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Navigating through novelties
concerning mCRC
treatment—the role of
immunotherapy, chemotherapy,
and targeted therapy in mCRC
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Over the course of nearly six decades since the inception of initial trials involving
5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive
comprehension of the pathophysiology, genetics, and surgical techniques
related to mCRC has paved the way for the introduction of novel therapeutic
modalities. These advancements not only have augmented the overall survival
but have also positively impacted the quality of life (QoL) for affected
individuals. Despite the remarkable progress made in the last two decades in
the development of chemotherapy, immunotherapy, and target therapies,
mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this
comprehensive review, our primary goal is to present an overview of mCRC
treatment methods following the latest guidelines provided by the National
Comprehensive Cancer Network (NCCN), the American Society of Clinical
Oncology (ASCO), and the American Society of Colon and Rectal Surgeons
(ASCRS). Emphasis has been placed on outlining treatment approaches
encompassing chemotherapy, immunotherapy, targeted therapy, and surgery’s
role in managing mCRC. Furthermore, our review delves into prospective
avenues for developing new therapies, offering a glimpse into the future of
alternative pathways that hold potential for advancing the field.
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1 Introduction

CRC (colorectal cancer) is one of the most common cancers among all populations

accounting for nearly one-third of all diagnosed cancers worldwide according to WHO

and is characterized by high lethality with an approximately 14% 5-year survival rate

(1). Median age of CRC diagnosis according to (2) 70–72 years while approximately

19%–22% (3, 4) of patients are found to have already progressed to metastatic

colorectal cancer (mCRC) at the time of initial diagnosis.

Like every neoplastic disease, CRC is inherently a genetic disorder. This stems from the

nature of the colon and rectum, where the epithelium undergoes frequent turnover and is
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subject to damage due to exposure to chemical and biological

substances which can lead to sporadic mutations within genes

categorized as tumour suppressor genes (TSGs) such as APC,

DCC, TP53, SMAD2, SMAD4, and p16INK4a, proto-oncogenes

such as BRAF, K-ras, N-ras, as well as genes involved in DNA

repair mechanisms such as MMR and MUTYH (5) subsequently

leading to malignancy. The second group of patients who develop

CRC independently of environmental factors consists of individuals

burdened with hereditary syndromes, which predispose individuals

to either polyposis conditions, such as familial adenomatous

polyposis (FAP), or syndromes without polyposis (HNPCC) but

associated with microsatellite instability, such as Lynch syndrome.

The management of regional and localized CRC has been

practised with varying success since the 19th and 20th centuries

(6). However, the introduction of chemotherapy marked a pivotal

advancement by offering a chance for life extension to patients

diagnosed with mCRC. Initially, 5-fluorouracil-based treatments

showed significant improvement in overall survival (OS),

extending it to 14 months. Further enhancements, such as

incorporating leucovorin and oxaliplatin, raised OS to 19.5

months (7). Despite nearly 60 years of optimizing chemotherapy

since its introduction, its role remains mostly limited to palliative

care, and it still carries side effects and questionable efficacy for

certain patients (8). As such current standard care for mCRC is

largely personalized and encompasses surgical resection,

including complete removal of primary tumour and metastases

in the liver, lung, and peritoneal, and personalized systemic

therapy comprising chemotherapy, targeted therapy, and

immunotherapy which yields a notable increase of OS of around

2 years. According to ASCO guidelines, personalization is based

mostly on the status of microsatellite stability, mismatch repair,

RAS mutations, and the location of the primary tumour (left-

sided or right-sided tumour). Among all individuals with

previously untreated, initially unresectable mCRC doublet

chemotherapy or alternatively triplet regimen combined with

anti-vascular endothelial growth factor (anti-VEGF) antibodies

should be considered as a first-line treatment.

However, if the patient additionally exhibits microsatellite

instability-high (MSI-h) and/or deficient mismatch repair (dMMR)

immunotherapy involving anti-CTLA-4 or anti-PD1 agents should

be considered. For patients who present microsatellite-stable (MSS)

or proficient mismatch repair left-sided treatment-naive RAS wild-

type mCRC, a combination of chemotherapy and anti-epidermal

growth factor receptor (anti-EGFR) therapy is highly

recommended, meanwhile, among microsatellite-stable (MSS) or

proficient mismatch repair (pMMR) RAS wild-type right-sided

mCRC treatment with chemotherapy and anti-vascular endothelial

growth factor therapy should be considered.

Regardless of persistent challenges in managing mCRC, the past

20 years were marked with unprecedented progress in genetics,

cellular physiology, and the immune system have catalyzed the

development of a myriad of innovative therapeutic methods,

promising an increasingly more favourable prognosis and QoL

among patients with mCRC such as immunotherapy based on

CTLA-4 and PD-1 pathway inhibition, or targeted therapy focused

on specific receptors or ligands e.g., VEGF and EGFR.
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2 The role of the immunotherapy in the
mCRC management

The fundamental framework of the anti-tumour response by

the immune system primarily relies on cellular immunity, in

which the activation of cytotoxic T cells (CD8+) occurs through

the cross-presentation of tumour-associated antigens (TAA) or

neoantigens by dendritic cells (Figure 1) (9). Clinically, mCRC is

characterized by a weak immune response, attributed to the

observation that mCRC exhibits fewer somatic mutations,

represented by proficient mismatch repair (pMMR) and/or

microsatellite stability (MSS), compared to other cancers which

result in diminished immunogenicity (10, 11). Additionally, other

factors, such as the lack of tumour antigen presentation,

insufficient T lymphocyte penetration, or T cell suppression by

the tumour, may also influence the competency of the immune

system in mCRC (12).

Contemporary immunotherapy primarily focuses on inhibiting

immune checkpoints (ICP), notably cytotoxic T-lymphocyte–

associated antigen 4 (CTLA-4) and programmed death 1 (PD-1),

which act as down-regulators of cytotoxic T-cell immunity.

Inhibiting these pathways activates the immune system, promoting

a cytotoxic effect on tumour cells (13). Moreover, immunotherapy

exhibits lower toxicity on normal cells (14) reducing the

occurrence of side effects compared to standard chemotherapy.

Common adverse effects include dermatological symptoms such as

rash and pruritus, along with diarrhoea and colitis developing

within 6–8 weeks of treatment onset. Approximately one-fifth of

patients experience elevated hepatic enzyme levels, and some

report fatigue, nausea, and headache. Toxicities are more frequent

with anti–CTLA–4 inhibition, while anti-PD-–PD–1 checkpoint

inhibitors show slightly higher rates of ADRs (15, 16).

The rationale for the widespread use of immunotherapy in

mCRC across all patient groups, regardless of tumour mutational

burden (TMB) status, remains unclear. Notably, tumours

with pMMR, MSS, or low microsatellite instability (MSI-L)

exhibit resistance to immune checkpoint inhibitors (ICI) due to

low TMB and a deficiency in immune cell infiltration (12).

Furthermore, the subset of patients with dMMR or MSI-H,

who may potentially benefit from ICI therapy, constitutes a

relatively limited proportion, approximately 15% of CRC

patients (17, 18). Additionally, those patients who initially

respond to immunotherapy often swiftly progress into a state of

immune resistance (19).

Despite the limitations of immunotherapy, the prospect of

combination therapies, integrating immunotherapy with

chemotherapy, radiotherapy, or a second immunotherapy agent,

has demonstrated promising results in trials such as CCTG

CO.26 (20), MAYA (21) and atezoTRIBE (22).
2.1 PD-1 inhibitors

The Programmed Cell Death Protein 1 (PD-1), a crucial member

of the checkpoint proteins and a member of the CD28 family (23),
frontiersin.org
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FIGURE 1

PD-1 and CTLA-4 pathway-mediated inhibition of immune response and mechanisms of action of immunotherapy agents. Created with
BioRender.com.
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plays an important role in immune regulation. Its ligand, Programmed

Death-Ligand 1 (PDL-1), is a type 1 transmembrane glycoprotein

belonging to the B7 ligand family and is primarily expressed on the

surface of tumour cells (24). The PD-1/PDL-1 pathway is activated

in response to infections, serving to restrain the elimination of host

cells and mitigate the risk of autoimmune diseases (25). In the

context of malignancies, the PD-1/PDL-1 signal transduction

pathway assumes one of the central roles in the mechanisms of

tumour-mediated immunosuppression which facilitates immune

evasion by suppressing the anti-tumour immune response (26, 27).

The FDA has approved several monoclonal antibodies targeting

PD-1, including nivolumab, pembrolizumab, cemiplimab,

dostarlimab, retifanlimab, and toripalimab. Additionally, three PDL-

1 inhibitors, namely atezolizumab, durvalumab, and avelumab, have

also received FDA approval. Immunotherapy has durably

demonstrated efficacy in the treatment of various haematological

and solid malignancies such as melanoma, non–small cell lung

cancer, renal cell carcinoma, urothelial carcinoma, gastroesophageal

carcinoma, and hepatocellular carcinoma have seen notable clinical

benefits from PD-1/PDL-1 blockade (See Table 1) (28, 29). In case

of mCRC, pembrolizumab and nivolumab are among the FDA-

approved PD-1/PDL-1 inhibitors (30).
2.2 CTLA-4 inhibitors

Cytotoxic T-lymphocyte antigen-4 (CTLA-4), predominantly

expressed on the surface of activated T cells, serves as an immune

checkpoint involved in the early-stage response of T cells. In
Frontiers in Surgery 03
contrast to the stimulatory signal mediated by CD28, CTLA-4

transduces an inhibitory signal to T cells, regulating the delicate

balance of immune responses (31). The dynamic interplay

between CTLA-4 and CD28 occurs through their interaction with

B7 ligands expressed on the surface of antigen-presenting cells.

Notably, CTLA-4 exhibits a 20-fold higher affinity for the B7

ligand compared to CD28, resulting in a potent inhibitory effect

on T cells which contributes to the suppression of T cell activation

and proliferation (32). The competition for B7 ligands between

CD28 and CTLA-4 establishes a regulatory mechanism in which

CTLA-4 dampens T-cell responses. The mediatory role of CTLA-4

extends to the inhibition of T-lymphocyte responses, leading to

the curtailment of T lymphocyte proliferation. Furthermore,

CTLA-4 promotes the heightened activity of regulatory T cells

(Tregs), further contributing to immune tolerance (33).

