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Predicting acetabular version in
native hip joints through plain
x-ray radiographs: a comparative
analysis of convolutional neural
network model and the current
gold standard, with insights and
implications for hip arthroplasty
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Fatemeh Shahbazi4, Seyed Mohammad Mahdi Hashemi3,
Seyed Mohammad Javad Mortazavi5 and
Seyyed Hossein Shafiei3*
1Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran, 2Faculty of Advanced
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Research Center (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran,
4School of Electrical & Computer Engineering, University of Tehran, Tehran, Iran, 5Joint Reconstruction
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Introduction: This study presents the development and validation of a Deep
Learning Convolutional Neural Network (CNN) model for estimating acetabular
version (AV) from native hip plain radiographs.
Methods: Utilizing a dataset comprising 300 participants with unrelated pelvic
complaints, the CNN model was trained and evaluated against CT-Scans,
considered the gold standard, using a 5-fold cross-validation.
Results: Notably, the CNN model exhibited a robust performance,
demonstrating a strong Pearson correlation with CT-Scans (right hip: r = 0.70,
p < 0.001; left hip: r = 0.71, p < 0.001) and achieving a mean absolute error of
2.95°. Remarkably, over 83% of predictions yielded errors ≤5°, highlighting the
model’s high precision in AV estimation.
Discussion: The model holds promise in preoperative planning for hip
arthroplasty, potentially reducing complications like recurrent dislocation and
component wear. Future directions include further refinement of the CNN
model, with ongoing investigations aimed at enhancing preoperative planning
potential and ensuring comprehensive assessment across diverse patient
populations, particularly in diseased cases. Additionally, future research could
explore the model’s potential value in scenarios necessitating minimized
ionizing radiation exposure, such as post-operative evaluations.
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1 Introduction

Artificial Intelligence (AI) refers to the development of

computer systems that can perform tasks that typically require

human intelligence. These machines are capable of learning from

repetitive experience, recognizing patterns, and making decisions.

AI aims to replicate human cognitive functions by using

algorithms and computational models. It encompasses a wide

range of technologies and applications, from virtual assistants to

complex systems that analyze data for medical diagnoses (1, 2).

Essentially, AI enables machines to think, learn, and solve

problems in ways that were once thought to be exclusive to

human intelligence. Utilizing these tools can minimize costs,

workload, and reduce inevitable human errors (3).

The adoption of AI in orthopedic practice is increasing,

spanning clinical, preoperative, intraoperative, and postoperative

phases. In orthopedic surgery, where clinical decisions and image

interpretation can be subjective and reliant on reviewer

experience, AI offers the potential to mitigate errors, particularly

among less experienced practitioners (4). Recent evidence

underscores the suitability of hip x-rays for deep learning-based

image recognition, showcasing orthopedics’ compatibility with AI

advancements (5).

Total hip arthroplasty (THA) has earned the title of “Operation

of the Century” and the number of people undergoing THA is

increasing. AI has been tried to identify hip implants prior to

revision surgery, thus saving significant time, and reducing

perioperative morbidity and healthcare cost (6, 7).

The acetabular version (AV) is one of the anatomical features

of the hip joint, defined as the angle between the line connecting

the most posterior and the most anterior edge of the acetabulum

in the axial plane and the sagittal plane of the body. Acetabular

anteversion with an average angle between ∼15–20 degrees in a

native hip plays a crucial role in the biodynamics and stability of

the hip joint (8, 9). AV abnormalities can lead to several

problems, such as osteoarthritis, dysplasia, impingement,

dislocation, and even posterior wall fractures. Research suggests

that measuring the version of the acetabulum is essential in

patients who experience hip pain, especially in juveniles (10).

In the context of hip arthroplasty preoperative planning,

determining AV is important in order to achieve optimal

restoration. The issue has grown in importance since studies

show abnormal version restoration is related to recurrent

dislocation followed by revision surgery and increased

component wear (11–13).

While the gold standard method for assessing AV is CT-Scan,

concerns about radiation exposure and cost have led to attempts to

replace it with plain x-ray radiographs (14, 15). However, the

debate continues due to the perceived disadvantages of plain x-

rays, such as being time-consuming, operator-dependent, and

inaccurate (16).

The purpose of this paper is to describe and evaluate a fully

automated Convolutional Neural Network (CNN) model (17),

that has been developed and trained to accurately estimate the

AV in the native hip without any operator dependency.
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2 Methods and materials

2.1 Case selection

After obtaining ethical approval and the hospital’s research

committee clearance (IR.TUMS.SINAHOSPITAL.REC.1399.034),

we utilized our local medical institution’s prospective data

registry of patients from 2018–2020 who were admitted due to

trauma and, as per institutional guidelines, underwent pelvis CT-

Scan as well as pelvic Anteroposterior (AP) radiography.

