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Objective: Neurosurgical patient-specific 3D models have been shown to
facilitate learning, enhance planning skills and improve surgical results.
However, there is limited data on the objective validation of these models.
Here, we aim to investigate their potential for improving the accuracy of
surgical planning process of the neurosurgery residents and their usage as a
surgical planning skill assessment tool.
Methods: A patient-specific 3D digital model of parasagittal meningioma case
was constructed. Participants were invited to plan the incision and craniotomy
first after the conventional planning session with MRI, and then with 3D
model. A feedback survey was performed at the end of the session.
Quantitative metrics were used to assess the performance of the participants
in a double-blind fashion.
Results: A total of 38 neurosurgical residents and interns participated in this
study. For estimated tumor projection on scalp, percent tumor coverage
increased (66.4 ± 26.2%–77.2 ± 17.4%, p= 0.026), excess coverage decreased
(2,232 ± 1,322 mm2–1,662 ± 956 mm2, p= 0.019); and craniotomy margin
deviation from acceptable the standard was reduced (57.3 ± 24.0 mm–47.2 ±
19.8 mm, p= 0.024) after training with 3D model. For linear skin incision,
deviation from tumor epicenter significantly reduced from 16.3 ± 9.6 mm–

8.3 ± 7.9 mm after training with 3D model only in residents (p= 0.02). The
participants scored realism, performance, usefulness, and practicality of the
digital 3D models very highly.
Conclusion: This study provides evidence that patient-specific digital 3D models
can be used as educational materials to objectively improve the surgical planning
accuracy of neurosurgical residents and to quantitatively assess their surgical
planning skills through various surgical scenarios.
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Introduction

Neurosurgical training requires profound anatomical

knowledge complemented with acquisition of visuospatial and

fine motor skills (1–3). One of the main challenges in

neurosurgical training is to comprehend the complex 3D

relationships of pathological and anatomical structures, and apply

this knowledge to surgical operations (3, 4). This requires

dedication, effort, and practice as well as the use of various

educational resources and tools to maximize learning

experiences (1, 3, 5–10).

A wide spectrum of educational tools from cadaver dissections

to virtual 3D models and simulators have been widely used to

enhance training of neurosurgeons (11–13). Although generic

models are useful to learn anatomy and normal or pathological

variations, their potential to complement surgical planning skills

for specific cases are limited since they do not reflect exact

pathological anatomy of individual patients.

With the advent of neuroimaging and image processing

technologies, patient-specific 3D models, either digital or printed,

can now be produced and used for surgical planning simulations

(14–17). Neurosurgical patient-specific 3D printed models have

been shown to facilitate learning, enhance planning skills and

improve surgical results in brain tumor, skull base and

cerebrovascular surgeries (14–19). However, they have certain

disadvantages such as need for special equipment and materials,

higher costs, lengthy production process, lack of repetitive use,

which limit their utility in every-day practice and training of

neurosurgical residents (14, 18, 20, 21). On the other hand, high

quality, multilayered digital 3D images or models can be easily

produced with limited resources and adopted in the routine

neurosurgical planning pipeline. Despite several studies published

in recent years (22, 23), literature is scarce for the validation of

these personalized-3D virtual models as both educational and

assessment tools.
Materials and methods

Study design

This study was conducted as a proof-of-concept study on

current neurosurgical residents and interns (who completed one-

month clinical rotation in neurosurgery) in one university

hospital. The study was designed to demonstrate whether adding

a brief practice with patient-specific digital 3D model to

conventional surgical planning session with 2D images (axial,

coronal and sagittal MRI) has any effect on the accuracy of

surgical planning process of the residents. The design of the

study is illustrated as a diagram in Figure 1. Briefly, the study

included three phases: 1) preparation, (2) planning and

assessment session, (3) evaluation and analysis.

For the preparation phase, a brain tumor case was selected via

search of our institutional database with the following criteria: (i)

common pathology, (ii) good quality neuroimaging available, (iii)
Frontiers in Surgery 02
proximity to critical neurovascular structures, (iv) requirement

for a relatively standard surgical planning.

