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Introduction: The utilization of artificial intelligence (AI) augments intraoperative
safety and surgical training. The recognition of parathyroid glands (PGs) is
difficult for inexperienced surgeons. The aim of this study was to find out
whether deep learning could be used to auxiliary identification of PGs on
intraoperative videos in patients undergoing thyroid surgery.
Methods: In this retrospective study, 50 patients undergoing thyroid surgery
between 2021 and 2023 were randomly assigned (7:3 ratio) to a training
cohort (n= 35) and a validation cohort (n= 15). The combined datasets
included 98 videos with 9,944 annotated frames. An independent test cohort
included 15 videos (1,500 frames) from an additional 15 patients. We
developed a deep-learning model Video-Trans-U-HRNet to segment
parathyroid glands in surgical videos, comparing it with three advanced
medical AI methods on the internal validation cohort. Additionally, we
assessed its performance against four surgeons (2 senior surgeons and 2
junior surgeons) on the independent test cohort, calculating precision and
recall metrics for the model.
Results: Our model demonstrated superior performance compared to other AI
models on the internal validation cohort. The DICE and accuracy achieved by our
model were 0.760 and 74.7% respectively, surpassing Video-TransUnet (0.710,
70.1%), Video-SwinUnet (0.754, 73.6%), and TransUnet (0.705, 69.4%). For the
external test, our method got 89.5% precision 77.3% recall and 70.8%
accuracy. In the statistical analysis, our model demonstrated results
comparable to those of senior surgeons (senior surgeon 1: χ2 = 0.989,
p= 0.320; senior surgeon 2: χ2 = 1.373, p= 0.241) and outperformed 2 junior
surgeons ( junior surgeon 1: χ2 = 3.889, p=0.048; junior surgeon 2: χ2 = 4.763,
p= 0.029).
Discussion: We introduce an innovative intraoperative video method for
identifying PGs, highlighting the potential advancements of AI in the surgical
domain. The segmentation method employed for parathyroid glands in
intraoperative videos offer surgeons supplementary guidance in locating real
PGs. The method developed may have utility in facilitating training and
decreasing the learning curve associated with the use of this technology.
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1 Introduction

The parathyroid gland (PG) is the smallest endocrine organ in

the human body and plays an important role in maintaining the

balance of calcium metabolism. Identifying and safeguarding PGs

constitute a pivotal aspect of thyroid surgery. Given their small

size and close anatomical proximity to lymph nodes or adipose

tissues, there exists a risk of PG damage and compromised blood

supply during thyroid surgery. Unfamiliarity with the morphology

and anatomy of PGs heightens the susceptibility to damage,

resulting in hypocalcemia that adversely affects the patient’s

quality of life. The injury of PGs can easily lead to postoperative

hypocalcemia and other complications. One of the most common

complications after total thyroidectomy is hypoparathyroidism.

According to existing research, the incidence rate is about 30%–

60% (1–3). It has been reported that the incidence of accidental

parathyroid removal is up to 12%–28% (4). The symptoms of PG

injury mainly include hand and foot twitching, limb sensory

abnormalities, muscle spasms, and even life-threatening conditions.

Distinguishing PGs from similar tissues like thyroid, lymph nodes,

or brown adipose tissues poses a significant challenge. Although all

surgeons learn to differentiate PGs from other tissues, the length of

this learning curve may be different for each surgeon, depending on

experience. Even experienced surgeons cannot guarantee that all

PGs will be recognized and protected in every thyroid surgery. At

present, there are some methods to recognize PGs, such as carbon

nanoparticles negative development, parathyroid hormone (PTH) in

fine-needle aspiration (FNA) washout fluids, pathology validation,

or near-infrared autofluorescence (NIRAF) (5–7). However, these

methods have some limitations, such as longer periods of detection,

high costs, false-positive results. Therefore, the existing recognition

skills of PGs still rely on experienced surgeons. Nevertheless, early

recognition of PGs before dissection is very helpful to guide

dissection. In this case, a visual algorithm that recognizes the shapes

and localization of a PG in the surgical field based on deep learning

would be useful to shorten the learning curve and guide dissection.