FDA-approved therapies targeting CTLA-4 in combination with

PD-1/PDL-1 inhibitors have shown promise in the treatment of

mCRC. Combining anti-CTLA-4 therapy with PD-1/PDL-1

blockade represents a synergistic approach to enhance the anti-

tumor immune response. While combination therapy has gained

regulatory approval, the efficacy of monotherapy with CTLA-4

inhibitors is still under evaluation (34).
2.3 Immunotherapy agents

2.3.1 Pembrolizumab
Pembrolizumab is a humanized monoclonal anti-PD1,

approved primarily for the management of melanoma in
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TABLE 1 Overview of landmark trials involving immunotherapy agents for mCRC management.

Trial Phase Characteristics of the
studied population

Number of
participants

Treatment Primary
Endpoint

Results

KEYNOTE-
016

II mCRC with or without
mismatch-repair deficiency

11 Pembrolizumab ORR
PFS at 20
weeks

dMMR mCRC vs. pMMR
mCRC:
ORR: 40% vs. 0%
PFS: 78% vs. 11%

KEYNOTE-
164

II Previously treated patients with
MSI-H/dMMR mCRC

124 Pembrolizumab ORR ≥ 2 prior line of therapy vs. ≥1prior line
of therapy:
ORR: 33% vs. 33%
PFS at 24 months: 31% vs. 37%
OS at 24 months: 55% vs. 63%

KEYNOTE-
177

III First-line therapy for MSI-H/
dMMR mCRC patients

307 Pembrolizumab vs. standard
treatment

OS
PFS

Pembrolizumab vs. standard treatment
The PFS at 24 months rates: 48.3% vs.
18.6%
ORR: 43.8% vs. 33.1%
OS HR 0.74, 95% CI 0.53–1.03

CheckMate-
142

II Recurrent or metastatic MSI-
H/dMMR CRC

45 Nivolumab + Ipilimumab/ ORR ORR: 69%
DCR: 89%
PFS at 24 months: 74%

CheckMate-
142

II Previously treated patients with
MSI-H/dMMR mCRC

119 Nivolumab + Ipilimumab ORR ORR: 55% at 13 months to 65% at 51
months,
DCR: 81% at 51 months

CheckMate-
142

II Previously treated patients with
MSI-H/dMMR mCRC

74 Nivolumab ORR ORR: 31%
DCR at 12 weeks: 69%
PFS at 12 months: 51%

NICHE II CRC patients with dMMR or
pMMR

40 Ipilimumab + Nivolumab PR dMMR vs. pMMR:
PR: 100% vs. 27%

GERCOR
NIPICOL

II Previously treated patients with
MSI-H/dMMR mCRC

57 Nivolumab + Ipilimumab DCR at 12
weeks

DCR at 12 months: 86%
ORR: 60%
PFS at 12 months: 73%
OS rate at 12 months: 84%

BACCI II mCRC patients with or
without mismatch-repair
deficiency

133 Capecitabine, bevacizumab
(CB) with or without
atezolizumab

PFS CB with: placebo vs. artezolizumab
PFS: 3.3 months vs. 4.4 months
The OS at 12 monts: 43% vs. 52%

MAYA II mCRC patients with MSS
status and MGMT silencing

708 Nivolumab + Ipilimumab PFS at 8
months

PFS at 8 months: 32%
median OS: 18.5 months
ORR: 39%

AtezoTRIBE II Previously treated patients with
mCRC

218 Standard treatment with or
without atezolizumab

PFS Standard treatment vs. standard
treatment + atezolizumab
PFS: 11.5 vs. 13 months
median OS: 27 vs. 33 months

CCTG CO.26 II Previously treated patients with
mCRC

180 Durvalumab +
tremelimumab vs. Best
Supportive Care (BSC)

OS Durvalumab + tremelimumab vs. BSC
median OS: 6.6 vs. 4.1 months
median PFS: 1.8 vs. 1.9 months
DCR: 22.7% vs. 6.6%

SAMCO-
PRODIGE 54

II Previously treated patients with
MSI-H/dMMR mCRC

122 Avelumab vs. Standard
Second-Line Chemotherapy

PFS Avelumab vs. Standard Second-Line
Chemotherapy
PFS at 12 months: 31.2% vs. 19.4%
PFS at 18 months: 27.4% vs. 9.1%
ORR: 29.5% vs. 26.2%
DCR at 18 months: 75.7% vs. 19.1%
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September 2014 by the FDA (35), currently being utilized for the

treatment of a plethora of cancers including melanoma, small-

cell lung cancer, Hodgkin lymphoma, urogynaecological and

gastrointestinal cancers (28) as far as the role of pembrolizumab

in the management of CRC and mCRC is concerned the

KEYNOTE series, particularly KEYNOTE-016, KEYNOTE-164,

KEYNOTE-012, KEYNOTE-028, and KEYNOTE-177, played a

significant role in investigating the role of PD-1 inhibitor

pembrolizumab for the mCRC and CRC treatment. The trials

focused on patients with DNA mismatch repair and

microsatellite stability status, revealing promising outcomes in

terms of response to PD-1/PD-L1 inhibitor therapy among
Frontiers in Surgery 04
mCRC patients (12). The initial phase I trial, KEYNOTE-028,

while not demonstrating substantial advantages in OR among

CRC patients, provided an insight into the safety profile of

pembrolizumab. Despite a meagre response rate (1 out of 23

patients), the treatment exhibited a favourable safety profile, with

only 35% of the cohort reporting ADRs. Following the profiling

of a sole responder in KEYNOTE-028, researchers began to

suspect the potential role of MSI in treatment efficacy (36).

Subsequent phase 2 trials, including KEYNOTE-016, KEYNOTE-

164, KEYNOTE-012, and KEYNOTE-158, corroborated the

suspected link between MSI-H, dMMR, and a positive response

to pembrolizumab treatment among CRC patients.
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Additionally, KEYNOTE-158 revealed a correlation between

high tumour mutation burden (TMB) and improved overall

response to ICB therapy (37). The compelling results from these

trials led to the FDA approval of pembrolizumab for adult and

pediatric patients with unresectable or metastatic MSI-H or

dMMR solid tumours that have progressed after prior treatment,

with no satisfactory alternative options. However, the subsequent

phase 3 study, KEYNOTE-177, designed to assess OS in patients

with dMMR or MSI-H mCRC, did not demonstrate the

superiority of pembrolizumab as a first-line treatment over

standard chemotherapy combined with an anti-VEGF agent.

Despite the lack of OS superiority, the pembrolizumab regimen

exhibited a more favourable PFS compared to chemotherapy

(median PFS of 16.5 months vs. 8.2 months).

2.3.2 Nivolumab and ipilimumab
In 2016, the initial trial under the acronym CHECKMATE was

initiated to investigate the potential role of nivolumab, a fully human

IgG4 PD-1 immune checkpoint inhibitor antibody (38), in various

malignancies, including squamous cell lung cancer, melanoma,

and hepatic cancer. The studies within the CHECKMATE-142

series specifically assessed the efficacy of nivolumab in treating

advanced MSI-H CRC, either as monotherapy or in combination

with ipilimumab, a CTLA-4 inhibitor (39).

CHECKMATE- 142, a multicenter multicohort non-

randomized study designed to evaluate the efficacy and safety of

nivolumab either as monotherapy or in combination with

ipilimumab, a CTLA-4 inhibitor, in advanced MSI-H CRC

patients. The study reported an ORR of 31% and a DCR of 68%

with nivolumab in a monotherapy regime, however, the dual

therapy with ipilimumab resulted in superior outcomes, with

ORR and DCR exceeding 60% and 84%, respectively. Also, in

combination therapy, the PFS rate was estimated to be 77% and

the OS was 83% in the 1 year. In comparison, patients

undergoing nivolumab monotherapy exhibited a PFS of 50% and

an OS of 73% at the same 1-year interval. Due to notable

efficacy and safety demonstrated during the CHECKMATE-142

trial (40), the FDA eventually approved nivolumab as a single

agent or in combination for treating MSI-H mCRC in 2017.

Importantly, the response was observed across all patient

subgroups, irrespective of tumour PD-L1 expression and regardless of

clinical history, including those with KRAS or BRAF mutations. In

patients with BRAF V600E mutations, an ORR of 25% was observed,

surpassing rates with traditional chemotherapy or combination

therapy with BRAF EGFR or MEK inhibitors. These findings suggest

that nivolumab may exhibit superior activity compared to

conventional therapies in patients with BRAF-mutant mCRC, a

subgroup typically associated with a poor prognosis andMSI-hmCRC.

The acknowledgment of the limitation of the non-RCT

highlighted the need for an ongoing randomized phase III

CheckMate-8HW trial (41), in recurrent or metastatic MSI-H/

dMMR CRC. The efficacy of three therapeutic approaches is

currently under evaluation: a combination of nivolumab and

ipilimumab, nivolumab alone, and chemotherapy.

The utilization of ipilimumab and nivolumab was additionally

employed for the treatment of mCRC with MMS status,
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concomitantly with chemotherapy. The phase II MAYA trial (21)

investigated the impact of temozolomide on TMB, concerning

the response to immune checkpoint inhibitors (ICI) therapy in

patients with MSS mCRC. Eligible patients underwent two

priming cycles of temozolomide followed, in the absence of

disease progression, by the introduction of a combination of

ipilimumab and nivolumab. Out of 135 patients, 33 reached the

second treatment phase. The primary endpoint of the PFS rate at

8 months was achieved, recording a rate of 36%. Median PFS

and OS were 7 and 18 months, respectively, and an ORR of 45%

was observed, indicating delayed or gradual responses consistent

with the efficacy of immunotherapy. Moreover, all ADRs of the

combinations were easily manageable. The MAYA study

substantiated the concept that a sequential regimen involving

temozolomide priming, followed by a combination of ipilimumab

and nivolumab, suggests that combining therapy may help

overcome drug-resistant patients mCRC with MSS.

2.3.3 Durvalumab
Durvalumab received approval from the FDA in 2017 for the

treatment of locally advanced or metastatic urothelial carcinoma.

Currently, its therapeutic applications extend to non-small cell

lung cancer (42). In combination with chemotherapy,

durvalumab is employed in the management of extensive-stage

small-cell lung cancer and biliary tract cancer (43).

