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Detection of hand motion during
cadaveric mastoidectomy
dissections: a technical note
Thomas J. On1, Yuan Xu1, Nicolas I. Gonzalez-Romo1,
Gerardo Gomez-Castro1, Oscar Alcantar-Garibay1,
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Background: Surgical approaches that access the posterior temporal bone
require careful drilling motions to achieve adequate exposure while avoiding
injury to critical structures.
Objective: We assessed a deep learning hand motion detector to potentially
refine hand motion and precision during power drill use in a cadaveric
mastoidectomy procedure.
Methods: A deep-learning hand motion detector tracked the movement of a
surgeon’s hands during three cadaveric mastoidectomy procedures. The
model provided horizontal and vertical coordinates of 21 landmarks on both
hands, which were used to create vertical and horizontal plane tracking
plots. Preliminary surgical performance metrics were calculated from the
motion detections.
Results: 1,948,837 landmark detections were collected, with an overall 85.9%
performance. There was similar detection of the dominant hand (48.2%)
compared to the non-dominant hand (51.7%). A loss of tracking occurred due
to the increased brightness caused by the microscope light at the center of
the field and by movements of the hand outside the field of view of the
camera. The mean (SD) time spent (seconds) during instrument changes was
21.5 (12.4) and 4.4 (5.7) during adjustments of the microscope.
Conclusion: A deep-learning hand motion detector can measure surgical
motion without physical sensors attached to the hands during mastoidectomy
simulations on cadavers. While preliminary metrics were developed to assess
hand motion during mastoidectomy, further studies are needed to expand and
validate these metrics for potential use in guiding and evaluating surgical training.
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1 Introduction

Manual dexterity, strong neuroanatomical knowledge, and proficient use of

instruments and the surgical microscope are fundamental to successful neurosurgical

procedures in the operating room. Mastoidectomy stands out as a demanding

microsurgical procedure requiring synchronized and controlled high-speed drilling to

achieve sequential exposure of delicate anatomical structures during temporal bone

dissection (1, 2).
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During bone removal, critical neurovascular structures, such as

the facial nerve, sigmoid sinus, and inner ear structures, must be

protected. This procedure is done with millimetric precision,

especially as the depth increases (3). For trainees, practicing

surgical techniques with cadaveric simulation helps them acquire,

develop, and refine their surgical skills and confidence with the

drill, microscope, and microsurgical instruments (3–5).

Computer-based assessments, including haptic-feedback

devices and virtual reality simulators, have been developed to

quantitatively evaluate surgical performance in mastoidectomy

training (6–9). The surgical instruments of users during

mastoidectomy have also been tracked using video analysis and

computer vision (10, 11). However, technology based on deep

learning has yet to be used to track hand motion during

mastoidectomy simulation.

In this technical note, we used a convolutional neural network

trained to detect hand motion during three cadaveric

mastoidectomy procedures. We aim to evaluate this technology

as a potential future surgical performance assessment tool in a

cadaver laboratory setting during mastoidectomies.
2 Methods

Mastoidectomies were performed using three cadaveric head

specimens fixed using a Mayfield holder device with the head in

the lateral position. A Zeiss Kinevo surgical microscope (Carl

Zeiss AG, Jena, Germany) was used for visualization, and

standard microsurgical instrumentation, including a high-speed

drill, was used for the dissection. Gloves and a surgical gown

were worn to simulate operating room conditions (Figure 1).
2.1 Surgical technique

Burrs of different sizes were used during various stages of the

mastoidectomy procedure [4 or 3 millimeter (mm) cutting burrs

and 2 mm diamond burrs] (12) under continuous saline

irrigation. External landmarks were identified, including the

spine of Henle, mastoid tip, temporal line, and Macewen’s

triangle. Using a 4 mm cutting burr, a kidney-shaped cavity was

drilled, removing the cancellous bone of the mastoid air cells.

The sigmoid sinus, sinodural angle, and middle fossa plate were

exposed. The mastoid antrum was entered, and the incus was

identified. Under continuous irrigation, the remaining air cells

were removed, exposing the fallopian canal, semicircular canals,

presigmoid dura, and endolymphatic duct. At the

infralabyrinthine space, the jugular bulb was exposed.
2.2 Hand motion detection

Mastoidectomy simulations were captured by a camera (Sony

A6000 camera, Sony Corp., Tokyo, Japan) mounted on a tripod

positioned 1.5 m in front of the surgeon. The video output was

processed by a deep learning hand motion detector to determine
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21 hand landmarks corresponding to digit joints and wrists of

both hands. This technology is built upon an open-source

convolutional neural network (13, 14) (MediaPipe, https://ai.

google.dev/edge/mediapipe/solutions/vision/hand_landmarker).

The video input was arranged in a picture-in-picture format to

simultaneously capture vertical and horizontal surgical hand

motion and the microsurgical operative view. A blue-line 3 × 3

grid with nine cells was designed for calibration: the hands were

positioned in the center cell (cell 5), the instrument table in the

middle left cell (cell 4), and the microscope handles in the top

three cells (cells 1, 2, and 3). The microsurgical video feed was

placed in the bottom right cell (cell 9). A timestamp was

included in the video recording to facilitate correlation analysis

with the tracking data. Detection of landmark 12, corresponding

to the tip of the third digit of each hand, was used to calculate

the time spent in each cell for both hands.

