction of in-hospital LOS: data on admission, ambulance data (A), and radiomics findings (B).
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context of polytrauma, patients with AIS thorax of 3 and above

may die from respiratory complications (50). For this reason,

patients with multiple traumas and high severity of chest injury

are candidates for ICU admission (33, 34) and pre-hospital

intubation (51).
5.4 Importance of radiological findings for
optimal patient management

Our findings can be used to optimize the management of

patients with a chest blunt injury. The models we built may help

physicians to stratify BCT patients by risk of worsening and

overcome the limitations of existing tools for risk assessment.

High-quality AI models trained on radiomics data demonstrate

superior performance.

In BCT, the advanced risk stratification requires a radiological

examination of the thorax. Chest computed tomography (CT) may

minimize the overall treatment costs in this category of patients.

CT can detect patchy or nonsegmental alveolar opacities, mixed

lesions, and consolidations (52). It can also sensitively identify

parenchymal abnormalities including focal or diffuse

homogeneous opacification (53). Lung contusion, pneumothorax,

or hemothorax are visible in CT images, therefore spiral chest

CT is recommended in all trauma patients with multiple trauma

and suspected thoracic injuries (54, 55). However, structural

damage can be missed in initial CT scans and revealed in the

follow-up examination (56).

The extended examination protocol includes the contrast-

enhanced study which helps to rule out complications such as

acute thoracic aortic injury (57, 58). In polytrauma patients,

post-enhanced imaging is suggested to detect injury of the major

mediastinal vessels and the heart (59). In BCT cases, helical chest

CT identifies traumatic arterial injuries with 73% sensitivity and

100% specificity (60). However, intravenous contrast may cause

iatrogenic complications (61).
6 Limitations

• A limitation of the study is that we used 3D Slicer, although it is

not an FDA-registered tool for the provision of patient care.

Still, this software is widely used for research in basic

biomedical and clinically applied settings as it offers several

advantages (62). First, it is not linked to any specific

hardware. Second, it supports versatile visualizations with

advanced functionality (e.g., automatic segmentation). Third,

with 3D Slicer, we can perform quantitative research in image

analysis (63).

• Another limitation is that ICU admission decisions often

depend on numerous factors. For instance, there may be a

certain degree of subjectivity regarding ICU admission criteria,

which can vary between physicians and institutions. Besides,

the standards differ among hospitals and clinical settings:

some US hospitals admit patients to ICU 20 times more often

than others (64). Factors such as ICU occupancy levels could
Frontiers in Surgery 13
also influence these decisions (64, 65). Other reasons include

the level of ICU physician experience and insufficient data on

the patient’s condition (66, 67). The LOS may also be affected

by non-clinical factors. For example, governmental subsidy

affects hospitalization rates in the UAE: private sector

hospitals have an average LOS of 1.48 days compared to 14

days for public hospitals (68). Insurance policy is also

associated with in-patient claims and cost of treatment (68).

• A weakness of our study is that the data on BMI in the

ambulance record might be unreliable. To illustrate, the

weight and height of the patients were derived from patient-

reported information. For those who could not provide it, the

anthropometric findings were reported approximately.

7 Conclusion

• We analyzed a total number of 212 cases treated for BCT in a

community-based hospital. The hospital provides care to

more than eighty percent of trauma patients who need

admission, therefore, the data can represent the entire

population of the city. The information from other hospitals

is missing, therefore the accurate statistics for the city

population remain unknown.

• The prevalence of BCT in the studied population was 0.690=0000.

Most traumas occurred in traffic accidents (69%). We also

considered the injuries caused by falls from a height of over

one meter (18%). Only 26% of cases admitted to the hospital

were transferred to the ICU. We observed a pronounced

between-group difference in AIS scores for the head, face,

abdomen, spine, and lower extremity damages (p , 0:05). The

ICU cohort had higher chances of developing surgical

emphysema. Patients who required intensive care stayed in the

hospital three times longer (15:8+ 11:47 vs. 5:25+ 4:76,

p , 0:001).

• The study findings can be used to optimize the management of

patients with a chest blunt injury as a specific case of

monotrauma. The models we built may help physicians to

stratify BCT patients by risk of worsening and overcome the

limitations of existing tools for risk assessment. High-quality

AI models trained on radiomics data demonstrate superior

performance.

• To predict whether the patient will require intensive care, we

used three groups of findings: ambulance, admission, and

radiomics data. When trained on the ambulance data, the

models exhibited a borderline performance. The metrics

improved after we retrained the models on a combination of

ambulance, laboratory, radiologic, and physical examination

data (81.5% vs. 94.4% Sn). Radiomics data were the top-

accurate predictors (96.3% Sn).

• We constructed regression models that can adequately reflect

the in-hospital LOS. When trained on different groups of

data, the machine-learning regression models showed similar

performance (MAE/ROV around 8%). Anatomic scores for

the body parts other than thorax and laboratory markers of

hemorrhage had the highest predictive value. Hence, the

number of injured body parts correlated with the case severity.
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