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Residual coronary malformation
after tibial shaft fracture alters the
contact status of the meniscus
and cartilage in the knee joint: a
computational study
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Xiaodong Cheng1,2, Haicheng Wang1,2, Yanbin Zhu1,2, Xin Xing1,2*

and Wei Chen1,2,4*
1Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang,
China, 2Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China, 3Cangzhou
People’s Hospital, Cangzhou City, Hebei, China, 4NHC Key Laboratory of Intelligent Orthopaedic
Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
Objective: The purpose of this study was to evaluate the effect of residual varus/
valgus deformity on the mechanical characteristics of the meniscus and cartilage
after tibial shaft fracture.
Methods: A finite element model of the lower extremity of a healthy volunteer
was constructed from CT and MRI images. The upper and middle tibial
fracture models were modified to produce 3°, 5°, and 10° tibial varus/valgus
models. For model validation, a patient-specific model with a 10° tibial varus
deformity was constructed and simulated under the same boundary conditions.
Results: The contact area and maximum stress of the normal and modified
deformity models were similar to those of the reported studies and a patient-
specific model. The maximum stress, contact area, and contact force of the
medial tibial cartilage in a normal neutral position were 0.64 MPa,
247.52 mm2, and 221.77 N, respectively, while those of the lateral tibial
cartilage were 0.76 MPa, 196.25 mm2, and 146.12 N, respectively. From 10° of
valgus to 10° of varus, the contact force, contact area, and maximum stress
values of the medial tibial cartilage increased, and those of the lateral tibial
cartilage gradually decreased. The maximum stress, contact area, and contact
force of the medial tibial cartilage in the normal neutral position were
3.24 MPa, 110.91 mm2, and 62.84 N, respectively, while those of the lateral
tibial cartilage were 3.45 MPa, 135.83 mm2, and 67.62 N, respectively. The
maximum stress of the medial tibial subchondral bone in a normal neutral
position was 1.47 MPa, while that of the lateral was 0.65 MPa. The variation
trend of the medial/lateral meniscus and subchondral bone was consistent
with that of the tibial plateau cartilage in terms of maximum stress, contact
area, and contact force.
Conclusion: The residual varus/valgus deformity of the tibia has a significant
impact on the mechanical loads exerted on the knee joint. This study provides
a mechanical basis and references for the clinical evaluation of tibial fracture
reduction and osteotomy for tibial deformity.
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Introduction

Tibial fractures represent the most prevalent long bone fracture

in clinical practice, accounting for approximately 2% of all cases of

fractures (1–3). Tibial shaft fractures are frequently precipitated

by high-energy trauma, resulting in extensive tissue damage. A

variety of surgical techniques were proposed for the management

of tibial fractures, including the use of intramedullary nails, plate

fixation, and external fixation (4, 5). However, postoperative

complications compromised the surgical outcomes, with reported

non-union rates of up to 10% and malunion rates of up to 49%

(5–7). Literature review showed that 29%–49% of tibial shaft

fractures have an angle of greater than 5° after operation (6, 8).

The residual tibial deformities undoubtedly change the normal

load transmission of the lower limb, increasing the risk of knee

pain and traumatic arthritis (TA) (9, 10). In addition to directly

altering the biomechanical properties of the knee resulting in

tissue damage, deformity healing can indirectly lead to muscle

fatigue, ligament strains, and joint damage by affecting the

tension balance in the surrounding muscles and ligaments

(11, 12). Weinberg et al. (9) inspected 2,898 cadaveric skeletons

and found that the specimens with coronal deformity greater

than 5° had an increased incidence of knee arthritis.

A comprehensive grasp of the etiology of TA and an accurate

assessment of the biomechanical impact of tibial deformity on

the knee are essential prerequisites for the surgical management

of tibial shaft fractures and the prevention of traumatic arthritis.

However, the current literature is largely limited by

epidemiological observational studies, as well as therapeutic

studies, and there are few studies on the biomechanics of tibial

deformity (13–15). Moreover, defining the deformity parameters

largely (10°, 20°, 30°) may be a disadvantage in biomechanical

study, as surgical treatment rarely leaves such a large deformity

angle. Additionally, while the contact stress and contact area of

the knee joint can be obtained in a biomechanical study, the

above indicators are challenging to accurately measure the load

condition of the knee joint.