To address those issues, we proposed the Video-Trans-U-HRNet

model. At present, video AI technology has developed rapidly and is

widely used in the medical field, such as robot surgery (8). Our task

is to locate and segment the PG during thyroidectomy. To our

knowledge, the application of AI methods to the localization and

segmentation of PGs has mainly been limited to static images.

However, thyroid surgery is a dynamic process that requires the

full attention of the surgeon, and intraoperative videos can better

reflect the real situation of the PG during surgery. Furthermore,

the position and shape of PGs can undergo deformation and

displacement due to the surgeon’s manipulation, emphasizing the

need for automatic localization and segmentation during the

procedure. This not only enhances precision but also helps

prevent accidental injury to PGs by the surgeon. In thyroid

surgery, the PGs exhibit similarities to many other tissues, creating

a challenge for existing AI models employed in medical

segmentation and detection tasks to accurately recognize them.

The objective of our study is to test a new AI-based method for

recognizing PG and compare its performance to both junior and

senior surgeons, with the ultimate aim of enhancing patient safety.
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2 Methodology

2.1 Developing the AI model

The entire method is illustrated in Figure 1, comprising four parts:

(A) The overall data flow of our method. (B) The detailed structure of

our AI model, consisting of the Temporal Contextual Module (TCM),

Encoder part, and Decoder part. (C) The dataset employed in this

study. (D) The legends used in this figure. Zeng et al.’s work

demonstrated the applicability of classical semantic segmentation

models in medical segmentation. Drawing inspiration from their

Video-TransUNet, we devised a deep-learning segmentation method

tailored for the specific task of PGs video segmentation (9). The

TransUnet model demonstrates robust performance in organ

segmentation tasks, achieving outstanding results across diverse

public datasets (10). Building upon TransUnet, we introduced a

TCM to establish links between contextual information across

frames for video segmentation (11). As depicted in Figure 1B, the

TCM module comprises three parallel frames processing modules,

all sharing a softmax layer. This module adeptly captures

information from both preceding and succeeding frames, skillfully

integrating it for feature extraction of the current key frame.

Skip-connections in U-shape net are crucial in multi-scale features

transfer and fusion, we added a dynamic region-aware convolution

(DRConv) module into skip-connection for preliminary extraction

of multi-scale features (12). The specific module structure and our

implementation details are shown in Figure 2.

To improve the communication of high-level semantic

information and enhance the integration of low-level features, we

modified the decoder structure based on Wang’s work, as

illustrated in Figure 3 (13). In contrast to the TransUnet decoder,

the U-HRNet Decoder is more intricate, featuring additional

feature transfer paths between adjacent layers and more fusion

components. This redesign is geared towards achieving more

accurate segmentation results. To align with reality, we

implemented a post-processing method that excludes prediction

results smaller than 50 × 50 pixels in size.
2.2 Patients and surgical technique

A prospective analysis was conducted on a total of 65 patients

undergoing thyroid surgery at Shanghai Sixth People’s Hospital

from August 24, 2021, to June 17, 2023. Approval for this study

was obtained from the Institutional Ethics Review Board and the

Ethics Committee of Shanghai Sixth People’s Hospital [Approval

no. 2022-KY-178 (K)].

During surgery, a high-resolution camera was used to take

videos of the wound surface, with the lens placed 15 cm away

from the surgical field. Each patient underwent the recording of

1–2 videos. Each PG in videos was validated by the immune

colloidal gold technique (ICGT) (5). A total of 116 videos,

comprising 11,444 frames, were collected. Each video spanned

5–10 s, containing 50–100 frames. Within the internal cohort,

101 videos with 9,944 frames were meticulously labeled based on

pathological results. In contrast, the external cohort consisted of
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FIGURE 1