The deep learning motion detection model produced a time

series of landmarks corresponding to both hands’ horizontal and

vertical coordinates. This data was later used to create tracking

plots using the matplotlib library (https://matplotlib.org/) and

perform statistical analysis using the pandas library (https://

pandas.pydata.org/), both of which are Python libraries (Python

3.11, Python Software Foundation, https://www.python.org/).

Continuous variables were reported as mean (SD).
3 Results

3.1 Descriptive analysis

1,948,837 landmarks were detected during 30 min of

recordings (10 min per procedure), translating to an overall

detection performance of 85.9%. 939,540 (48.2%) landmark

detections corresponded to the right hand (dominant). 1,007,916

(51.7%) detections corresponded to the left hand (non-

dominant), and 1,381 (0.1%) were null detections (Table 1).

Hand motion detection was possible throughout every part of

the surgical procedure, including skin incision, drilling (Figure 2),

dissection of anatomical structures, adjusting zoom/focus using the

microscope handle controls, and changing instruments. The bone

dust produced during the drilling did not alter hand detection.

Loss of tracking occurred because of the increased microscope

light at the center of the surgical field (Figure 3).
3.2 Validation of tracking detection

Horizontal motion data of both hands during the first

mastoidectomy were analyzed and graphed, revealing significant

spikes in the dominant hand channel indicating instrument

changes, specifically when changing drill bits between drilling

(Figure 4). Cutting burrs were used for drilling cancellous bone

of mastoid air cells, while diamond burrs were employed in later

stages to drill compact bone overlying critical structures such as

the facial nerve, sigmoid sinus, or dura. Several burr head

changes were necessary during the procedure.
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TABLE 1 Hand motion detection performance during cadaveric mastoidectomy procedures.

Procedure Number of
detections

Detection
performance

Right hand
detections

Left hand
detections

Null
detections

1 621,898 82.2% 345,786 (55.6%) 275,646 (44.3%) 466 (0.7%)

2 641,625 84.8% 254,583 (39.6%) 386,757 (60%) 285 (0.4%)

3 685,314 90.6% 339,171 (49.4%) 345,513 (50.4%) 630 (0.1%)

Total 1,948,837 85.9% 939,540 (48.2%) 1,007,916 (51.7%) 1,381 (0.1%)

FIGURE 1

The setup for hand tracking during mastoidectomy is shown. The instrument table is positioned to the user’s right, the microscope to the left, and the
camera 1.5 m in front of the surgeon. Real-time tracking is displayed on the screen to the user’s right. Used with permission from Barrow Neurological
Institute, Phoenix, Arizona.
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Vertical motion data of the dominant hand were also analyzed

and graphed, showing large spikes corresponding to movements to

reach the microscope handle. This vertical motion was associated

with necessary adjustments to the microscope. As the

mastoidectomy progressed and deeper structures were reached,

adjustments to the microscope’s zoom, focus, and positioning

were required to maintain optimal visualization. The plot

indicated a total of four such adjustments (Figure 5).
3.3 Analysis of tracking data

The hands were tracked to calculate the time spent in each cell

for both hands during the procedures. The procedure was

performed three times, and the mean (SD) time (seconds) spent

within each cell across these procedures was recorded. The hands

spent most of the time in cell 5 (centered in the surgical field),
Frontiers in Surgery 03
with a mean duration of 987.1 (62.7). Movement of the hand to

change instruments was primarily detected in cell 4, where the

instrument table was located, with a mean duration of 21.5

(15.3). Adjustments to the microscope’s position or zoom/focus

were detected in cells 1, 2, and 3, near the microscope location,

with mean durations of 9.7 (8.6) and 3.1 (2.6), respectively.

Additional activity was noted in cell 7, where the trash bin was

located, with a mean duration of 5.5 (9.1). Cells 3, 6, 8, and 9

showed minimal movement, with mean durations of 0.6 (1.0),

0.5 (0.5), 1.4 (2.1), and 1.7 (2.9), respectively. The relative time

both hands spent in each cell was shown in a heat map (Figure 6).
4 Discussion

Mastoidectomy requires recognition of specific anatomical

landmarks exposed sequentially during the continuous removal
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FIGURE 2

Deep learning hand motion detection during cadaveric mastoidectomy. A 3 × 3 grid was created with nine cells delimited by horizontal and vertical
blue gridlines. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

FIGURE 3

Loss of tracking of the non-dominant hand (red square) due to the increased brightness at the center of the image. Used with permission from Barrow
Neurological Institute, Phoenix, Arizona.

On et al. 10.3389/fsurg.2024.1441346
of cancellous and compact bone using a high-speed drill.

Protecting the facial nerve and the sigmoid sinus during bone

removal is critical, making this procedure a challenging

educational task for improving microsurgical drilling skills.