Planning and assessment were performed for each

neurosurgical resident separately in a face-to-face session using a

structured methodology described below. Lastly, assessment of

the performances was retrospectively conducted by using digital

data collected during the accuracy assessment session.
Reconstruction of patient-specific 3D
model

For the preparation phase, one brain tumor case (40-year-old

female with large parasagittal/parafalcine meningioma) was

selected for this study. Neuroimaging data including volumetric

MRI and CT scans were used for the reconstruction of the

patient-specific digital 3D model. All 3D planning and modeling

studies were carried out with Mimics Innovation Suite 22.0

Software (Materialise, Leuven, Belgium). Briefly, DICOM files of

magnetic resonance imaging (MRI) or computed tomography

(CT) scans were imported into Mimics. 2-dimensional

radiological images were visualized on axial, coronal and sagittal

planes. Masking process was undertaken using Hounsfield unit

(HU) values on 2D radiological images. Segmentation of various

structures was done according to anatomical borders. Different

imaging sequences were used for segmentation of different

intracranial structures: CT angiography for bone and vessels,

T1W images with contrast for brain, ventricles and tumor

(Figure 2). All CT and MRI scans were merged and aligned with

the Align Global Registration module. Surface-rendering

technique was used to produce 3D models of different

anatomical structures. Then, a design module (3-matic 14.0,

Materialise, Leuven, Belgium) was used for fine-tuning and

detailed modeling. This allowed us to simulate and rehearse

surgical scenarios by freely rotating, positioning, trimming, and

adjusting transparency of the model and its components

virtually (Figure 3).
Planning and assessment session

A dedicated planning and assessment session in a quiet room

was designed for this study. Two computers were used for the

session, one for studying standard MRI as well as demographic

data collection, assessment questions, and feedback, whereas the

other was used for 3D model visualization and surgical planning

assessment (Figure 4A). Participants followed the instructions for

planning and assessment procedures with the guidance of an

instructor who was not involved in the study design, assessment,

and analysis (first blinding). After receiving a brief tutorial about

the session and filling in the demographic and baseline

information, the participant had 5 min to study the MRI

examination (all 2D images at three planes) of the patient

(planning with MRI). After that, they were asked to answer

questions about the case (basic concepts, anatomy, radiology,

surgical technique etc.). After these assessment questions, they
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FIGURE 1

Study flowchart.
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were invited to perform virtual planning on the 3D model. For this

accuracy assessment session, only opaque digital skin and bone

models were used without exposing underlying tumor, brain, or

intracranial vessels. Surgical planning steps included the drawing

of (i) tumor projection on skin (painted area) (Figure 4B), (ii)

linear and U-shaped incision (Figures 4C,D), (ii) burr holes and

craniotomy borders (Figures 4E,F). Planning of each surgical step
Frontiers in Surgery 03
on the digital 3D model was individually recorded after each

assessment session for each participant. After the Accuracy

Assessment-1 (post-planning with MRI), the participant had a 5-

min planning session studying the patient-specific 3D model. For

planning with the 3D model, participants were free to use the 3D

model to its full extent with all available viewer options

(transparency, trimming etc.). After the second planning session,
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FIGURE 2

3-dimensional rendering and segmentation process using different neuroimaging modalities.
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the participant underwent the same assessment again (questions,

drawings) to better understand if there is an improvement in

their surgical planning strategies. This assessment for the post-

planning with the 3D model was regarded and recorded as the

Accuracy Assessment-2. After all planning and assessment

procedures were completed, participants were asked to provide
Frontiers in Surgery 04
their opinions (feedback) about the given statements by using a

Likert-scale from 1 (strongly disagree) to 10 (strongly agree). The

statements were about the realism, utility, practicality, and future

potential of the digital 3D models (Table 1). All data were

collected electronically using Google Forms. Surgical planning

assessment data were saved as Mimics planning files.
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FIGURE 3

Visualization of various layers of the patient-specific 3D digital model.

FIGURE 4

Planning and assessment session. (A) Photograph of the study setup. Drawings of (B) anticipated tumor projection on scalp, (C) linear incision, (D) U-
shape incision, (E) burr holes and (F) craniotomy on two Accuracy Assessment layers (skin and bone) of the model.

Hanalioglu et al. 10.3389/fsurg.2024.1386091
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TABLE 1 Feedback form and results.