The inclusion criteria for our study were as follows:

1. Otherwise, healthy, multiple trauma patients

2. Availability of both AP pelvis radiograph and CT-scan

Below are the exclusion criteria that were applied:

1. Any evidence of fracture or dislocation of the acetabulum,

femoral head or neck, and the pelvic ring in either CT-Scan

or x-ray

2. Previous injuries or interventions to the hip area

3. Abnormal or nonstandard x-ray radiographs or CT-Scan

4. History or evidence of diseases related to the hip joint e.g.,

osteoarthritis, rheumatologic diseases, and so forth

Among 1,800 cases, 300 consecutive patients who matched our

inclusion and exclusion criteria were included for training and

testing the CNN model.
2.2 Data collection

All 300 cases x-ray images and CT-Scans were downloaded

from the hospital’s picture archiving and communication system

(PACS). These images were reviewed by a trained last-year

medical student (S.M.M.H.) under the supervision of a

fellowship-trained hip surgeon (S.H.S.). Additional variables such

as age, gender, and reason for hospitalization were extracted

from the hospital information system (HIS).

A Philips Ingenuity Flex 16-slice CT-Scan (Philips Medical

Systems Ltda, Lagoa Santa, MG-Brazil) with fine 2 mm slices was

used, with the patient positioned supine. The AV was manually

measured in the horizontal slice precisely at the middle of the

acetabulum (equatorial plane) for each side using MicroDicom

v0.7.7. This measurement was taken as the angle between the

line connecting the most posterior and anterior edges of the

acetabulum in the axial plane and the sagittal plane of the body

(18) (Figure 1).

AP plain x-rays were taken in the supine position using Varian

Digital equipment (DRGEM Corporation, Gwangmyeong-si, South

Korea), with the beam centered on the pubic symphysis. Following

the methodology outlined by Lim SJ. et al. for the evaluation of

standard plain hip radiographs, the symmetry of the obturator

foramen and iliac wings, the alignment of the sacrum and pubic

symphysis were analyzed, and the appropriate positioning of the

beam was validated by measuring the distance between coccyx

tip and the pubic symphysis (19). Through these analyses, we
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FIGURE 1

Measurement of acetabular version in equatorial plane of acetabulum CT-Scan.
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established the baseline normalcy for the AP radiographs, while

eliminating radiographs with tilt or rotation.

All records were inputted into an Excel sheet for analysis.
2.3 Convolutional neural network model
training

2.3.1 Neural network (NN) architecture
CNNs represent a sophisticated framework composed of two

fundamental components essential for image processing tasks: a

NN architecture inspired by the intricate organization of the

human brain, and convolution, a pivotal algorithmic technique

employed for feature extraction. The NN aspect serves as the

foundation for data processing, meticulously analyzing input data

to extract meaningful patterns and representations. In tandem,

convolution, through its application of mathematical operations

on the input data, plays a crucial role in identifying and

highlighting relevant features within the input images. By

convolving learnable filters across the input data, CNNs

efficiently capture spatial hierarchies of features, facilitating

robust pattern recognition capabilities. This process significantly

reduces the computational burden associated with traditional

methods, enabling CNNs to effectively process large-scale image

datasets with improved accuracy and efficiency. Thus, the

integration of NN principles with convolutional techniques

underpins the remarkable performance of CNNs in various
Frontiers in Surgery 03
medical imaging tasks, ranging from disease diagnosis to medical

image analysis and beyond (15, 20).

2.3.2 End-to-end learning approach
Our training methodology embraces an “end-to-end” strategy,

where in raw data encompassing unprocessed AP pelvic x-ray

DICOM radiographs, demographic information such as age and

gender, and the AV angle measured via CT-Scan, which were

seamlessly inputted into the NN. This approach eliminates the

need for manual intervention, as the NN autonomously refines

its parameters through iterative adjustments, optimizing its

performance based solely on the provided dataset.

2.3.3 Data preprocessing
Initially, a dataset of 300 standard AP pelvic x-ray images,

each labeled with the corresponding acetabular angle measured

by CT-Scan, age, and gender, was assembled. These

radiographs were anonymized and standardized in terms of

size (1,024 × 1,024), contrast, brightness, and removal of

irrelevant elements. To augment the dataset and improve

training, techniques such as vertical mirroring and data

augmentation (including vertical and horizontal shifting and

zooming) were employed.