The overall of proposed method. (A) The overall data flow of our method. (B) The detailed structure of our AI model, consisting of the Temporal
Contextual Module (TCM), Encoder part, and Decoder part. (C) The dataset employed in this study. (D) The legends used in this figure.
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15 videos with 1,500 frames, serving solely for evaluation purposes

and lacking specific segmentation labeling. Specific patient

characteristics were shown in Table 1.
2.3 Dataset and comparison method

During this process, a senior surgeon with over 20 years of

experience labeled all the PGs in videos using labelme software,

including the location and contour of the PGs. The video data

from 50 patients were allocated for internal training and validation

sets, whereas the remaining data from 15 patients constituted the

independent external validation cohort. The intersection over

union (IoU) threshold selected for comparing prediction results

with ground truth was set at 0.5. Performance evaluation of the

deep learning model was based on the overlap in prediction masks

generated by the model and those manually placed by the research

team on each frame. Precision and recall were calculated for the

study. Precision of deep learning models is similar to “positive

predictive value,” and attempts to answer what proportion of

positive classifications was actually correct. The specific

calculations were placed in Section 2.4. On the other hand, recall

measures the model’s ability to detect positive samples, similar to

“sensitivity,” and was calculated as the ratio between the number

of positive samples correctly classified as positive to the total
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number of positive samples. Two levels of surgeons evaluated the

videos in the external validation cohort. Two levels of surgeons

include 2 surgeons with more than 10 years of clinical experience

in thyroidectomy and 2 surgeons with less than 10 years of

clinical experience. They represented senior surgeons and junior

surgeons respectively. All surgeons participating in the study had

received specialist training in thyroid surgery. Our participating

surgeons—both junior and senior—perform an average of 600

thyroid and parathyroid surgeries annually. This also includes the

necessary training and assessments relevant to these procedures.

Surgeons figured out the possible location of PGs in the video.

Precision, recall, and accuracy were calculated. We compared the

performance of the AI model and 2 levels of surgeons.
2.4 Evaluation metrics

For the evaluation of the AI model, we employed AI evaluation

metrics. In this section, we introduced an evaluation metric

specifically designed for PGs identification. Positive samples were

calculated based on samples with an IoU threshold greater than 50%

with the Ground Truth. Given that parathyroid glands are instances,

segmentation results with an IoU of more than 50% were considered

reasonable in the medical field. During the inference process, our

method was evaluated in both the internal validation set and the
frontiersin.org
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FIGURE 2

The specific structure of dynamic region-aware convolution.

Sang et al. 10.3389/fsurg.2024.1370017
external test cohort. Precision, recall, and accuracy were abbreviated as

PRE, REC, and ACC, respectively. True positive, false positive, false

negative, and true negative were abbreviated as TP, FP, FN, and TN,

respectively. Specific computations are shown below.

Precision ¼ TP=(TPþ FP)

Recall ¼ TP=(TPþ FN)

Accuracy ¼ (TPþ TN)=(TPþ FNþ FPþ TN)

Dice coefficient and Jaccard coefficient is the most commonly used

evaluation metric in medical segmentation field, and the formulas

are as follows. While X represents the area of the Ground Truth, Y

represents the area of Prediction results. Both Dice and Jaccard may

evaluate how well the prediction results cover the Ground Truth.

Jaccard is abbreviated as JAC.

Dice ¼ 2� (jX > Y j)=(jXj þ jY j)

Jaccard ¼ (jX > Y j)=(jXj þ jY j � jX > Y j)

For evaluation of video, we proposed a new coefficient for frame loss

performance. Loss Frames represented the number of frames with no

target. Total Frames represented the total number of frames. The
Frontiers in Surgery 04
formula is as follows.