Feedback (1: Strongly disagree, 10: Strongly agree) Median
[IQR]

Realism

The digital 3D model shows anatomical structures realistically. 10 [9–10]

The digital 3D model realistically illustrates the superficial tumor and its relationship with surrounding structures. 10 [9–10]

The digital 3D model realistically simulates the surgical approach stages (skin incision, craniotomy, etc.). 9 [8.75–10]

The digital 3D model offers a realistic surgical planning environment for brain tumor surgery. 9.5 [9–10]

Performance

The digital 3D model is good at showing skin and superficial landmarks. 8 [5–10]

The digital 3D model is good at showing bone and bony landmarks. 9 [7–10]

The digital 3D model is good at showing the surface anatomy (sulcus, gyrus). 9 [8–10]

The digital 3D model is successful in showing vascular structures (arteries, veins/sinuses). 9 [8.75–10]

The digital 3D model is successful in showing tumor boundaries and neighborhoods. 10 [8.75–10]

The digital 3D model is successful in showing fine anatomical details. 7.5 [4.75–9]

The digital 3D model is successful in reflecting the surface texture and color characteristics of anatomical structures. 9 [5.25–10]

Usefulness

The digital 3D model is useful for understanding the relationship between different layers and structures in 3 dimensions. 9.5 [9–10]

The digital 3D model is useful for medical students’ anatomy education. 10 [9–10]

The digital 3D model is useful for neuroanatomy training of neurosurgery residents. 10 [10–10]

The digital 3D model is useful in determining patient and head position. 10 [8.5–10]

The digital 3D model is useful in choosing a patient-specific surgical approach. 10 [9.75–10]

The digital 3D model is useful for the development of surgical planning skills of neurosurgery residents. 10 [9–10]

The digital 3D model may reduce the possibility of errors in surgical planning. 10 [8–10]

The digital 3D model is superior to the cross-sectional MR study in terms of understanding the 3-dimensional relationship of the tumor with the
surrounding structures.

8.5 [8–10]

Practicing with digital 3D models may improve surgical planning skills. 10 [9–10]

Practicing with digital 3D models may contribute to the improvement of surgical technique. 9 [7–10]

Practicing with digital 3D models may lead to faster acquisition of necessary skills. 10 [8.75–10]

Practicing with digital 3D models may help the surgeon during surgery by improving the ability to perceive individual 3D anatomy. 10 [9–10]

The inclusion of digital 3 models in surgical planning may increase the success of surgical procedures (extent of tumor resection, etc.) 10 [8.75–10]

Incorporating digital 3D models into surgical planning may reduce surgical planning errors and complications. 10 [9–10]

Practicality

Working with a digital 3D model is confusing. 1 [1–2]

The digital 3D model is easy and practical to use. 9 [8–10]

Other opinions

Use of digital 3D models in smartphone may contribute to its widespread use. 10 [7.5–10]

I would like to make more use of digital 3D models during my education. 10 [10–10]

The digital 3D model should be used in surgical planning prior to surgeries of complex and difficult cases. 10 [9.75–10]

The 3D digital model should be used in every cranial neurosurgery case. 6.5 [5–8.25]

Hanalioglu et al. 10.3389/fsurg.2024.1386091
Assessment methodology

We aimed to assess the patient-specific radiological anatomy

knowledge and surgical planning skills using the answers and

drawings (i.e., surgical plans). The whole assessment was done by

two neurosurgeons who were blind to identity and baseline

information about the participant as well as the order of

assessment (second blinding). The following parameters were

measured and analyzed: (i) tumor projection on skin (percent

tumor coverage, excess coverage), (ii) linear incision: deviation from

center of tumor (mm), (iii) accuracy of U-incision (assessed by

points from 0-the least accurate to 4-the most accurate), (iv)

accuracy of craniotomy borders (assessed by points from 0-the least

accurate to 4-the most accurate) (Figure 5). To calculate

craniotomy score, each edge of craniotomy was scored 1 if it was

within 5 mm–15 mm of tumor border (if three edges were within

these limits, composite craniotomy score was 3). A similar

approach was adopted for U-shape incision, the base of skin flap
Frontiers in Surgery 06
got an extra point if an imaginary line connecting two corners was

within the limits. We also calculated the sum of deviation of 4

edges (margins) from the acceptable standard craniotomy borders

(craniotomy margin deviation) as a more robust alternative to

craniotomy score. For tumor projection, percent tumor coverage

was calculated as covered (overlapping) tumor area/total calculated

tumor area (2,717 mm2), whereas excess coverage was measured as

the portion of painted area (as drawn by the participant) which did

not match the underlying tumor (mm2).
Statistical analysis

All statistical analyses were performed using the Prism 9

software (GraphPad Software, LLC., 2021). Descriptive statistics

were presented using mean and standard deviation for

parametric, median [interquartile range] for the non-parametric,

count (percentage) for categorical variables. Paired t-test and
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FIGURE 5