Durvalumab’s potential as a therapeutic option for mCRC

patients is under evaluation, with a focus on clinical trial data

and safety profiles. In the phase 2 trial led by (44), durvalumab

monotherapy exhibited promising antitumor activity and

maintained a manageable safety profile in patients with

previously treated mCRC with MSI-H/dMMR variant or with

POLE mutation. The PFS rate in those patients at 12 months

was determined to be 58.2% (95% CI, 39%–73%), and the 12-

month OS rate was 68.3% (95% CI, 49%–82%). These

outcomes suggest that durvalumab monotherapy yields results

comparable to the clinical efficacy observed with already

approved PD-1 inhibitors such as pembrolizumab and

nivolumab. The findings from this study contribute valuable

insights into the potential of durvalumab as a therapeutic

option in those mCRC patients.

Durvalumab has also been trialled in combination with

tremelimumab and mFOLFOX6 chemotherapy regime among

RAS mutated unresectable mCRC during phase 1b/2

MEDITREME trial (45). In conclusion, in the phase 2 study, the

primary objective of achieving a 3-month PFS was met by 90.7%

of patients with MSS mCRC. Secondary objectives revealed

notable outcomes 6 (95.8%), 12 (81.1%), 24 (57.6%) months OS,

mPFS (8.2%), RECIST (52%), and DCR (93.7%). Furthermore, in

the course of the trial, three colorectal cancer (CRC) patients

with mutations in the POLE gene exhibited a response to

durvalumab. Notably, one patient with a mutation in the

exonuclease region demonstrated an objective response, while

those with mutations outside this region experienced disease

progression which might suggest a potential role of the

mutations in the exonuclease region of the POLE gene in the

treatment response.
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Another randomized phase II trial centred on evaluating the

combination of durvalumab and tremelimumab—CCTG CO.26

(20) has provided convincing evidence that double ICI therapy

yields superior outcomes as the OS in patients treated with

durvalumab plus tremelimumab, with 166 out of 180 patients

defined as MSS/pMMR, reached 6.6 months in comparison to

the 4.1 months of OS observed in patients receiving best

supportive care (BSC).

2.3.4 Avelumab
In March 2017, the FDA granted approval for avelumab in the

therapeutic management of patients with metastatic Merkel-cell

carcinoma (46). Subsequently, the scope of avelumab applications

has been expanded to encompass the treatment of advanced or

metastatic renal cell carcinoma and urothelial carcinoma (47, 48).

Various trials are currently being conducted to evaluate the

effect of treatment on the development of mCRC. The phase I

clinical trial, conducted by (49) focused on evaluating safety and

response in 22 patients with mCRC. The results of this trial

proved the safety profile of avelumab to be consistent with that

of other monoclonal antibodies anti-PD-1/PD-L1, however

indicated that the drug lacked efficacy in this group of patients,

as mPFS was 2.1 months (95% CI: 1.4–5.5 months) and none of

the patients produce objective responses to the avelumab. Its lack

of effectiveness stemmed from the fact that the trial did not

categorize mCRC with MSI and MSS.

The phase 2 randomized clinical trial, 2 SAMCO-PRODIGE 54

(50), included 122 patients, who were randomized to receive

avelumab or standard second-line therapy (chemotherapy).

Avelumab compared to chemotherapy was associated with

significantly better PFS at 12 months and 18 months (31% vs.

19%; 27% vs. 9%, respectively). In addition, avelumab had a

favourable safety profile in the second-line therapy of dMMR/

MSI mCRC, as the avelumab group demonstrated a lower

incidence of treatment-related adverse events compared to the

chemotherapy group (32% vs. 34%). ORR (30% vs. 26%) and

DCR (71% vs. 77%) were similar between those cohorts.

2.3.5 Atezolizumab
In a phase 2 clinical trial of AtezoTRIBE (51), 218 patients with

previously untreated mCRC were examined to evaluate the effect of

combining first-line FOLFOXIRI plus bevacizumab with the anti-

PD-L1 agent—atezolizumab.

With a median follow-up duration of 20 months, the

atezolizumab group demonstrated a mPFS of 13 months (80% CI

12.5–13.8), compared to 12 months (10.0–12.6) of mPFS

exhibited by the control group receiving only first-line

FOLFOXIRI plus bevacizumab. Nevertheless, the hazard ratio

was 0.69 (80% CI 0.56–0.85) with a statistically significant p-

value of 0.012.

However, IMblaze370, a randomized phase III trial (52)

revealed diminished efficacy of atezolizumab in mCRC

management when compared to regorafenib, as evidenced by a

mOS of 7.1 months vs. 8.5 months, respectively. The

combination of atezolizumab and cobimetinib demonstrated an

OS of 8.9 months. The ORR was estimated at 2.2%, 2.2%, and
Frontiers in Surgery 06
2.7% for atezolizumab monotherapy, regorafenib, and

atezolizumab with cobimetinib, respectively.

The study outcomes indicate that neither immune checkpoint

inhibitor monotherapy nor its combination with targeted therapy

succeeded in improving the DFS and OS in mCRC patients.

Moreover, the phase II randomized study—BACCI (53),

demonstrated a weak signal of efficacy with adding atezolizumab

to capecitabine and bevacizumab in mCRC management. Patients,

who received atezolizumab in conjunction with capecitabine and

bevacizumab (ACB) exhibited a mPFS of 4,4 months, whereas

patients, who received a placebo to capecitabine, and bevacizumab

(PCB) had a mPFS of 3,3 months [an HR of 0.725 (0.491–1.07, p

= 0.051]. The ORR and OS were 4.4% vs. 8.5%, p = 0.5, in PCB

and ACB, respectively. The OS at 12 months was 43% vs. 52%

[HR 0.94 (0.56–1.56), p = 0.4] in PCB and ACB, respectively.

2.3.6 Dostarlimab
According to a recent clinical trial referenced as NCT04165772,

dostarlimab has proven to be an incredibly effective treatment for

dMMR rectal cancer. Out of the 12 patients who participated, all

achieved a clinical complete response rate of 100% (95% CI,

74%-100%) (54). During the six-month treatment period, none

of the participants reported any adverse events of grade 3 or

higher. Most patients experienced rapid relief of disease

symptoms within nine weeks of initiating dostarlimab, with 81%

reporting resolution. Endoscopic complete response was observed

in 42% of patients, and 15% achieved a radiographic complete

response to this anti-PD-1 therapy.

2.3.7 Retifanlimab
Retifanlimab is one of the most recently approved PD-1 inhibitors

that shows promise in treating patients with metastatic or recurrent

locally advanced Merkel cell carcinoma (55). However, there is

currently no research on the effects of retifanlimab on mCRC. While

one study evaluating a personalized neoantigen vaccine combined

with retifanlimab has been withdrawn (NCT04799431), another

study testing the effectiveness of a combination of retifanlimab,

TriAdeno vaccine, N-803, and SX-682 is still in the preparatory

process and has not yet begun recruitment (NCT06149481).
3 Targeted therapy

Targeted therapy in cancer treatment involves the use of drugs

that specifically target certain biological features of tumour cells

rather than non-specific neutralization (56). This approach has

gained significant momentum in the treatment of mCRC since

the approval of the first targeted drug, cetuximab, by the FDA in

2004. Cetuximab, an anti-EGFR IgG1 antibody, marked a pivotal

moment in the field, paving the way for a deeper understanding

of cellular pathways and the development of agents that target

specific pathways implicated in cancer progression.

Noteworthy pathways include those involving epidermal

growth factor receptor (EGFR), fibroblast growth factor receptor

(FGFR), vascular endothelial growth factor receptor (VEGF-R),

and tropomyosin receptor kinase (TRK) (see Figure 2).
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The elucidation of these pathways has led to the development of a

variety of agents that selectively target them. These targeted

therapies have undergone extensive testing and have been

integrated into clinical practice, contributing significantly to the

improvement of QoL and life expectancy for specific groups of

patients with mCRC (see Figure 3 and Table 2) (8, 56, 57).
3.1 EGFR pathway

The erythroblastosis oncogene B (ERB) family consists of four

transmembrane tyrosine kinase receptors: EGFR (ErbB1 or HER1),

HER2 (ErbB2), HER3 (ErbB3), HER4 (ErbB4) (58). Overexpression
FIGURE 2

Pathways involved in common targeted therapy currently utilized in mCRC

FIGURE 3

Overview of the latest NCCN and ASCO guidelines regarding the biomarke
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of EGFR is one of the potential pathophysiological components of

CRC as HER2 (1.3%–47.7%) and EGFR (25%–82%) overexpression

have been widely reported among patients with CRC (57, 59, 60).

Additionally, mutations within ERB may be accompanied by the

increased tyrosine kinase activity existing separately or induced by

the therapy (60). Clinically wise, overexpression of the receptors is

considered to be correlated with poor prognosis and lower survival

rate, metastases, drug resistance (61).

The chain of reaction of EGFR, HER3, and HER4 is induced by

binding a ligand to their extracellular domains which allows the

formation of active hetero-oligomers and phosphorylation of the

tyrosine kinase domain (58). Activation of HER2 is still a matter

of discussion as currently, the scientific community has not
management. Created with BioRender.com.

r-based stratification for first-line treatment of mCRC.
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TABLE 2 Overview of landmark trials involving targeted therapy agents for mCRC manage.