Unlike virtual reality simulators and 3D-printed models,

nonpreserved cadaveric bone has anatomy and texture that
Frontiers in Surgery 04
closely mimic those of actual patients. For learning the

mastoidectomy approach, practice on cadaveric tissue offers

trainees a realistic simulation to build confidence and precision

with the drill, allowing them to skeletonize structures accurately.

However, a productive laboratory session requires expert

supervision to identify and correct errors (9). In situations where
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FIGURE 4

Horizontal motion detection during cadaveric mastoidectomy. Top row: Horizontal tracking plot for both hands. Bottom row: Large amplitude spikes
correspond to changes in instruments, as shown in the video frames for each detection spike (A–D). Used with permission from Barrow Neurological
Institute, Phoenix, Arizona.

FIGURE 5

Vertical motion detection of the dominant hand during cadaveric mastoidectomy. Top row: Video frames corresponding to vertical detections
observed in the tracking plot. These detections are produced by adjusting the microscope using the handle controls. Bottom row: Vertical
tracking plot of hand motion during procedure. Large amplitude spikes are shown that reach out to 0 pixels (top of the image). Each detection
spike (A–D) is correlated with the specific video frame on the top. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

On et al. 10.3389/fsurg.2024.1441346
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FIGURE 6

Heatmap showing where hands were positioned in the 3 × 3 grid during the mastoidectomy and the average amount of time (seconds) spent in each
cell over three procedures. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.
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expert feedback is not available, introducing a quantitative method

to assess technical skills offers a useful alternative for interpreting

performance during mastoidectomy.

Deep learning convolutional neural networks, specialized in visual

detection, are appealing for assessing surgical performance as they

do not require physical sensors on the surgeon’s hands. By detecting

hand landmarks corresponding to digit joints and the wrists of

both hands, this method also has the advantage of generating

large amounts of data for calculating performance metrics. This

technology has been used in quantitative assessments during

microanastomosis simulations and neuronavigation configuration

for burr-hole placement and anatomical landmark selection,

recording pre-operative and intra-operative data (15, 16).

As a proof-of-concept study, we used a deep learning model to

detect hand motions during mastoidectomy procedures. The deep

learning model measured an average of 1,082 landmark detections

per second, providing a significant quantity of data that could be

used in the calculation of refined surgical performance metrics.

The deep learning model had a detection accuracy of 85.9%

when applied to hands wearing surgical gloves.

As a preliminary performance metric, we measured the time

hands spent in each cell and the duration not actively engaged in

the procedure, such as during instrument changes and microscope

adjustments. Time spent in each cell may allow assessment of
Frontiers in Surgery 06
various aspects of procedures, such as evaluating the efficiency of

instrument movements and changes, microscope adjustments, and

overall workflow. This data can be used to optimize surgical

techniques, reduce unnecessary movements, and improve the

ergonomics of the surgical environment. The hand tracking system

was used with gloves and darker lighting conditions simulating an

operating room environment, providing preliminary evidence that

this technology could be used to track hand positions during

actual surgical procedures in the operating room.

Despite limitations such as tracking loss caused bymicroscope light

and the model being trained for ungloved hands, we successfully

captured and analyzed the tracking data. However, drilling involves a

broader range of movements, from gross to micro, which introduces

additional challenges. Future studies should examine if hand

movements correlate with movements of the surgical instrument. To

validate this method, it is necessary to compare groups where both

the movement of the surgical instrument and the hand (as a

surrogate for the instrument’s movement) are evaluated.

Additionally, we plan to analyze movement variability among

different skill levels, including experts and trainees.

Many aspects of automatic detection of surgical hand and

instrument movements will need to be explored and validated

before such data can be translated and relied upon to guide or

inform the actual human clinical or surgical scenario. We are
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https://doi.org/10.3389/fsurg.2024.1441346
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


On et al. 10.3389/fsurg.2024.1441346
exploring the use of multiple cameras to improve hand tracking by

capturing positions from various angles. We are working with

cadaveric models to replicate actual clinical operative maneuvers,

with the aim of translating these findings into clinical studies.

However, integrating multiple imaging nodes with ML-based

data acquisition will require managing vast data sets. A multi-

camera setup in the operating room, for example, could become

overly complex. While more data may offer more significant

insights, the goal should be to determine the minimal technology

setup that provides practical, efficient, and meaningful insights

for improving or monitoring surgical techniques, movement

prediction, and outcomes. Implementing machine learning could

provide more sophisticated methods to analyze a large volume of

tracking data. Certainly, in this regard, the collaboration of

bioengineers and data scientists with neurosurgeons is requisite.
5 Conclusions

Hand motion detection using a deep learning hand detector

without physical sensors on the hands during cadaveric

microsurgical mastoidectomy dissections is a feasible method to

gather data on hand landmark position, assess surgical

performance, and provide feedback to neurosurgical trainees.

This method can be used to perform quantitative motion

analysis of different surgical techniques. However, further studies

are needed to develop more advanced metrics and evaluate the

instructional value of this system in microsurgical training. With

further development, this technology holds significant potential

for enhancing the assessment and training of neurosurgical skills.
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