Assessment methodology. After saving each participant’s drawings in digital format, assessors used the full model with transparency option to
objectively measure the accuracy of drawings with reference to underlying tumor.
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Wilcoxon matched-pairs signed rank test were used to test whether

there was a difference between measurements in Accuracy

Assessment-1 (post-planning with MRI) and Accuracy

Assessment-2 (post-planning with 3D model), for parametric

and non-parametric variables, respectively. P value less than 0.05

was considered statistically significant.
Results

Baseline characteristics of participants

A total of 38 participants (14 neurosurgical residents, 24

interns) were included in this study. Mean age of residents

was 29.7 ± 3.2 years, whereas it was 23.8 ± 1.2 for interns

(6th year medical students). Four residents were in the first

year (28.6%), two in the second year (14.3%), four in the third

year (28.6%), three in the fourth year (21.4%), and two in the

fifth year (14.3%) of residency program. Only two residents
Frontiers in Surgery 07
(14.3%) had prior experience with 3D modeling/3D

printing/VR/AR.
Surgical planning skills

We compared the performance of participants on Accuracy

Assessment-1 and Accuracy Assessment-2. For estimated tumor

projection on scalp, percent tumor coverage increased (66.4 ±

26.2%–77.2 ± 17.4%, p = 0.026), and excess coverage decreased

(2,232 ± 1,322 mm2–1,662 ± 956 mm2, p = 0.019) despite no

significant change in painted area (4,036 ± 1,611 mm2–3,760 ±

1,081 mm2, p = 0.272) between Accuracy Assessment-1 and

Accuracy Assessment-2 (Figure 6). For linear skin incision,

deviation from tumor epicenter significantly reduced from 16.3 ±

9.6 mm to 8.3 ± 7.9 mm after training/planning with 3D model

only in residents (p = 0.02) but not in interns. However, U-shape

incision (1 [0–2] vs. 1 [0–2], p = 0.147) and craniotomy scores (2

[1–3] vs. 2 [1–3], p = 0.282) did not change significantly between
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FIGURE 6

Change of the performance metrics between two assessment sessions. Accuracy Assessment-1 (AA-1): Post-MRI assessment, Accuracy Assessment-2
(AA-2): Post-3D model assessment. * represents significant difference at p < 0.05.
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two assessments. On the other hand, sum of craniotomy margin

deviations from an acceptable standard decreased significantly

after training with 3D model (57.3 ± 24.0 mm–47.2 ± 19.8 mm,

p = 0.024) (Figure 6).
Qualitative evaluation of digital 3d models

The participants scored realism, performance, usefulness, and

practicality of the digital 3D models very highly (Table 1). The

only aspect that they scored relatively lower was the

demonstration of fine anatomical details [median 7.5 (4.75–9)].

Also, although the residents strongly agree that these models

should be used for complex cases [median 10 (9.75–10)], they

think that the 3D models are probably not necessary for every

neurosurgical case [median 6.5 (5–8.25)].
Discussion

Neurosurgical practice and education have seen tremendous

change due to recent advances in medical, imaging and

education technologies (1–3, 24). Coronavirus pandemic has

further accelerated the digital transformation of our profession

and the way it is thought and learnt (25). Hence, there is an
Frontiers in Surgery 08
everlasting need for more effective, realistic, and practical

educational tools and methods to train the next generation of

neurosurgeons (1–3). Despite the explosion of such tools and

materials, objective validation is still lacking for many of them.

In this proof-of-concept study, we validated the personalized-3D

digital models as easily accessible, yet effective neurosurgical

planning tools to improve the understanding of the 3D patient-

specific anatomy and thus the accuracy of surgical planning for

the first time in the literature.

First, we have showed that patient-specific digital 3D models

are perceived as realistic, useful, and practical tools for education

and surgical planning by neurosurgery residents (face validity).

Second, we have demonstrated that their use as an assessment

tool is also feasible, reliable and capable of generating numerous

performance metrics for assessment of neurosurgical planning

skills. Third, our study design allowed us to reveal that brief

training with 3D model after a planning session with

conventional 2D MRI slices provided an extra benefit in

accurately predicting tumor projection on scalp and

incision planning.