FLR ¼ (Loss Frames)=(Total Frames)

A χ2 test was used to compare the PG recognition rate between the AI

model and different groups of surgeons. Comparisons between groups

were statistically processed by SPSS 26.0, and statistical significance was

assigned for p values < 0.05.
3 Results

3.1 Internal validation results

We conducted a comparative analysis of our method against three

advanced deep-learning methods applied in the relevant medical field

using our validation dataset. The results are presented in Table 2. As

shown in Table 2, our proposed method outperformed the others in

the validation dataset, indicating its superior performance. In internal

validation cohort, we got 84.9% Precision and 81.3% Recall.
3.2 Comparison with surgeons

For external validation, our method was compared with two

different levels of surgeons, junior surgeons and senior surgeons.
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FIGURE 3

The specific structure of U-HRNet decoder module.
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As the external cohort lacked specific labels, frames in the external

validation dataset only had coarse labels, making accuracy

evaluation metrics impractical for this cohort. Detailed
TABLE 1 Patient characteristics.

Parameter Value
Age, year, median (IQR) 47 (21.5)

Sex, n (%)
Female 47 (72.3)

Male 18 (27.7)

Diagnosis, n (%)
Thyroid cancer 48 (73.8)

Thyroid nodule 12 (18.5)

Graves’ disease 5 (7.7)

Procedure, n (%)
Total thyroidectomy 28 (43.1)

Thyroid lobectomy 37 (42.1)

Hospital duration, day, median (IQR) 5 (3.5)

Operation time, min, median (IQR) 70 (35)

Parathyroid Glands
Training 52

Internal Validation Cohort 20

Independent Test Cohort 22

Parathyroid glands represent the number of parathyroids used for model training.

Frontiers in Surgery 05
comparison results are presented in Table 3. In this comparison,

our method achieved a precision of 89.5% and an accuracy of

70.8% in identifying PGs, outperforming all other surgeons. In

comparison to all surgeons, our method achieved higher

precision results as it tends to provide more accurate outcomes,

while surgeons leaned towards offering more candidates to avoid

missing PGs. Despite surgeons having more prior information,

such as potential PG locations and their numbers, both the

accuracy and precision of our method surpassed those of the

surgeons. Comparison with senior surgeons revealed that

surgeons with extensive experience identified more accurate

PGs.The results suggest that the AI model can assist in providing

more accurate PG results, thereby reducing the time and effort

required for surgeons to identify PGs. Additionally, our method,

based on a video recognition algorithm, demonstrates the ability

to track PGs throughout the entire process of thyroidectomy, as

depicted in Figure 4.

In addition, we compared the differences between our model

and two levels of surgeons in the external cohort. Our AI model

demonstrated results comparable to those of senior surgeons,

with no significant difference (senior surgeon 1: χ2 = 0.989,

p = 0.320; senior surgeon 2: χ2 = 1.373, p = 0.241). And our

model was superior to two junior surgeons, with a statistically

significant difference (junior surgeon 1: χ2 = 3.889, p = 0.048;

junior surgeon 2: χ2 = 4.763, p = 0.029).
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TABLE 2 Result of proposed method.

Model DICE ACC PRE REC hd_95 JAC FLR
Our method 0.760 74.7% 80.2% 82.4% 28.44 0.769 11%

Video-TransUnet 0.710 70.1% 76.2% 71.4% 18.49 0.677 15%

Video-SwinUnet 0.754 73.6% 84.8% 80.4% 19.22 0.714 12%

TransUnet 0.705 69.4% 76.2% 74.3% 19.98 0.650 20%

TABLE 3 Result of proposed method.

Model PRE REC ACC
Our method 89.5% 77.3% 70.8%

Junior surgeon 1 75.0% 81.8% 64.3%

Junior surgeon 2 80.0% 72.7% 64.0%

Senior surgeon 1 70.0% 63.6% 50.0%

Senior surgeon 2 84.6% 84.6% 45.8%

Sang et al. 10.3389/fsurg.2024.1370017
4 Discussion

In our retrospective study, we evidenced the proficiency of

the proposed AI model in the recognition of PG in

intraoperative videos. This model achieved a performance level

demonstrating equivalence to that of two senior surgeons. A

comparative analysis with multiple surgeons further solidified

the potential of our presented method, indicating its

application could bolster intraoperative recognition of PG.