Trial Phase Characteristics of the studied
population

Number of
participants

Treatment Primary
endpoint

Endpoint results

PRIME III wild-type (WT) KRAS mCRC 1,183 Panitumumab PFS FOFLOX4 + panitumumab vs.
FOLFOX4 (10 vs. 8.6 months)

CRYSTAL III WT KRAS mCRC 1,198 Cetuximab PFS Best supportive care + panitumumab
vs. Best supportive care (8 vs. 7.3
weeks)

ASPECCT III WT KRAS mCRC 999 Panitumumab vs.
cetuximab

OS panitumumab vs. cetuximab (10.4 vs.
10 months)

Fire-3 III KRAS exon 2 WT mCRC 592 Cetuximab vs.
bevacizumab to
FOLPIRI

ORR FOLFIRI plus cetuximab vs.
FOLFIRI plus bevacizumab (62% vs.
58%)

SWOG S1406 II BRAFV600E-mutated mCRC 106 Irinotecan,
cetuximab and
vemurafenib

PFS Irinotecan + Cetuximab +
Vemurafenib vs. Irinotecan +
Cetuximab (4.2 vs. 2 months)

PANAMA II RAS WT mCRC 248 Panitumumab,
folinic acid,
fluorouracil

PFS FU/FA + panitumumab vs. FU/FA
(8.8 vs. 5.7 months)

Napolitano et al II RAS WT mCRC 62 Panitumumab,
tifluridine-tipiracil

PFS trifluridine-tipiracil + panitumumab
vs. trifluridine-tipiracil (4 vs. 2,5
months)

HERACLES-A II KRAS wild-type HER2-positive mCRC 35 Trastuzumab,
lapatinib

PFS Trastuzumab + Lapatinib (4.7
months)

MOUNTAINEER II KRAS wild-type HER2-positive mCRC 117 Trastuzumab,
lapatinib

ORR Tucatinib + trastuzumab (38.1%)

Fu et al II RAS/BRAF wild-type HER2-positive CRC 20 Pyrotinib,
trastuzumab

ORR Pyrotinib + trastuzumab (22.2%)

Yoshino et al.
/DESTINY-CRC01

II HER2-positive mCRC progressed after ≥2
prior regimens

86 Trastuzumab,
deruxtecan

ORR, PFS,
OS, DoR

ORR 45.3%, mPFS 6.9 moths, OS
15.5months, DoR 7.0 moths

MyPathway IIa HER2-positive mCRC 57 Trastuzumab,
pertuzumab

ORR ORR 32%

Hurwitz et al. III previously untreated mCRC 813 Bevacizumab OS, PFS IFL plus bevacizumab vs. IFL plus
placebo (mOS 20.3 vs. 15.6 moths,
mPFS 10.6 vs. 6.2 months)

Prager et al. III patients who had received two or fewer
chemotherapy regimens in the advanced
stage of CRC

246 Bevacizumab,
tifluridine-tipiracil

OS, PFS combination group vs. FTD-TPI
group (mOS 10.8 vs. 7.5 months,
mPFS 5.6 vs. 2.4 months))

RAISE III disease progression during or within 6
months of the last dose of first-line therapy
of CRC

1,072 Ramucirumab OS ramucirumab vs. placebo (mOS 13.3
vs. 11.7 months)

AFFRIM II mCRC first line treatment 236 Alibercept PFS PFS at 12 months aflibercept/
mFOLFOX6 vs. mFOLFOX6 (25.8%
vs. 21.2%) mPFS aflibercept/
mFOLFOX6 vs. mFOLFOX6 (8.48
vs. 8.77 months)

CORRECT III mCRC and progression during or within 3
months after the last standard therapy

760 Regorafenib OS Regorafenib vs. placebo (mOS 6.4 vs.
5.0 months)

IMblaze370 III unresectable locally advanced CRC or
mCRC

363 Regorafenib,
atezolizumab,
cobimetinib

OS Atezolizumab plus cobimetinib vs.
atezolizumab, regorafenib (mOS 8.87
vs. 7.10 vs. 8.51 months)

CONCUR III mCRC with at least two previous
treatment lines or unable to tolerate
standard treatments

243 Regorafenib OS Regorafenib vs. placebo (mOS 8.8 vs.
6.3 months)

FRESCO III mCRC that progressed after at least 2 lines
of chemotherapy but had not received
VEGFR inhibitor therapy

416 Fruquintinib OS Fruquintinib vs. placebo (mOS 9.3
vs. 6.6 months)

FRESCO-2 III mCRC that received all current standard
approved cytotoxic and targeted therapies
and progressed on or intolerant to
trifluridine–tipiracil or regorafenib

691 Fruquintinib OS Fruquintinib vs. placebo (mOS 7.4
vs. 4.8 months)

Zheng et al. 10.3389/fsurg.2024.1398289
elucidated any ligand family that stimulates its extracellular domain.

The more commonly accepted theory involves the formation of

heterodimers with any of the other three receptors from the ERB

family which creates a high-affinity complex for the ligands (62,
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63). Particularly, HER3 receptor must undergo dimerization with

the other ERB receptor due to lack of its intrinsic kinase activity.

Regardless of ERB-receptor activation pathways, the initiated

signalling pathway promotes proliferation, angiogenesis, continued
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existence, migration, and adhesion of the stimulated cells (56). Since

cancer cells depend on those pathways, ERB family receptors play a

crucial role in target treatment.

A list of typical adverse effects of anti-EGFR drugs includes:

papulopustular rash, mucositis, xerosis, hypermagnesemia,

diarrhoea, hypersensitivity/allergic reaction, skin fissuring, and

paronychia infection (56, 64).

So far two antibodies have been registered for targeting EGFR:

cetuximab and panitumumab (IgG2 antibody) as both of them are

based on a similar mechanism—attachment to the extracellular

domain of EGFR inhibiting binding of ligands which leads to

tyrosine kinase internalization and degradation. Additionally,

cetuximab binds to NK cells leading to antibody-dependent

cellular and complement-mediated cytotoxicity (56, 60).

Panitumumab was registered based on a PRIME trial in which it

was added to FOLFOX4 in first-line treatment markedly improving

PFS (10 months vs. 8.6 months) in patients with wild-type KRAS

CRC (65). Median OS was 23.9 months vs. 197 months. The

acceptance of cetuximab was based on a CRYSTAL trial in

combination with the FOLFIRI regimen (66). The previously

untreated patients had 0.68 HR (95% CI, 0.50–0.94) compared to

FOLFIRI alone (1.07). Median PFS was 9.9 months vs. 8.7 months

in favour of the combination. It is essential to highlight that positive

effects were observed only in patients with the KRASwild-type variant.

In ASPECCT—a phase III RCT—panitumumab was found non-

inferior to cetuximab as no differences in terms of OS, PFS, and

ORR between these two drugs were found. As far as ADRs are

concerned, the incidence of skin adverse effects was comparable.

However, grade 3–4 hypomagnesemia was more frequent among

patients treated with panitumumab, but grade 3–4 infusion

reactions were more common in cetuximab. In other studies,

patients with therapeutic plans based on panitumumab more often

developed mutations in the EGFR extracellular domain than those

treated with cetuximab but lower risk of developing

hypersensitivity reactions (0.6%–3% vs. 3.5%–7.5%) (64, 67).

Left-sidedCRC is characterized by higher expression of EGFR than

their right-sided counterparts which has its clinical implications as

shown during the Fire-3 trial which proved cetuximab is a superior

treatment option for left-side CRC compared to bevacizumab when

added to FOLFIRI (68). It depicted higher ORR (77% vs. 65%) and

longer median OS (33 vs. 26 months) but PFS was comparable

between the two groups. It is important to note that this advantage

was observed only in left-side tumours.

EGFR inhibitors do not typically present a response in patients

with BRAFV600E mutations when used as single agents or

combined with cytotoxic chemotherapy. However, there is

evidence that simultaneous inhibition of EGFR and BRAF can be

beneficial in patients who underwent prior one or two regimens

in refractory CRC. Kopetz et al. in the SWOG S1406 trial on 106

patients with BRAFV600E demonstrated the efficacy of a

combination of irinotecan and cetuximab with the addition of

Vemurafenib (69). The observed PFS of the group with all three

medications vs. the group without vemurafenib was 17% vs. 4%.

The DCR was 65% vs. 21% but OS was comparable between the

two groups. Simultaneous blockade of EGFR and BRAF results

in downregulation of mismatch-repair (70).
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The combined treatment represented a more successful

approach also in the study by (71) in which 44 patients received

therapy with adagrasib and 32 adagrasib combined with

cetuximab. The ORR was 19% vs. 46%, the median response

duration was 4.3 months vs. 7.6 months and the PFS was 5.6 vs.

6.9 months—all in favour of combined therapy. Also, the grade 3

or 4 adverse effects rate was lower among the adagrasib-

cetuximab group (34% vs. 16%).

Cetuximab monotherapy was also shown to be effective but,

unsurprisingly, combined treatment has better clinical outcomes

such as in the trial by (72). PFS of a group receiving cetuximab

plus irinotecan was 4.1 vs. 1.5 months compared with a group

receiving monotherapy, ORR 22.9% vs. 10.8% and median OS

was 8.6 months vs. 6.9 months. A similar outcome was achieved

during the ERMES phase 3 study (73) which resulted in

reporting a lack of non-inferiority of cetuximab maintenance

therapy compared to the FOLFIRI/Cet regimen. However,

treatment with cetuximab alone presented a lower risk of grade 3

adverse effects rate.

Maintenance therapy is another field in which panitumumab

has found its application (74). Currently, the main purpose in

the development of maintenance therapy is the reduction or

replacement of oxaliplatin-based chemotherapeutics due to high

toxicity and tolerance issues. In the PANAMA trial,

panitumumab in combination with folinic acid and fluorouracil

was confronted with fluorouracil and folinic acid alone in

patients with RAS wild-type CRC. There was noted a significant

improvement in terms of PFS (8.8 months vs. 5.7 months) and

also better outcomes in OS (28.7 months vs. 25.7 months), ORR

(40.8% vs. 26%). These data suggest that adding panitumumab

after induction to standard maintenance therapy is a viable

clinical option. However, in the phase 2 VALENTINO trial

panitumumab alone did not prove superior as a maintenance

therapy over the panitumumab plus fluorouracil-leucovorin in

terms of 10 months PFS (75).

Overall, cetuximab and panitumumab were shown as effective

in first-line therapy of left-sided CRC and are recommended to be

included in the treatment of RAS, BRAFV600E, and ERBB2 wild-

type variants (57, 70). The major concern of anti-EGFR inhibitors

is unsatisfying outcomes in the management of patients with

mutated variants of CRC. However, some patients with KRAS-

mutation G13-D mutation benefited from administering anti-

EGFR therapy, suggesting that not all cases present resistance to

this line of drugs (8, 76).

In second-line therapy and above, anti-EGFR agents are not

typically among the top choices for the further management of

mCRC as many studies failed to reach statistically significant results

of their benefit (57). Nevertheless, some trials demonstrated their

usefulness in particular clinical scenarios (66). In a phase III trial

presented evidence for the efficacy of panitumumab in refractory

CRC in a group of 463 patients with 1% or more EGFR tumour cell

membrane staining. The outcomes of panitumumab with best

supportive care vs. best supportive care alone were as follows: PFS

(8 weeks vs. 7.3 weeks), ORR (10% vs. 0%) with equal OS.