Given the above, this study established a finite element model

of the lower limb consisting of bone, meniscus, cartilage, and

ligaments. The main purposes of this study are to (1) establish a

finite element model of tibial varus/valgus deformities and (2)

analyze the effect of residual varus or valgus deformity on the

contact force, contact area, and stress distribution of the medial

and lateral compartments of the knee joint after the middle and

upper tibial shaft fracture.
TABLE 1 Amounts of nodes and elements of five components.

Components Nodes Elements
Femur 6,759 32,898

Femoral articular cartilage 1,640 25,057

Meniscus 2,883 11,957

Tibial articular cartilage 5,854 16,858

Tibia and fibula 23,610 94,440
Materials and methods

Finite element models

The experiments of this study were performed in accordance

with all relevant guidelines and regulations and with the approval

of the Institutional Review Board of The Third Hospital of Hebei

Medical University. The use of these CT data in this
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investigation and the experimental protocol of the study were

approved by the Third Hospital of Hebei Medical University.

Written informed consent was obtained from the volunteers

prior to the study commencement.

A healthy male volunteer (age, 30 years; height, 170 cm; body

mass, 60 kg) and a male patient (age, 45 years; height, 172 cm;

body weight, 60 kg) with tibial varus deformity were scanned by

computed tomography (SOMATOM Definition AS Siemens,

Germany) with slicing of 0.625 mm from hip joint to the ankle

joint. The volunteers’ knee joints were scanned by MRI

(MAGNETOM AVanto 1.5 T Siemens, Germany). CT images

were used to obtain data on the femur, tibiofibular, and other

bone tissues. MRI was used to obtain data on ligaments, menisci,

and articular cartilage. The Mimics 21.0 software (Materialise,

Leuven, Belgium) was utilized to segment the bone and soft

tissue by setting the bone ash threshold to 226, thereby

generating a three-dimensional model of the femur through a

series of operations, including region growing, masking,

segmentation, and smoothing. The three-dimensional model was

imported into the Geomagic 2013 software to generate a solid

femoral model by denoising and smoothing the surface.

Subsequently, the two-dimensional image data were

transformed into a three-dimensional model using Mimics 21.0

software (Materialise, Leuven, Belgium). The apparent density

(ρ), Young’s modulus (E), and Poisson’s ratio of each element

were assigned based on the Hu value in the CT scans according

to the following formula (16), which made a distinction between

cancellous and cortical bone:

r(g=cm3) ¼ 0:000968�HU þ 0:5
If r , 1:2g=cm3, E ¼ 2014r2:5, (MPa), v ¼ 0:2
If r . 1:2g=cm3, E ¼ 1763r3:2, (MPa), v ¼ 0:32

The geometry and surface were built and sampled by the Geomagic

software. The normal lower extremity model was imported into UG

NX 9.0 (Siemens Product Life Cycle Management Software, Inc.,

USA). The mechanical axis of the lower extremities was

determined on the three-dimensional model according to the

method proposed by Moreland et al. and Whiteside et al.

(17, 18). The proximal and middle tibial fracture models were

created and rotated 3°, 5°, and 10° medially or laterally, centered

on the mechanical axis. There were six models of varus and

valgus deformities, both each at 3°, 5°, or 10°. The normal lower

extremity model was imported into Hypermesh 14.0 (Altair

Engineering, Troy, MI, USA). The cartilage, meniscus, and bone

models were constructed with C3D4 elements (Table 1). The
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models were exported to the finite analysis software Abaqus 6.14

(Simulia Corp., Providence, RI, USA).
Material properties and boundary
conditions

We assumed that all models were homogeneous, isotropic, and

linearly elastic. According to early scholars (19–21), articular

cartilage, ligaments, and meniscus were assigned a Young’s

modulus (E) of 5 MPa, 215.3 MPa, and 59 MPa, respectively, and

the Poisson’s ratio was 0.46, 0.46, and 0.49, respectively. The

anterior and posterior horns of the meniscus were connected

with the tibial plateau by ten spring elements, and the spring

stiffness was set at 200 N/mm (22).