2.3.4 Model architecture and training
To establish a robust foundation, a pre-trained VGG16 CNN

model, developed by the Visual Geometry Group at the
frontiersin.org
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FIGURE 2

Block diagram of the proposed model. CONV2D-1: 2-Dimensional Convolutional Layer with 1 filter, CONV2D-2: 2-Dimensional Convolutional Layer
with 2 filter, CONV2D-3: 2-Dimensional Convolutional Layer with 3 filter.
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University of Oxford was employed, initially trained on diverse

non-medical image datasets, as a starting point.

Leveraging transfer learning, this model was fine-tuned using

the supplied radiographic data, adapting its parameters to the

intricacies of medical imaging. Furthermore, to prioritize

pertinent regions while disregarding artifacts or abnormalities,

an attention mechanism was integrated into the model

architecture. The training regimen spanned 1,000 epochs, with

periodic adjustments to the training algorithm strategically

implemented to iteratively enhance model performance and

optimize its capacity for medical image analysis.
2.3.5 Performance evaluation
Throughout training, performance metrics such as Mean

Squared Error and the Adaptive Movement Estimation

(ADAM) algorithm were employed to assess model accuracy

and guide adjustments. Additionally, a 5-fold cross-validation

technique was utilized to mitigate dataset limitations and

prevent bias. This involved dividing the dataset into five

randomly selected groups, with 80% of images used for

training and 20% for evaluation. Notably, none of the

training subjects were used for testing to maintain model

integrity. A schematic view of proposed method can be seen

in (Figure 2).
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2.4 Data analysis

The data were imported and analyzed using IBM SPSS software

version 25. Categorical variables were summarized by their

frequencies, while continuous variables were summarized using

either the mean and standard deviation (SD) or the median and

range, depending on the distribution of the data.

For comparing the mean AV between the CNN model and CT-

Scan, a paired sample t-test was utilized, contingent upon the

fulfillment of assumptions such as normality and homogeneity of

variances. Additionally, an independent sample t-test was

employed to compare AV across different genders. Results were

expressed as the standard mean difference (SMD) with a 95%

confidence interval (CI).

Skewness and Kurtosis tests were performed to evaluate the

normality of the results. The correlation between predicted and

actual AV values was evaluated using Pearson correlation

analysis. The Mean absolute Error (MAE), representing the

average absolute difference between predicted and actual AV

values, was calculated to assess the model’s precision.

To visually assess the performance of the CNN model in

predicting AV for both the right and left hips, scatter plots were

constructed. Each scatter plot depicts the relationship between

the predicted AV values generated by the CNN model and the

corresponding ground truth AV values obtained from CT-Scans,

serving as the gold standard.
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TABLE 2 Mean absolute error (MAE) and Pearson correlation coefficient (r)
for acetabular version prediction by gender and Hip Side.
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In interpreting the findings, a significance level of P < 0.05

was applied.
Patients MAE r
Male (244 Patients) Left 2.94 0.71

Right 2.90 0.69

Female (56 Patients) Left 3.01 0.64

Right 3.17 0.64

Total (300 Patients) 2.95 0.71

All p-values were < 0.001.
3 Results

Out of 300 cases, 56 (18.7%) were female. The mean age

recorded was 39.45 ± 16.45 years, with a median age of 36.50

(range, 13–92).

The CNN model predicted a mean AV of 17.29 ± 5.58 degrees

for the right hip, while the CT-Scan measurement yielded a mean

AV of 17.19 ± 3.86 degrees (95% CI: −0.346–0.550). Notably,

statistical analysis revealed no significant difference between these

values (P-value = 0.655).

Similarly, for the left hip, the mean AV values were 16.75 ± 5.54

degrees for the CNN model and 17.15 ± 3.86 degrees for the CT-

Scan measurement (95% CI: −0.839 to 0.436, P-value = 0.077).

In the left hip, a strong and statistically significant Pearson

correlation (r = 0.714, P-value = 0.000) was observed between the

AV degrees predicted by the CNN model and those measured by

CT-Scan. Likewise, in the right hip, a strong and significant

Pearson correlation (r = 0.707, P-value = 0.000) was found

between the AV degrees predicted by the CNN model and CT-

Scan measurements (Table 1).

An independent sample T-test showed that males

(Mean = 16.1, SD = 5.43) had significantly lower left AV degrees

(SMD = 3.44, 95% CI: 1.870–5.014, P-value = 0.000) than

females (Mean = 19.55, SD = 5.20). As well as, males (Mean = 16.53,

SD = 5.28) exhibited significantly lower right AV degrees

(SMD = 4.07, 95% CI: 2.506–5.633, P-value = 0.000) compared

to females (Mean = 20.60, SD = 5.70).