Due to unsatisfactory available methods for third-line treatment

of CRC, there are attempts to evaluate the effectiveness of
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panitumumab in rechallenge therapy of refractory RAS wild-type

CRC. According to (77), mCRC cells develop resistance

mechanisms, notably through RAS and EGFR ectodomain

mutations, under sustained anti-EGFR treatment. However, upon

cessation of this treatment, mutated malignant cells lose their

competitive advantage over non-mutated malignant cells, leading to

a decline in their numbers over time. Parseghian et al. elucidate that

the relative mutant allele frequency of RAS and EGFR undergoes

exponential decay (r2 = 0.93 for RAS; r2 = 0.94 for EGFR) with a

cumulative half-life of 4.4 months which potentially rationalizes

rechallenge and intermittent anti-EGFR therapy. In a trial by (78)

62 patients were divided into two groups and tested with

tifluridine-tipiracil with or without panitumumab. Median PFS was

noted as 4 months compared to 2.5 months. Furthermore, in

patients with pretreatment plasma RAS/BRAF wild-type ctDNA,

there was observed even better response to treatment. PFS of the

group with this pattern of DNA and simultaneously receiving

panitumumab was 4.5 months and PFS rates at 6 months were

38.5% vs. 13% (compared to a group that did not present RAS/

BRAF wild-type ctDNA and received panitumumab).

As far as the intermittent therapy with an anti-EGFR agent is

concerned, during the phase 2 trial IMPROVE (79) patients

treated as a first-line treatment with FOLFIRI/PANI continuously

not only had lower PFSot compared to the intermittent regimen

(12.6 months (95% CI: 9.0–16.1) vs. 17.6 months (95% CI: 7.5–

27.8) respectively) but also higher risk of grade 3 or 4 toxicities.

Nevertheless, further evaluations of the results are required for a

better understanding of intermittent therapy with anti-EGFR agents.

3.1.1 HER2-inhibitors
Overexpression of HER2 represents a relatively small group of

patients with CRC, being more commonly associated with breast or

gastric cancers. Depending on the study it pertains from 2% to 11%

of CRC cases, typically localized in the left side of a colon and the

rectum. Its prognostic role is yet still unclear as some studies report

a shorter time to recurrence and lower OS, the impact of HER2 in

CRC seems to be not as meaningful as the other major gene

alterations related to this tumour. The relatively small population

of patients with this mutation is an evident obstacle in the

evaluation of targeted treatment (80).

Currently, HER2 inhibitors are not included in routine use

except for tucatinib and trastuzumab regimes which have been

approved by the FDA in 2023 (81). However, clinical trials

demonstrated a potential for upcoming targeted therapies

focused on HER2-related pathways. In the HERACLES-A study

combination of trastuzumab and lapatinib was administered to

35 patients with KRAS wild-type HER2-positive variant. In 6.7

years follow-up mPFS was 4.7 months, median OS 10 months

and ORR was 28% which supports the use of mentioned drugs

(82). In the MOUNTAINEER clinical trial, the same variant was

treated with trastuzumab plus tucatinib which resulted in an

ORR of 38.1%. Similar outcomes in ORR were achieved in

comparison of patients who previously received anti-EGFR

therapy vs. those who did not (36.4% vs. 40%) (81).

mCRC management with pyrotinib has been reported only for

small cohorts of patients. In the phase II clinical trial by Fu et al. a
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group of 20 patients with RAS/BRAF wild-type HER2-positive

CRC was evaluated in response to treatment with a combination

of pyrotinib and trastuzumab (83). The mPFS was 4.3 months in

the RAS-wild type group and 3.4 months in the overall

population. Likewise, ORR was 33.3% and DCR 83.3% vs. ORR

22.2% and DCR of 61.1%. The same drug combination was used

by Chang et al. with an ORR of 50% in the general population

and 57.1% in RAS-wild-type patients. The general median PFS

amounted to 7.53 months and the OS was 16.8 months (84). In a

trial conducted by Zhou et al. who compared the results of the use

of pyrotinib monotherapy vs. pyrotinib plus trastuzumab, PFS was

at 5.5 months for a single drug and 8.6 months for a combination,

ORR 25% and 50% respectively (85) OS was evaluable only in the

monotherapy group and was 10.9 months. These results show

potential for further studies due to observed antitumor activity.

In the phase 2 trial by Yoshino et al. combined therapy with the

use of trastuzumab deruxtecan was applied to HER2-positive

patients with prior at least 2 administered regiments (86) as 3

cohorts were assembled which only Cohort A noted an objective

response rate (ORR) of 45.3%. Trastuzumab was also paired with

pertuzumab in the MyPathway trial (87). The results of the

examined group of 57 patients with refractory HER2-positive

CRC were OR at 32% and grade 3 plus ADR at 37%.

In summary, a meta-analysis that compiled several key anti-

HER2 targeted treatments conducted by Wang et al. confirmed

the efficacy of this method resulting in a median PFS of 4.35

months, ORR of 27.5%, and DCR of 68.9%. Yet, it is worth

noting that the incidence of all-grade adverse effects was

estimated as 93.5% and grade 3 or higher at 16.8% (88).
3.2 Angiogenic pathway

The uncontrolled proliferation of cancer cells results in

inadequate perfusion of tumour cells, giving rise to local acidosis

and hypoxia which leads to the promotion of the transcription of

hypoxia-associated factors, specifically HIF-1a and HIF-2a which

subsequently initiates the transcription of several key ligands for

angiogenesis e.g., VEGF (vascular endothelial growth factor),

angiopoietin, Notch and integrins (89) hence angiogenesis is

inherently linked with the process of carcinogenesis and creation

of metastases.

The pathway of paramount clinical relevance involves the

VEGF-A ligand and VEGFR-2 receptor, facilitating endothelial

cell migration and proliferation, elevating vascular permeability,

and inducing alterations in gene expression (90). Given its

important contribution to the pathophysiology of carcinogenesis,

numerous anti-VEGF agents have been developed, exhibiting

notable success in the management of mCRC e.g., Bevacizumab,

Ramucirumab, Aflibercept, and Regorafenib.

3.2.1 Bevacizumab
Bevacizumab is a humanized monoclonal antibody that targets

vascular endothelial growth factor A (VEGF-A) and subsequently

interferes with its primary mechanism of action. This therapeutic

agent exerts its effects through the direct neutralization of
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circulating VEGF-A. Notably, it also interferes with VEGF-A

particles located in endothelial progenitor cells within the bone

marrow, thereby inhibiting their proliferation and systemic

migration. By binding to the extracellular domain of VEGF-A,

bevacizumab effectively obstructs interactions between VEGF-A

and KDR and Flt-1 receptors, which are present in both

cancerous and unaltered endothelial cells (91). This dual receptor

blockade is significant as it contributes to the inhibition of

critical pathways involved in angiogenesis and tumour growth. In

addition to its receptor-mediated effects, bevacizumab disrupts

perfusion and permeability within cancerous tissues which occurs

through a reduction in intestinal pressure, leading to altered

vascular dynamics within the tumor microenvironment.

Furthermore, bevacizumab exhibits pleiotropic effects on the

immune system, influencing various facets of the body’s defence

mechanisms against cancer (92, 93).

Clinical studies, such as the trial conducted by Hurwitz et al.,

evaluated the efficacy of bevacizumab when added to standard

therapy. In this trial, which included irinotecan, fluorouracil, and

leucovorin (IFL), the addition of bevacizumab resulted in a

significant improvement in PFS. The median PFS was extended

to 10.6 months compared to 6.2 months in the group receiving

IFL with a placebo. Additionally, the ORR favoured the

bevacizumab group, with values of 44.8% compared to 34.8%.

The duration of response (DRS) also demonstrated a substantial

benefit for the bevacizumab-treated patients, with a DRS of 10.4

months as opposed to 7.1 months in the placebo group. The

primary endpoint of the study was to establish the mOS, which

further solidified the efficacy of bevacizumab. The bevacizumab

group exhibited a prolonged mOS of 20.3 months compared to

15.6 months in the placebo group.

(94) demonstrated the benefit of adding bevacizumab to the

protocol involving trifluridine–tipiracil for patients who had

received two or fewer chemotherapy regimens in the advanced

stage of CRC, predominantly as third-line therapy for over 90%

of patients. The combined treatment yielded an mOS of 10.8

months, surpassing the exclusive use of trifluridine–tipiracil,

which resulted in an mOS of 7.5 months. Moreover, the mPFS

for the combined treatment was 5.6 months, contrasting with the

placebo group’s mPFS of 2.4 months. The median time to

worsening of the Eastern Cooperative Oncology Group (ECOG)

performance status score was significantly extended in the

combined treatment group, measuring 9.3 months, compared to

6.3 months in the exclusive trifluridine–tipiracil cohort. These

findings highlight trifluridine–tipiracil plus bevacizumab as an

effective therapeutic option for refractory CRC, irrespective of

mutations, ADRs, or prior history of bevacizumab treatment.

Similarly, bevacizumab demonstrated efficacy when combined

with capecitabine in elderly patients, resulting in an extended OS

of 20.7 months compared to 16.8 months. Additionally, in the

first-line treatment of CRC, the addition of bevacizumab to

FOLFOXIRI showed superior outcomes with an OS of 31

months, surpassing FOLFIRI alone, which achieved an OS of

25.8 months (95, 96).

Importantly, bevacizumab’s effectiveness was consistent across

patients with KRAS mutant and wild-type CRC, dispelling
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differences in treatment outcomes between RAS wild-type and

RAS mutant subtypes (8).

3.2.2 Ramucirumab
Ramucirumab, a human IgG1 anti-VEGF-A antibody with an

additional inhibitory effect on vascular endothelial growth factor

receptor-2 (VEGFR-2) (8) has demonstrated efficacy in second-

line treatment when combined with FOLFIRI, as evidenced by

the phase-3 RAISE trial (97) focused on a patient cohort that

experienced progression during or after receiving treatment with

oxaliplatin, fluoropyrimidine, or bevacizumab. In comparison to

a placebo, the addition of ramucirumab resulted in notable

improvements in OS (13.3 vs. 11.7 months) and PFS (5.7 vs. 4.5

months). Notably, adverse effects of grade 3 or worse were

observed in more than 5% of patients (98, 99).

Exploring its potential in combination with triplet

chemotherapy, ramucirumab exhibited promising outcomes as

patients receiving second-line therapy with ramucirumab

experienced better median to-treatment discontinuation and OS

when compared to those receiving ramucirumab in the third-line

or later stages. Specifically, the respective durations were 6.7

months vs. 3.6 months, and “not reached” vs. 7.6 months (100).