There are many studies evaluating the use of 3D digital and

physical models as novel educational and objective assessment

tools in the literature (14, 15, 19–21, 26). 3D printing has

numerous advantages and applications, such as gaining better

insight into patient-specific anatomy, better pre-operative
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planning, mock simulated surgeries, simulation-based training and

education, development of surgical guides and other tools, patient-

specific implants, bioprinted organs or structures, and counseling

of patients (27). Numerous studies examined the efficacy of 3D-

printed models on surgical planning, resident and patient

education using quantitative and qualitative metrics (14, 15, 19–

21, 26). Although it became widely accessible and used in recent

years, patient-specific 3D-printing for intracranial pathologies are

not routinely used in everyday practice largely due to their cost

and production times. The incorporation of 3D printing

technology in medical education and practice heralds a paradigm

shift, offering unprecedented opportunities for innovation and

advancement. Beyond traditional educational methodologies, 3D

models empower learners to engage in hands-on experiences,

fostering deeper understanding and retention of complex

anatomical concepts. Moreover, the interactive nature of 3D

models facilitates collaborative learning environments, where

students and practitioners can explore anatomical variations and

pathological conditions in real-time. As the technology continues

to evolve, there is growing interest in harnessing artificial

intelligence algorithms to automate the generation of patient-

specific 3D models, streamlining the production process and

enhancing accessibility. Despite the current challenges, the

ongoing refinement of 3D printing techniques and the increasing

affordability of equipment hold promise for the widespread

adoption of patient-specific 3D printing in neurosurgical practice

soon. It is inevitable that systems that support long learning

curves, are patient-specific, and are used as standards in resident

education, will be developed in the near future.

Virtual simulation-based training is also increasingly being used

for assessment and training of psychomotor skills involved in many

fields of medicine (28–31). A digital 3D model offers advantages

over digital 2D or physical models in interactivity, perspective,

access, and cost, either as a stand-alone learning asset or as part of

a larger digital learning object (27). Recently, Ros et al. conducted

a prospective randomized controlled study of 173 medical students

to assess whether immersive virtual reality (VR) technique leads to

improvement in learning the technique of external ventricular

drainage. They showed that VR group demonstrated significantly

better short-term results than the control group (P = 0.01). The

same trend was seen at six months (32).

The application of artificial intelligence and machine learning

technologies has also provided new methodologies to utilize large

amounts of data for educational purposes. Mirchi et al. aimed to

introduce a new framework using explainable artificial

intelligence for simulation-based training in surgery and validate

the framework by creating the Virtual Operative Assistant, an

automated educational feedback platform with the contribution

of twenty-eight skilled participants (14 staff neurosurgeons, 4

fellows, 10 PGY 4–6 residents) and 22 novice participants (10

PGY 1–3 residents, 12 medical students). Participants performed

a virtual reality subpial brain tumor resection task on the

NeuroVR simulator using a simulated ultrasonic aspirator and

bipolar. The Virtual Operative Assistant successfully classified

skilled and novice participants using 4 metrics with an accuracy,

specificity, and sensitivity of 92, 82% and 100%, respectively (33).
Frontiers in Surgery 09
Recent advances in imaging, image-processing and computer

vision technologies provided various tools and software solutions

to easily produce personalized or patient-specific 3D digital

models with high resolution and quality (34–36). Their

incorporation into daily neurosurgical practice provides vast

opportunities for surgical planning, intraoperative guidance, and

education. They can be combined or complemented with other

technologies to enhance their potential as educational or

surgical tools and simulators (37–40). Dho et al. recently

established a 3D-printed brain tumor model production system,

and their validation study showed significant superiority of the

3D-printed models in surgical planning regarding surgical

posture (p = 0.0147) and craniotomy design (p = 0.0072)

compared to conventional magnetic resonance images. They

noticed that the benefit was more pronounced for neurosurgeons

with less experience (14).

The prospects for application of digital 3D models, virtual

reality and 3D printing in neurosurgical education are extensive

(41). As the technologies advance, it is likely that current issues

such as cost, and accuracy will be addressed and become less

significant (20, 26). However, currently 3D printed models have

certain limitations that prevent their frequent use. The

requirement for specific printers and various materials,

particularly for soft-tissue printing, makes the process expensive

and lengthy. The success of 3D printed models also rely on the

quality of digital 3D models created in a format recognized by a

3D printer. Rendering and segmentation of medical imaging data

to produce patient-specific digital 3D models may also require

special software and expert skills. Time and effort spent by an

engineer, technician, radiologist, anatomist or biomedical

illustrator to segment or create a digital 3D model add to the

costs (42). However, with the advent of digital technologies and

open-source software, these processes become more accessible,

easier, faster and cheaper. We envision that the costs will

diminish considerably in near future so that any neurosurgeon

can use these patient-specific 3D digital models in everyday

clinical practice. Therefore, there is a huge potential for their use

in training, surgical planning, and educational assessment

(43–45). This potential should be further explored by

neurosurgeons, educators, trainees and professional organizations.