The MAE values for male and female participants stand at

2.92° and 3.09°, respectively. Table 2 demonstrates MAE and

Pearson correlation coefficient (r) for AV prediction by gender

and hip side.

The model achieved a MAE of 2.958 and 2.957 degrees for left

and right hips respectively, indicating minimal deviation between

predicted and actual AV values on average. Notably, over 83% of
TABLE 1 The accuracy and comparing AV among the CNN model and CT-sca

Variables CNNa

Model
Predicted

CT-Scan
Measurement

P-
value*

95% CIe

(Lower,
Upeer)

Right hip AVb

degree
Mean ± SD

17.19 ± 3.86 17.29 ± 5.58 0.655 (−0.346, 0.550)

Left hip AV
degree
Mean ± SD**

17.15 ± 3.86 16.75 ± 5.54 0.077 (−0.839, 0.436)

aCNN, Convolutional Neural Network.
bAV, Acetabular Version.
cSMD, Standard Mean Difference.
dr, Pearson Correlation Coefficient.
eCI = Confidence Interval.

*p value < 0.05 is considered significant.

**Standard deviation.
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predictions exhibited errors ≤5 degrees, underscoring the model’s

high degree of accuracy.

Furthermore, in the entire dataset, we found two (0.66%) cases

of retroversion in the right acetabulum and one (0.33%) in the left

hip. Interestingly, in all of these cases, the other acetabulum

was anteverted.

Figure 3 shows the scatter plots visually encapsulate the

performance of the CNN model in predicting AV from plain

x-ray radiographs. In areas of high frequency samples,

characterized by a dense clustering of data points around the

diagonal line, the model demonstrates remarkable accuracy and

consistency in estimating AV values. Conversely, in outlier

samples where data points deviate noticeably from the diagonal

line, the model’s performance appears less optimal. Despite these

occasional deviations, the majority of data points remain closely

clustered, indicating overall precision and reliability in AV

prediction across the dataset.
4 Discussion

The findings of this study underscore the efficacy of the CNN

model in accurately predicting AV from AP plain radiographs of

native hips. Notably, the CNN model for AV estimation achieved

a MAE of ≤3° and demonstrated a strong correlation with the

gold standard CT measurements. Over 83% of predictions

yielded errors ≤5°, highlighting the model’s high precision.

Importantly, this approach offers notable advantages over
n.

(rd, P-
value)

Female
gender

Male
gender

P-
value

95% CI SMDc

(Lower,
Upeer)

(0.707, 0.000) 20.60 ± 5.70 16.53 ± 5.28 0.000 (2.506, 5.633) 4.07

(0.714, 0.000) 19.55 ± 5.20 16.1 ± 5.43 0.000 (1.870, 5.014) 3.44
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FIGURE 3

Scatter plots illustrating the relationship between predicted and actual acetabular version values for the (a) left version and (b) right version.
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traditional CT-Scans, including reduced costs and mitigated risks

associated with ionizing radiation exposure. By leveraging AP

plain radiographs, the CNN model streamlines the diagnostic

process while circumventing the reliance on expert interpretation

and mitigating potential human errors.

Findings align with the study by Rouzrokh et al., who developed

separate CNN models for AP and cross-table lateral radiographic

views to measure acetabular component inclination and

anteversion angles after THA (11). Their models yielded

impressive results, with mean differences of only 1.35° and 1.39°

from human expert measurements for inclination and anteversion,

respectively. The larger training datasets (600 images per view)

likely contributed to their enhanced measurement accuracy.

Despite this study’s smaller sample size, the scatter plots

demonstrated a clear association between predicted and actual AV

values for both hips. The distribution of data points indicates the

model’s ability to capture the underlying variability in AV

measurements across the dataset. Additionally, the plots illustrate

the consistency of the model’s predictions across a range of AV

values, as evidenced by the clustering of data points around the

diagonal line, representing adequate prediction alignment.

Furthermore, the scatter plots highlight the model’s performance in

estimating AV with high precision. The majority of data points fall

within a narrow band around the diagonal line, indicating minimal

deviation between predicted and actual AV values. This tight

clustering suggests that the CNN model consistently produces

accurate estimations of AV, with deviations predominantly confined

to a few outliers. This nuanced analysis of the scatter plots

underscores both the strengths and limitations of the CNN model

in accurately estimating AV from plain x-ray radiographs, providing

valuable insights for its application in clinical practice.