3.2.3 Aflibercept
Aflibercept, also known as VEGF Trap, operates as a soluble

agent by binding with multiple endogenous receptors and

interrupting their function (101). Notably, aflibercept demonstrates

a higher affinity and faster binding capability to multiple isoforms

of VEGF-A compared to bevacizumab, and it uniquely targets

VEGF-B, VEGFR1 ligands, and PIGF (placental growth factor). Its

characteristics suggest potential efficacy in overcoming resistance

developed after prior bevacizumab treatment Importantly, the

therapeutic effectiveness of aflibercept does not appear to be

influenced by the presence of KRAS or BRAF mutations or the

patient’s history of prior bevacizumab treatment (102).

In the context of CRC treatment, aflibercept is recommended

for second-line therapy. When added to the FOLFIRI protocol in

patients with a background of oxaliplatin treatment, aflibercept

demonstrated significant improvements in OS (13.5 vs. 12.06

months), PFS (6.9 vs. 4.67 months), and RR (19.8% vs. 11.1%)

(103). However, in the first-line setting, the AFFRIM study

reported no difference in PFS between the combination of

aflibercept with FOLFOX6 and FOLFOX6 plus placebo, although

the combination with aflibercept was associated with a higher

level of toxicity (104).

Real-world studies support aflibercept’s safety profile, with

hypertension, neutropenia, and gastrointestinal incidents being

the most commonly observed adverse effects. Importantly, these

effects are generally manageable, positioning aflibercept as a

relatively safe treatment options in clinical practice (105).

3.2.4 Regorafenib
Regorafenib, a kinase inhibitor, targets a spectrum of receptors

involved in angiogenesis (TIE2, VEGFR 1–3), stromal signalling

(FGFR, PDGFR-β), and oncogenic pathways (KIT, RAF, REF)

(106). In the CORRECT trial, it was assessed as a last-line
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monotherapy for CRC against a placebo (107). The primary

endpoint, OS, demonstrated superiority with regorafenib at 6.4

months compared to 5 months with placebo. PFS was also

favourable at 1.9 months vs. 1.7 months, though adverse effects

were more pronounced at 93% vs. 61%.

In the IMblaze370 trial, regorafenib was compared to the

combination of atezolizumab plus cobimetinib in third-line

therapy for microsatellite-stable CRC (108). While the

combination exhibited a slightly longer median OS at 8.87 months

vs. 8.51 months for regorafenib alone, the difference was modest.

Grade 3 or 4 adverse effects were observed in 61% and 58% of

patients, respectively. The CONCUR trial further supported

regorafenib’s efficacy, revealing an OS of 8.8 months vs. 6.3

months with a placebo and a PFS of 3.2 months vs. 1.7 months (109).

Despite its efficacy in refractory CRC, regorafenib’s primary

drawback lies in its adverse effects. In response (110), explored a

dose escalation strategy vs. standard dosing to mitigate toxicity.

The endpoint, the proportion of patients eligible and consenting

for initiation of the third cycle, favoured the dose escalation

group at 43%, compared to 26% in the standard dosing group.

Adverse effects were reduced in the dose escalation strategy (13%

vs. 18%) while maintaining comparable drug activity.

Regorafenib’s effectiveness in third-line treatment underscores its

potential, but vigilant monitoring and management of adverse

effects are imperative for optimal patient care.

3.2.5 Fruquintinib
In 2023, the FDA approved fruquintinib, a highly selective oral

inhibitor targeting VEGF receptors 1, 2, and 3, specifically for

patients with refractory CRC. The FRESCO trial, comprising 416

patients, pitted fruquintinib against a placebo, revealing a

significant increase in median PFS (3.7 months vs. 1.8 months)

and mOS (9.3 months vs. 6.6 months) (111). This promising

outcome was corroborated in the FRESCO-2 trial, which enrolled

691 patients previously subjected to all standard targeted and

cytotoxic therapies, demonstrating progression or intolerance to

regorafenib or trifluridine-tipiracil. Notably, the median number

of prior lines of treatment was 4. In this trial, fruquintinib

notably improved median OS at 7.4 months compared to 4.8

months in the placebo group. However, the rate of grade 3 or

worse adverse effects was higher in the fruquintinib group (63%)

compared to the placebo group (50%) (112).
4 Other potential treatment targets for
personalized therapy

Each CRC case exhibits a variable mutation count ranging

from 60 to 1,500 mutations, with only a subset holding clinical

significance (113, 114). The recurrent mutations in mCRC involve

APC, TP53, KRAS, and PIK3CA, impacting critical signalling

pathways like MAPK, WNT, PI3 K, TGF-β, and p53, crucial in

mCRC tumorigenesis. The WNT pathway, especially, plays a

pivotal role, in influencing β-catenin regulation through ubiquitin-

mediated degradation and phosphorylation, contributing to cancer

stem cell renewal, proliferation, and differentiation. Several
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in targeted and immunotherapies (115, 116).
4.1 NTRK fusions

The NTRK genes (NTRK1/2/3) encode tropomyosin receptor

kinase proteins (TRK A/B/C) primarily involved in neural

development and cellular homeostasis (117). NTRK fusions are a

rare occurrence in CRC patients, accounting for around 1% of

cases (118–120). Previous reports have indicated that CRC

characterized by NTRK positivity may constitute a distinctive

subset exhibiting specific features e.g., high TMB and a higher

likelihood of MSI (121).

Recent trials—ALKA-372-001 and STARTRK, evaluating TRK

inhibitors, such as larotrectinib and entrectinib, are prompting

clinicians to consider NTRK testing in mCRC patients,

particularly in later lines of therapy (122, 123). Larotrectinib is a

first-in-class, highly selective TRK inhibitor, which produces

durable responses in patients with NTRK fusion–positive,

according to long-term data from the phase II basket of

NAVIGATE trial (NCT02576431). Out of 34 patients treated

with larotrectinib, 33% showed an OR (3% complete response,

30% partial response) (124). Additionally, 45% had stable disease,

12% experienced disease progression, and 9% had an

undetermined best overall response. Notably, 9 out of 29 patients

with measurable disease experienced tumour shrinkage.

To overcome secondary resistance mechanisms, ongoing

clinical evaluations are assessing the efficacy of additional

second-generation TRK inhibitors, including repotrectinib and

taletrectinib (125).
4.2 FGFR

The FGFR1-4 (fibroblast growth factor receptor) genes encode

four closely related receptor tyrosine kinases, which compose the

FGFR family. After binding with FGF (fibroblast growth factor)

ligands the RAS/MAPK, PI3 K/AKT, and JAK/STAT pathways

are activated (126). The FGFR signalling pathway is involved in a

range of biological functions spanning from angiogenesis, wound

repair, and tissue regeneration to cell proliferation, migration,

and anti-apoptotic processes. Among individuals diagnosed with

CRC, around a third of them present modifications in FGFR

genes, involving specific mutations, amplifications in gene copy

numbers, and heightened mRNA expression levels (127). Prior

preclinical studies indicated that these genetic modifications were

linked to sensitivity to FGFR inhibitors, but predicted a poor

prognosis, invasiveness, and the potential for metastases (128).

Over recent years, various targeted FGFR inhibitors have

undergone clinical trials to assess their therapeutic impact on

patients. These compounds competitively attach to the ATP-

binding sites of FGFR interrupting further signal propagation.

However, due to their high specificity, broad applicability in

treating CRC patients is impossible. Several TKIs have been used

to treat tumours with FGFR irregularities. Ponatinib, dovitinib,
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and lucitanib have undergone assessment for their ability to inhibit

FGFR, yet their high toxicity has limited their ability for future

development (127). As of late, F1-7, a new FGFR inhibitor has

been outlined, which can induce DNA damage. This results in

impeding cell growth and metastasis, ultimately causing cellular

apoptosis. Experiments conducted on mouse models further

validated the effective suppression of tumour growth by

inhibiting the FGFR pathway (129).

Pemigatinib, another inhibitor of FGFR1-3, during a phase II

single-arm study, showcased improved response rates among

patients dealing with resistant metastatic CRC linked to FGF/FGFR

alterations. All participants enrolled in the trial and treated with

pemigatinib exhibited confirmed mutations in FGFR1-4 and/or

amplifications in FGF/FGFR, with no FGFR translocations. The

mPFS stood at 9.1 weeks (95% CI, 7.9 to not evaluable [NE), while

the mOS reached 7.9 months (95% CI, 3.4 to NE). Severe grade 3

or higher adverse events (AE) were observed in 42.9% of treated

patients, including one instance of a grade 5 AE. Among the most

frequently occurring AE of any grade were anaemia,

hyperphosphatemia, elevated alkaline phosphatase, increased AST

levels, and fatigue. Despite a favourable safety profile, pemigatinib

demonstrated suboptimal effectiveness in this specific population.

Ongoing translational studies aim to unravel the mechanisms

contributing to resistance against pemigatinib (130).
4.3 DNA damage repair genes

The DNA damage response (DDR) pathway plays a vital role in

identifying and accurately repairing damaged DNA, crucial for

preserving the cell’s genetic integrity and preventing issues like

cellular ageing, apoptosis, and the onset of cancer. This pathway

involves eight distinct processes that cater to different types of

DNA damage, including mismatch repair (MMR), base excision

repair (BER), nucleotide excision repair (NER), homologous

recombination repair (HRR), nonhomologous end-joining

(NHEJ), checkpoint factors (CPF) and more (131). DDR

alterations can prompt a hyper-mutated state or microsatellite

instability-high (MSI-H), leading to increased TMB, which acts

as a biomarker predicting better responses to immune checkpoint

inhibitor (ICI) therapy (132).

Recent studies have unveiled germline and/or DDR defects in a

subset of CRC cases, ranging from 13.8% to 36% prevalence (133).

These alterations, irrespective of microsatellite instability status,

were linked to a higher median tumour mutation burden in

CRC, along with increased positivity for PD-L1. Moreover, DDR

mutations have shown an association with enhanced overall

survival (OS) in CRC patients undergoing treatment with

immune checkpoint inhibitors (ICIs). Notably, investigations

suggest that DDR-related ATM or BRCA2 somatic mutations

hold promise as biomarkers for evaluating the response of stage

III CRC patients to oxaliplatin-based chemotherapy (134). In a

study performed by (135), DNA DDR mutations were identified

in all MSI-H CRCs and 83.77% of MSS CRC cases. The most

frequently mutated DDR genes included ARID1A (7.5%), ATM

(5.7%), and BRCA2 (2.6%).
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The predominant mutation type seen in ARID1A,

characterized as a truncating mutation, induces deficiencies in

DNA damage repair mechanisms within tumour cells (136).