In the lower extremity model, four contact relationships were

established. We defined the contact area between the medial

femoral condylar cartilage and the medial meniscus, between the

lateral femoral condylar cartilage and the lateral meniscus,

between the medial femoral condylar cartilage and the medial

tibial plateau cartilage, and between the lateral femoral condylar

cartilage and the lateral tibial plateau cartilage as surface1,

surface2, surface3 and surface4, respectively (Figure 1). The

contact relationship was set as “hard contact between surface and

surface” and “frictionless finite sliding,” which was used to

simulate the finite sliding state of the knee joint. Ligaments and
FIGURE 1

Diagram of four contact relationships.

TABLE 2 Comparisons of contact area and von Mises stress of this study and

Study Contact area (cm

Applied load
(N )

Medial
compartment com

Present study 2,400 5.46

McKellop et al. (17) 2,400 7.9

Present study 1,000 4.01

Morimoto et al. (27) 1,000 5.95 ± 1.54
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springs were bound to the corresponding regions. The tied

relationships were used for malunited sites.

In this experiment, the lower extremity was loaded with a

downward vertical force of 600 N (one-leg standing load force of

100% of the body weight; the gravitational acceleration, 10 m/s2)

(23, 24). The distal tibiofibula was fixed in all degrees of freedom

based on deformity extent (3°, 5°, and 10° at varus and valgus,

respectively).
Validation of finite element models

The grid convergence calculations were tested by different

sizes. The convergence criterion used was a change of <5%. To

make a comparison with previous studies (25, 26), we applied a

vertical load of 1,000 N and 2,400 N to the femoral head to

obtain the contact area and maximum contact stress of the knee

joint, respectively (Table 2). Furthermore, a patient-specific

model with a 10° angle tibial varus was also created to validate

the artificial deformed model. In this study, the maximum stress

values and contact area of tibial cartilage and meniscus in

neutral normal position were compared with the reported results

(25, 26) and the patient-specific model to evaluate the

effectiveness of modeling. The results of the comparison ensured

that our modeling method was convincing and reliable

(Figures 2, 3) (Table 2).
previous studies.

2) Maximum stress (MPa)

Lateral
partment

Medial
compartment

Lateral
compartment

4.78 6.35 7.64

5.9 4.1 4.6

3.75 5.37 6.65

4.44 ± 1.07 4.76 ± 1.2 5.24 ± 1.0
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FIGURE 2

The von Mises stress distribution on the lower extremity under the normal natural position: (a) the complete lower extremity and (b) the tibial plateau
cartilage.

FIGURE 3

Comparison between the real varus tibial model and the artificial varus tibial model: (a) the medial tibial plateau cartilage; (b) the lateral tibial plateau
cartilage; (c) the medial meniscus; and (d) the lateral meniscus.

Ding et al. 10.3389/fsurg.2024.1325085
Results

Stress distribution of the medial and lateral
compartments of the knee joint under the
tibial varus and valgus deformities

The maximum stress of medial tibial cartilage, tibial

subchondral bone, and meniscus in a normal neutral position

were 0.64 MPa, 0.65 MPa, and 3.24 MPa, while those of the
Frontiers in Surgery 04
lateral were 0.76 MPa, 1.47 MPa, and 3.45 MPa, respectively.

From the neutral position to 10°of varus, the maximum stress

of medial tibial cartilage, tibial subchondral bone, and

meniscus increased to 1.48 MPa, 0.65 MPa, and 6.73 MPa, and

those of the lateral gradually decreased to 0.62 MPa, 0.65 MPa,

and 1.84 MPa, respectively. From the normal neutral position

to 10°of valgus, the maximum stress of medial tibial cartilage,

tibial subchondral bone, and meniscus gradually decreased to

0.55 MPa, 0.87 MPa, and 1.65 MPa, while those of the lateral
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FIGURE 4

The von Mises stress distribution on the tibial plateau cartilage, meniscus, and proximal tibia under the condition of varus and valgus deformities of the
tibia: (a) valgus 10°; (b) valgus 5°; (c) valgus 3°; (d) neutral position 0°; (e) varus 3°; (f) varus 5°; and (g) varus 10°.

Ding et al. 10.3389/fsurg.2024.1325085
increased to 1.63 MPa, 2.75 MPa, and 6.01 MPa, respectively

(Figures 4 and 5).
The contact area of the medial and lateral
compartments of the knee joint under the
tibial varus and valgus deformities

The contact area of the medial tibial cartilage and meniscus

in a normal neutral position was 247.52 mm2 and 110.91 mm2,

while that of the lateral was 196.25 mm2 and 135.83 mm2,

respectively. From the neutral position to 10°of varus, the

contact area of medial tibial cartilage and meniscus increased

to 250.12 mm2 and 139.46 mm2, and that of the lateral

gradually decreased to 83.68 mm2 and 69.38 mm2, respectively.