Ultimately, the implementation of this methodology could
FIGURE 4

The visualization of evaluation results of our method. (A) The Ground Truth o
results of our model.
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precipitate a meaningful advancement in surgical accuracy,

thereby substantially augmenting patient safety measures. To

the best of our knowledge, this marks the inaugural instance

of an AI model predicting the location and masks of PGs

through the analysis of intraoperative videos in patients

undergoing thyroidectomy.

AI in medicine holds the potential for expedited and

standardized training. Kitaguchi et al. demonstrated the

application of convolutional neural networks for automatic

surgical skill assessment in laparoscopic colorectal surgery (14).

Similarly, Wang and Fey described a deep learning framework

for skill assessment in robotic surgery (15). As surgical

procedures undergo increased digitalization, coupled with

advancements in the automatic and real-time recognition of

objects and tasks, the operating room stands as a focal point for

progress. The newly developed tools have the capacity to enhance

the performance and capabilities of surgical teams.

In the current medical landscape, video plays a crucial role in

diagnostic solutions, spanning various applications such as
f PGs in continues frames. (B) The raw continues frames. (C) The predict

frontiersin.org

https://doi.org/10.3389/fsurg.2024.1370017
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Sang et al. 10.3389/fsurg.2024.1370017
ultrasound, robotic surgery, and endoscopy (16). In contrast to

static images, videos offer an effective means to comprehensively

depict the entire process and intricacies of diagnosis or surgery.

Doctors can grasp the situation and characteristics of lesions or

surgical areas in multiple dimensions through time series data.

Consequently, the study of video data in the medical field holds

considerable significance. In 2022, Zeng et al. proposed Video-

Transunet for assisted swallowing therapy in ultrasound video

data.8 Based on this, Zeng’s team proposed that Video-SwinUnet

could also be applied to assist in swallowing therapy diagnosis in

ultrasound videos (17). In the field of ultrasound diagnosis, Yeh

et al. applied real-time object detection models to assess the

recovery of the median nerve in ultrasound videos (18). Yu et al.

also applied the U-Net network to the segmentation of surgical

instruments in surgical video data for robotic surgery (19). The

above research reflects that existing AI models can effectively

assist in the automatic localization and segmentation of special

targets in ultrasound videos or surgical videos.

Our proposed AI model demonstrated improved performance

relative to several other advanced AI models. In evaluation of

external cohort, our model equaled the performance of

two experienced, senior surgeons with no significant difference

(p = 0.320, p = 0.241; t-test). Notably, our model exhibited

superior accuracy and precision, albeit with a reduced recall rate.

Nevertheless, there are two primary limitations to our model.

Firstly, due to the disparities in judgment between the AI model

and the surgeons’ recognition of PGs, our model might generate

more false negatives than surgeons. This observation is evident

from the comparison of recall rates between surgeons and our

method. Secondly, as videos were recorded subsequent to the

initial surgeon’s PG identification, there exists the potential for

false negatives or overlooked PGs. To mitigate these risks, an

experienced surgeon, with over 20 years in the field, validated the

PGs in the videos, with additional validation supplied by ICGT.

These measures seek to minimize the likelihood of false negatives

or missed PGs.

In practical application scenarios, due to the fixed number

of PGs, incorrect judgment can easily lead to damage to the

correct PG during surgery. Due to our method being more

stable in determining the correct PG, it can provide

surgeons with a certain degree of judgment advice. Moving

forward, our ambition is to apply this method for real-time

recognition of PG during surgical procedures. Concurrently,

it shall function as an assistive tool for less experienced,

junior surgeons in PG recognition, thereby minimizing the

incidence of postoperative hypoparathyroidism. We

anticipate that these efforts will play an instrumental role

in enhancing patient prognosis.

In this retrospective study, we introduced a novel AI-based

method to detect the shapes and localization of PGs in thyroid

surgery, providing assistance to surgeons in PG detection.

Comparative results with surgeons reveal that our method

surpasses junior doctors in identifying PGs in intraoperative

videos of thyroid surgery and performs at a level equivalent to

that of senior surgeons. This provides valuable assistance for

surgeons during thyroid surgery.
Frontiers in Surgery 07
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