Preclinical research has demonstrated that this deficiency in

ARID1A makes CRC cells more responsive to PARP inhibitors

(like olaparib, rucaparib or veliparib) both in laboratory

experiments and in animal models (137).

Comparison between right- and left-sided CRCs revealed no

notable variance in DDR genes and associated pathways. Survival

analysis indicated that DDR mutations did not correlate with OS

in MSS CRCs. However, left-sided CRC patients with mutations in

the homologous recombination repair (HRR) pathway displayed

notably prolonged OS compared to right-sided CRCs. Additionally,

mutations in the DDR pathway, including those within the

homologous recombination repair (HRR) pathway, didn’t

significantly correlate with improved OS in MSS CRC patients (135).

Conversely (133), reported a strong association between DDR

mutations and MSI, noting a favourable mOS in CRC patients

treated with immune checkpoint inhibitors (ICI). However, in their

study, conventional treatments did not display a significant

difference in prognosis for patients with DDR mutations, suggesting

that DDR mutations might specifically serve as a predictive

biomarker for the effectiveness of ICI immunotherapy in CRCs.

Consequently, for MSS CRC, it appears that DDR mutations are not

notably linked to a better prognosis.

Marks et al. (138) study aimed to explore the potential impact

of DDR mutations on the response to first-line treatments

containing oxaliplatin (FOLFOX/XELOX) or irinotecan

(FOLFIRI) in mCRC. DDR mutations were identified in 11 out

of 49 patients (22%). Among these cases, patients treated with a

first-line oxaliplatin-based regimen exhibited a statistically

significant improvement in mOS (3.4 vs. 1.8 years; P = 0.042)

compared to those receiving irinotecan. Additionally, this group

showed a numerically higher response rate (50% vs. 33%; P =

0.58). However, in patients without DDR mutations, no significant

differences in OS (2.4 vs. 2.5 years; P = 0.42), response rate, or

disease control rate were observed between the two regimens.
4.4 POLE

The POLE gene encodes an enzyme called DNA polymerase

epsilon, which holds an important role in DNA replication

fidelity. Responsible for synthesizing the leading DNA strand at

the replication fork, POLE encompasses a 3′-5′ exonuclease

domain crucial for enhancing the precision of replication. This

domain functions by identifying and excising mismatched base

pairs, thereby promoting accurate DNA replication. Somatic and

heritable deficiencies in POLE’s proofreading mechanism, notably

mutations occurring within its exonuclease domain, are more

prevalent in tumours proficient in mismatch repair and cause a

rise in the rate of mutations, which ultimately results in the

development of tumours (139).

The occurrence rate of acquired mutations within the

exonuclease domain of POLE in CRC stands at around 3%,

surpassing the frequency observed in inherited mutations
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(“Comprehensive Molecular Characterization of Human Colon

and Rectal Cancer,” 2012). While the prevalence of inherited

mutations within the exonuclease domain of POLE in familial

colorectal adenoma or CRC is merely 0.1%–0.25%, the presence

of these germline mutations substantially amplifies the likelihood

of developing CRC (140).

POLE somatic mutations are linked to a favourable prognosis

and are more prevalent in men, the right colon, and individuals

in the early stages of the disease (141). CRC patients carrying

POLE mutations often showcase elevated TMB and infiltration of

immune cells within their tumours, thereby amplifying their

responsiveness to immune checkpoint inhibitors (ICI) (142).

In a study performed by (139) among 14,229 next-generation

sequencing reports, 458 patient tumours exhibited POLE

mutations. Of these mutations, 15.0% were categorized as

pathogenic, 15.9% as benign, and 69.1% as variants of unknown

significance. Among 82 patients who received programmed death

1 or programmed death ligand-1 inhibitors either individually or

alongside cytotoxic T-cell lymphocyte-4 inhibitors, those with

pathogenic POLE mutations demonstrated substantial

improvements. They exhibited enhanced clinical benefit rates

(82.4% vs. 30.0%; P = .013), a longer median progression-free

survival (15.1 vs. 2.2 months; P < .001), increased overall survival

(29.5 vs. 6.8 months; P < .001), and a prolonged treatment

duration (median 15.5 vs. 2.5 months; P < .001) in comparison to

individuals harbouring benign variants.

The role of immunotherapy among patients with POLE

mutation remains unclear, however, in 2020, a prospective, open-

label, multicenter phase 2 experiment was carried out by (143) to

evaluate the safety and efficacy of avelumab in 30 patients with

dMMR/MSI-H and 3 patients with POLE mutations. Even

though no patients with POLE mutations responded to

avelumab, it is important to consider the constraints of the small

sample size and the variance in mutation locations.
4.5 RET

RET is a proto-oncogene that produces the receptor for growth

factors from the glial-derived neurotrophic factor family (144).

Abnormal chromosomal rearrangements can result in RET

fusion, which is most often observed in thyroid and lung

cancers, however, in rare instances, RET gene fusion can also

occur in mCRC cancer, with a frequency of less than 1% (145).

mCRC tumours with in-frame RET display unique

characteristics, such as a preference for the right colon, diagnosis

at an older age, and predominantly MSI-h phenotype (146).

One oral RET inhibitor, selpercatinib, was approved by the FDA

in 2020 to treat RET fusion-positive non-small cell lung cancer and

thyroid cancer (147). In the phase I/II LIBRETTO-001 study, which

included 41 patients with various solid tumours (excluding lung and

thyroid cancer) (148), 10 patients (24%) had CRC. The ORR for

these malignancies was 20% (95% CI, 2.5–56), while the OR in the

entire group was 44% (95% CI, 28–60). People with solid tumours

studied had a 5-year survival rate ranging from 3% to 40%.

Another RET inhibitor, pralsetinib, was examined in the phase I/II
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ARROW trial. In this cohort of 23 participants, two had CRC, but

no response was observed in these patients (149).
4.6 RSPO fusions and RNF43 mutations

The RSPO family consists of four genes RSPO1-4, which

encode signalling proteins, known to play a significant role in

activating the Wnt/β-catenin signalling pathway (150). This

pathway is crucial for controlling important biological functions

like cell growth, stem cell management, and maintaining tissue

balance and regeneration. RNF43 is recognized as a negative

modulator of WNT signalling and acts as a tumour suppressor

(151). When RNF43 is lost, there is a reduction or absence of

frizzled receptor degradation, leading to heightened WNT

signalling. In cancer cells, the inactivation of RNF43 due to

mutations is among the factors contributing to the sustained

activation of the WNT signalling pathway.

The RSPO family is observed in up to 8% of CRC, and studies

indicate that similar to RNF43 mutations, RSPO translocations,

even in isolation, are sufficient to initiate carcinogenesis. RNF43

mutations, occurring in various malignancies including colorectal

and gastric cancers, can be observed with a frequency of up to

20% (152). Notably, the frequency of RNF43 mutations is higher

in MSI cancers. Neoplastic cells with loss-of-function mutations

in RNF43 result in a higher quantity of the Wnt receptor

Frizzled which, consequently, exhibits heightened sensitivity to

the inhibition of the porcupine homolog (PORCN) protein,

known for its role in posttranslational modification of the Wnt

protein (153).

In a study performed by (154) the initial group of 7,245 CRC

samples was examined. Among these, RSPO gene fusions

(RSPOfp) were found in 1.3% of cases, while RNF43 mutations

were present in 6.1%. Tumours with RNF43 mutations were

notably linked to tumours located on the right side. Interestingly,

none of the RSPOfp tumours displayed RNF43 mutations.

RNF43-mutated tumours tended to have a higher occurrence of

MSI-H/dMMR in 64.3% of cases and a tumour mutation burden

of ≥10 mutations per megabase (mt/Mb) in 65.8%. In contrast,

RSPOfp did not exhibit any correlation with MSI-H/dMMR.

The outcomes in the (155) study imply that RNF43 mutations

are associated with better OS in CRC patients treated with ICBs,

likely due to increased TMB and the presence of gene signatures

related to the immune system.

The changes observed in RSPO2 expression and

rearrangements offer a potential avenue for creating targeted

treatments in tumours reliant on the Wnt pathway. Despite

significant efforts, the availability of FDA-approved drugs and

inhibitors for routine inclusion in clinical trials aiming at the

Wnt pathway in CRC remains limited. Developing precise and

effective inhibitors to target Wnt signalling in CRC continues to

present significant obstacles (156).

Multiple ongoing clinical trials aim to validate the effectiveness

of diverse inhibitors targeting the Wnt/β-catenin signalling

pathway in RNF43/RSPO-positive tumours. Additionally, the

identification of MSI-h/dMMR traits in a subset of RNF43-
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mutated tumours suggests that combining immune checkpoint

inhibition with and without Wnt/β-catenin signalling inhibitors

might represent a viable therapeutic strategy that should be

assessed in future prospective trials (154).
5 Adoptive cell therapy

Adoptive cell therapy is a type of immunotherapy which

involves allo- or autogenic genetically altered lymphocytes (157,

158). The immunologically active effector cells are being

developed and modified in vitro yielding anti-tumor activity

against particular host tumour cells (159). Currently, three types

of ACT are used or undergo research in the field of oncology:

T-cells with a chimeric antigen receptor (CAR-T), CD8 +

tumour-infiltrating lymphocytes (TILs) and T-cell receptor-

engineered T-cells (TCR-T) (158). The mechanism of TCR varies

depending on the used type of cells. TCR based on cytotoxic

T-cells enhances their ability to kill abnormal cells of a host and

TCR related to regulatory T-cells inhibits the specificity and

responsiveness of the immunologic system against a particular

antigen (157, 160). CAR-T has been so far successfully used in

hematologic malignancies such as leukaemia, multiple myeloma

and lymphomas however, their utility in solid tumours is still

debatable (159, 161). Nevertheless, several preclinical studies were

conducted aimed at evaluating neoantigens or tumour-associated

proteins which are common in mCRC such as carcinoembryonic

antigen (CEA), guanylate cyclase 2C (GUCY2C), mesothelin

(MSLN), human epidermal growth factor receptor-2 (HER2),

epithelial cell adhesion molecule (EpCAM), doublecortin-like

kinase 1 (DCLK1), natural killer group 2 member D ligand

(NKG2DL), CD133, mucin 1 (MUC1) (162). The extent of

ADRs and the effectiveness of CAR-T treatment predominantly

depend on the target antigen specificity through which it is

designed (163). The mild adverse effects which were present in

patients with CRC include fever, anorexia, and fatigue. These

were directly linked with an excessive cytokine release (163).