Other investigations have explored AI techniques in orthopedic

imaging, such as tools for anterior cruciate ligament (ACL) tear

management (21) or measuring the center edge (CE) angle for

diagnosing hip dysplasia from x-rays with high accuracy (22).
Frontiers in Surgery 06
While the number of articles with using new radiographic

indexes are increasing due to the x-ray benefits, they have

limitations. For instance, Koyama et al. proposed a new method

to quantitatively assess the acetabular version by studying p = the

distance from the acetabular articular surface to the posterior

wall and a = the distance from the acetabular articular surface to

the anterior wall and by calculating the p/a ratio determined ante

or retro version. However, this method does not measure the

actual AV angle and depends on the skill of the person

conducting the measurement (14). Similarly Wan and colleagues

method has limited applicability and it can be only useful for

AVs less than 20° (23). Whilst 3-D CT-generated models can

measure AV regardless of positioning, their manual setting is

nearly one hour per cases and they are time consuming (24),

however our method offers a time-saving alternative, interpreting

data in just two milliseconds after training.

Nitschke, A. et al. proposed a method for measuring the AV by

introducing a parameter called the transverse axis distance (TAD),

which showed an “excellent” correlation with a sensitivity of 0.73

and specificity of 0.82 in the assessment of ante or retro-version

with CT-scan measurement (25). Similarly, Nitschke, A. et al., in

another article, validated neck axis distance (NAD) as a simple,

semi-quantitative radiological predictor of acetabular anteversion

with an accuracy rate of 82% in comparison to CT-Scan in the

prediction of retro or post-version. However, both of those

articles do not provide the absolute angle of the AV as a

quantitative measurement. Moreover, in both cases, operator

dependency is still an issue (26).

In an earlier attempt to evaluate the AV, Jamali, et al. employed

and improved a method proposed by Meunier, P. et al. (27) and

used cadaveric specimens to evaluate the cranial AV, which was

accurate down to 4 degrees of error, but the perplexity of this

method averted physicians to utilize this method to estimate AV

(26, 28). Even one of the most advanced methods in less-

radiation-inducing techniques, which is EOS®, is less reliable due
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to its nature of standing radiography, which has been shown to

alter the AV in comparison to the supine position (29).The

amount of radiation is even lower than plain radiography (30),

but accessibility and cost-benefit is still debated issue.

We believe that efforts to mechanize routine tasks will afford

health workers more time and precision to care for patients

optimally. This is particularly crucial for both inexperienced

surgeons, as their dislocation rates are reported to be twice as

high as their experienced counterparts (14), and experienced

surgeons striving for greater precision. Studies like this one

represent steps toward achieving that goal.

Interestingly, a slight gender disparity was observed, with

marginally lower AV prediction accuracy for females compared

to males. Despite this, the overall CNN performance remained

commendable, with acceptable MAE ranges for both genders.

The predominance of males (81.3%) in our dataset underscores

the importance of considering gender-specific factors in model

development and validation to ensure equitable outcomes across

populations. Further investigations are warranted to explore

potential underlying factors contributing to the observed gender

differences and refine the CNN model accordingly.
5 Limitations

While this study demonstrates promising results with a CNN

model for native hip joints, it has limitations. It focused solely on

healthy joints, excluding post-operative and diseased joints affected

by conditions such as osteoarthritis. The absence of retroverted

acetabula in the cohort test is another limitation. Although the ratio

of male and female in training and testing groups were seemingly

equal it would suggest for the future researchers to include more

female subjects. Additionally, the challenge of limited medical

image databases, stemming from privacy issues, hampers the

broader application of AI in medicine. This suggests the need for

anonymized databases to improve machine learning accuracy.

Other technical aspects can be addressed for example the current

computational power as well as HIPPA/GDPR while using AI like so.
6 Conclusion

This study has successfully developed a CNN model that

accurately predicts AV from AP hip plain radiographs. With a

MAE≤ 3° and achieving errors of less than five degrees in 83% of

the sample population, this CNN model demonstrates remarkable

precision in AV estimation. Importantly, our approach relies solely

on AP hip plain radiographs, obviating the need for the

conventional gold standard CT-Scan and mitigating the inherent

operator dependency in angle calculation. Looking ahead, further

research endeavors are warranted to refine the CNN model and

ensure a comprehensive and clinically applicable assessment.

Notably, our ongoing second phase involves the utilization of 5,000

unlabeled data points, employing semi-supervised learning

techniques to further enhance the model’s performance and

broaden its scope of application.
Frontiers in Surgery 07
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