One of the main challenges in assessing the utility of virtual

educational tools is the need of an objective evaluation method

for performance or learning (46, 47). Most virtual simulators

designed for neurosurgical education depend solely on the

appraisal of resident/trainees’ subjective judgements and lack the

objective, measurable and repeatable parameters or metrics

necessary to validate the usefulness of the system (33, 47).

Presented is the first study in the literature to assess the effects of

incorporating a patient-specific 3D virtual model for educational

purposes, on incision and craniotomy planning skills of

neurosurgery residents. Our study design enabled us to monitor

the improvements in accuracy of linear incisions and

corresponding craniotomies made by residents in a blinded

fashion. They were asked to draw perceived tumor projection, a

linear and a horseshoe (U-shaped) incision on scalp layer of the

3D model, and corresponding craniotomy on bone layer of the
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3D model. Evaluation methodology was simple, yet objective,

quantitative, measurable and reproducible. The literature consists of

both more complex simulation scenarios such as skull base tumors

or aneurysms clipping and simpler ones such as external ventricular

drain placement. The assessment methodology used in our study

also showed that numerical parameters such as distance, area,

percent area provide more powerful and accurate metrics than

rough scoring measures such as those used in the U-incision or

craniotomy scores in the current study. Also, the study design

allowed a fair comparison of the use of 3D model with

conventional neurosurgical planning (i.e., examining 2D MRI

sections). We did not elect to compare two techniques, rather

evaluated the utility of 3D model as a complementary tool as in

clinical practice. Indeed, brief training with 3D model after

conventional planning led to significant improvements in

performance metrics.

Despite its several strengths, the current study has also some

limitations. First of all, this is proof-of-concept study and

therefore focused on only one surgical case and a handful of

performance metrics. It’s important to note that the evaluation of

performance metrics in this study was constrained by the

necessity to manage session duration effectively. Since session

time is important for such performance assessment studies, we

had to limit our study to only one case and a few metrics as the

session duration was already over 40 min (tutorial, collection of

demographic data, practice with MRI scan, first assessment, short

break, practice with 3D model, second assessment, feedback)

even for a single case. Second, we had a relatively small number

of neurosurgical residents and interns from one institution.

Third, we used the same digital model, but with only skin and

bone layers, for assessment. This may have artificially increased

the chance of improvement with the use of 3D model as a

planning tool over conventional planning with MRI.

Alternatively, we may have used real surgical scenario in the OR,

or a physical anatomical head model. Nevertheless, we believe

that using the same model also enabled us to perform more

precise and objective measurements specific to the individual

pathological anatomy. Also, its fully digital nature enables

repetitive use, multiple recordings, and retrieval of recorded

planning data. Future studies with larger cohorts including

experts and trainees at different levels, and with variety of

surgical scenarios (e.g., deep brain tumors, skull base and

vascular pathologies) and performance metrics (precision, depth

perception, time, number of errors, appreciation of 3D

relationships etc.) can further explore the potential of

personalized digital 3D models (i.e., content, construct and

criterion validity) and establish the optimal methodology to use

their full potential in neurosurgical training and practice.
Conclusion

Digital 3D images, models, and simulators are useful for

developing surgical planning skill set. However, their

standardization and validation are equally important for their

incorporation into neurosurgical curriculum. Here, we showed that
Frontiers in Surgery 10
readily accessible patient-specific digital 3D models can be

effectively used both as educational and assessment tools by

evaluating a trainee’s perception of intracranial lesions through

their imagination of tumor projection on scalp and decisions such

as skin incision and craniotomy placement. This tool has many

advantages including no or minimal cost, numerous virtual

simulation options, repetitive use, archiving possibility, objective

measurements, suitability for remote or distant assessment and

analysis. They can be incorporated into standard surgical planning

workflow of residents, and also be used as a skills assessment tool

in local programs as well as national or international board

examinations. Therefore, neurosurgery education can benefit from

these tools and methodological approach described in this study.
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