TCR therapy against CEA was reported as inducing severe

transient colitis. Presumably as a result of the expression of this

antigen in normal colonic mucosa (165).
5.1 NKG2D

NKG2D is a type of immunoreceptor present in several subtypes

of lymphocytes. It was proposed that it could serve as a target in the

CAR-T type of therapy called CYAD-01. Physiologically the protein

is either absent or its expression is relatively low but during

infections or hyper-proliferation, there can be a significant

elevation of its expression which allows the immune system to

eliminate the affected cells. Its elevation was linked with poor

survival in patients with most variants of CRC in contrast to other

cancer types where its protective role was observed. This

mechanism was used in adoptive cell therapy (166, 167). So far in-

vitro and in-vivo experiments demonstrated cytotoxicity against

CRC cells and significantly reduced the extent of the tumour and
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suppression of its growth in the xenograft model (168). The same

outcome was observed in human subjects. In a study by Xiao

et al., the modified NK cells were used in the therapy of 3 patients

with CRC (163). In two patients, the infusion into the peritoneal

cavity resulted in a reduction of tumour cells in intraperitoneal

fluid and a reduction of ascites generation. In one patient USG-

guided intrahepatic infusion allowed rapid regression of metastasis

in the liver confirmed in a PET-CT scan.
5.2 CEA

CEA is an immunoglobulin-glycoprotein involved in cell

adhesion (169), frequently found in the epithelium of the embryo

which is also associated with overexpression in 98.8% of CRC

tissue samples, making CEA the predominant prognostic marker

for CRC (170). A pre-clinical study conducted by (171) concerning

a novel, chimeric SIRPg-CD28 co-receptor for CRC exhibited anti-

tumour in vivo properties. The cytotoxicity effect was specific only

to CEA and CRC cells. In mice CRC xenografts models, the

tumours were eradicated within 21 days and persisted until the end

of the experiment. CAR-T with an “armed” co-receptor

demonstrated remarkable anti-tumour efficiency in CRC.

In a phase-I study by (172), 10 patients received CEA-targeted

CAR-T with progressing doses (1 × 105–1 × 108 /CAR + /kg cells). 7

of them noted transformation from progressive to stable disease, 2 of

them remained stable after 30 weeks and 2 presented tumor

shrinkage in imaging studies. No severe adverse effects were observed.
5.3 GUCY2C

GUCY2C is a cancer mucosa antigen expressed in both human

and mouse intestinal mucosa. Similarly, to CEA, its overexpression

in CRC implies its distinctive suitability as a potential target for

CAR-T cell therapies. An open-label, single-arm, investigator-

initiated exploratory trial conducted by (173) examined 13

individuals with GUCY2C-positive mCRC. In the analysis of 10

evaluable patients, there were 6 partial responses, 2 stable

diseases, and 2 progressive diseases. Across the dosage levels,

ORR = 60%, DCR = 80%. The primary toxicity was decreased

lymphocytes in 12/13 pts (92%), leukopenia in 1/13pts and

thrombocytopenia in 1/13pts. Overall, the anti-GUCY2C CAR-T

cell therapy was tolerated well with mild AE.
5.4 HER2

Another potential target for CAR-T is HER2 transmembrane

glycoprotein which as mentioned above exhibits tyrosine kinase

activity playing a crucial role in regulating growth and

differentiation of epithelial cells. The heightened expression of

HER2 is observed in various types of solid tumours such as breast

cancer, ovarian cancer, lung cancer, gastric cancer, and CRC (174),

however, a mutation within the gene encoding the HER2 receptor

is present only in 3–5% of mCRC (175) thus narrowing usefulness
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of target and CAR therapies aimed at HER2. The meta-analysis by

(176) findings indicates that, on average, participants in the six

trials, totalling 238 patients with HER2 +mCRC, had undergone a

median of three prior lines of therapy before enrollment with

ORR= 31.33% and DCR = 74.37%, PFS = 6.2 months. The

outcomes suggest a significant response to the therapy, leading to

meaningful enhancement in survival rates. Regarding CAR-T

therapy for HER2 +mCRC, additional studies are required to

elucidate its potential role in the future (177) observed that HER2

CAR-T cells demonstrate anti-tumour activity in CRC xenograft

models. However, clinical trials are fraught with uncertainties.

Phase I/II NCT00924287 clinical trial was terminated due to the

first patient death because of treatment. However, TAC T-Cell

therapy for HER-2 + solid tumours (NCT04727151) has been

reported to be well tolerated without reported neurotoxicity in

phase I, the only AE were haematological (178).
5.5 EpCAM

EpCAM, a prominent tumor-associated antigen found on the

surface of CRC, has also been considered a potential target in

CAR-T cell therapy which led to the development of clinical trials

(NCT02915445, NCT03013712, NCT05028933, NCT03563326).

First-in-human trial by (179) IMC001 designed to target EpCAM-

positive gastrointestinal tumours with CAR-T has already

exhibited promising anti-tumour capabilities and a favourable

safety profile. Moreover, downsizing the tumour creates additional

opportunities for surgical resection.
6 Management of mCRC among
elderly patients with immunotherapy
and targeted therapy

mCRC is predominantly observed in older adults, with 56% of

incidence and 68% of mortality occurring in patients over 65 years

old (180).

The treatment of elderly patients with mCRC includes systemic

chemotherapy, targeted therapy, and in certain cases surgery or

radiotherapy. Therapy should be individualized to be the most

suitable for patients while aligning with the patient’s general

condition and preferences (8).

The majority of adults with mCRC are not candidates for surgical

resection and instead require systemic therapy which is a reflection of

an increased rate of comorbidities, frailty, and higher risk of

cardiovascular or respiratory disorders among said population. The

choice of systemic therapy should be guided by molecular profiling

and mutational status, including RAS and BRAF mutations,

microsatellite instability status, and primary tumour localization (181).

The first line of treatment is chemotherapy, which

demonstrated the ability to significantly prolong a patient’s

lifespan by a factor of four (182). The foundation of most

systemic treatments are fluorouracil (5-FU)-based regimes such

as (183) FOLFOX or FOLFIRI. If the patient’s deteriorated

condition requires it, a reduced dose of 20% of FOLFOX or
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FOLFIRI can be administered (184, 185). This treatment can still

be supplemented with oxaliplatin or irinotecan, but their

effectiveness is controversial (184, 186).

As far as the targeted therapy is concerned among the elderly

population, bevacizumab is the only VEGF inhibitor studied

among elderly patients with mCRC in the AGITG MAX trial

(187) as researchers demonstrated significantly improved PFS in

geriatric patients after combining standard chemotherapy regime

with bevacizumab. Also, the values of OS, RR, and PFS revealed

no association with age.

Immunotherapy has also been introduced for elderly patients

e.g., pembrolizumab, nivolumab, and ipilimumab (188).

Although currently immunotherapy is only dedicated to patients

with MSI-H tumours, the study of Aparicio et al. concluded that

the older population has higher rates of mCRC associated with

MSI-H, which can be seen in over 20% of cases (189). Studies on

the safety of PD-1 inhibitors showed that these drugs are well

tolerated in elderly patients with malignancies and their side

effects are less severe than chemotherapy (190).

Similar effects were obtained with anti-EGFR drugs, which

showed the outcomes of cetuximab did not differ from the

younger patients with mCRC exhibiting low toxicity (191).

Moreover, anti-EGFR treatment did not show any serious side

effects, and combined with chemotherapy can be the option for

initial treatment for elderly patients with mCRC (192). However,

there are no randomized clinical trials among the elderly

population, which could evaluate the efficiency of cetuximab and

panitumumab compared to chemotherapy. Other therapeutic

options such as pegorafenib, an oral multikinase inhibitor, are

associated with poor therapeutic effects or serious side effects

that can even result in death (193, 194).
7 Discussion

There is no doubt that novel therapies involving enhancing the

immune system or based on inhibition of certain cellular pathways

involved in the pathophysiology of malignancy are providing

palpable results among mCRC patients as currently, the landscape

of mCRC treatment has evolved with the integration of targeted

therapies which is reflected by the wide usage of first-line

treatments commonly involving standard chemotherapy regimens

(FOLFOX, FOLFIRI, FOLFOXIRI) combined with anti-EGFR or

anti-VEGF agents (8, 70, 158). Notably, the combination of

bevacizumab with FOLFOXIRI stands out as the most effective

regimen, achieving an outstanding OS of 31 months (96)

compared to 19.5 months of OS among patients treated with

FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) regime.

Although enormous efforts have been made in the last 20 years in

the fields of targeted and immunotherapy, we still lack reliablemethods

for overcoming resistance and predicting the efficacy of the

abovementioned therapies (8). Furthermore, the rationale of targeted

therapy might be under critique since cost-to-benefit is in favour of

standard chemotherapy as targeted therapy and costly genetic

diagnostics offer only longer overall survival counted in months.

Moreover, as mentioned by (57) targeted therapy also tends to
frontiersin.org

https://doi.org/10.3389/fsurg.2024.1398289
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Zheng et al. 10.3389/fsurg.2024.1398289
induce grade 3 or 4 adverse effects which can be exacerbated when

multiple agents are added to the treatment regimen.

With an ever-increasing understanding of genomic

alterations among mCRC patients, there is a promising

perspective in exploring novel approaches from recent

advancements in genetics and immunology such as the

development of therapies focused on changing the

immunological phenotype of mCRC e.g., radioimmunotherapy

(195) or photoimmunotherapy (196) holds promise for a

broader application of immunotherapy in treating mCRC.

Additionally, the potential benefits extend to adoptive cell

therapy, small-molecule drug treatments (197), and leveraging

recent advancements in nanotechnology (198). Progress in

comprehending the role of microbiota in mCRC (199, 200)

may contribute to further improvements in overall survival

rates. Despite these advancements, it remains our opinion that

achieving full recovery from mCRC still requires significant

breakthroughs in our treatment approaches.
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