From the normal neutral position to 10°of valgus, the contact

area of medial tibial cartilage and meniscus gradually

decreased to 87.94 mm2 and 0 mm2, while that of the

lateral increased to 205.51 mm2 and 146.87 mm2,

respectively (Figure 6).
Frontiers in Surgery 05
The contact force of the medial and lateral
compartments of the knee joint under the
tibial varus and valgus deformities

The contact force of the medial tibial cartilage and meniscus in

a normal neutral position was 221.77 N and 62.84 N, while that of

the lateral was 146.12 N and 67.62 N, respectively. From the

neutral position to 10°of varus, the contact force of medial tibial

cartilage and meniscus increased to 351.55 N and 150.08 N, and

that of the lateral gradually decreased to 40.71 N and 35.77 N,

respectively. From the normal neutral position to 10°of valgus,

the contact force of medial tibial cartilage and meniscus

gradually decreased to 45.56 N and 0 N, while that of the lateral

increased to 252.76 N and 140.91 N, respectively (Figure 7).
Discussion

The varus/valgus deformity is a common complication after a

tibial fracture. The tibial deformity is closely related to the
frontiersin.org
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FIGURE 5

The stress distribution of cartilage under the condition of varus and valgus deformities of the tibia: (a) valgus 10°; (b) valgus 5°; (c) valgus 3°; (d) neutral
position 0°; (e) varus 3°; (f) varus 5°; and (g) varus 10° (MPa).

FIGURE 6

The contact area of four contact relationships under the condition of varus and valgus deformities of the tibia: (a) valgus 10°; (b) valgus 5°; (c) valgus 3°;
(d) neutral position 0°; (e) varus 3°; (f) varus 5°; and (g) varus 10° (mm2).
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occurrence and development of knee TA. Our findings

demonstrate that the varus/valgus deformity of the tibia

significantly alters the contact force, contact area, and stress of

the knee’s medial and lateral compartments, providing the

biomechanical evidence to support the potential association

between tibial deformity and knee TA.

The results demonstrate that the medial compartment exhibits

a larger size than the lateral compartment with regard to both

contact force and contact area. As the degree of varus deformity

increases, the contact force, contact area, and stress peak value of
Frontiers in Surgery 06
the medial compartment gradually increase, while those of the

lateral compartment gradually decrease. It is the opposite of

valgus deformities. A tibial deformity alters the balance of the

medial–lateral compartment of the normal neutral position by

influencing the mechanical axis of the lower extremity, which

may shift inward or outward. Varus and valgus deformities of

the lower limb have increased the rate of knee arthritis, especially

in obesity and overweight groups (9, 27, 28). Compared to

previous studies (13, 15), the contact force of the meniscus and

tibial cartilage is additionally recorded to reflect the load of the
frontiersin.org
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FIGURE 7

The contact force of four contact relationships under the condition of varus and valgus deformities of the tibia: (a) valgus 10°; (b) valgus 5°; (c) valgus
3°; (d) neutral position 0°; (e) varus 3°; (f) varus 5°; and (g) varus 10° (N).
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knee joint in the current study. However, the total contact force of

normal and malunion models differs and is lower than 600 N. This

is mainly caused by shorter tibial moments of the deformity and

traction of ligaments around the knee joint. Moreover, the

contact force of 10° of varus in the medial compartment is 1.76

times the normal values, and the contact force of 10° of valgus in

the lateral compartment is 1.84 times the normal values. We

suggest that tibial varus and valgus deformities have a symmetric

effect on the knee joint in a finite element model of the lower

limb. In this study, a finite element model of the lower limb was

reconstructed, and the center of the femoral head to the center

of the ankle joint was set as the lower limb of the mechanical

axis, which avoided the deviation of the mechanical axis

generated by a portion of the lower limb.

Tibial varus/valgus deformities alter the mechanical

characteristics of the knee joint, thereby increasing the likelihood

of knee arthritis. Firstly, for the injury mechanism of meniscus

and tibial cartilage, tibial varus and valgus deformities caused an

increase in the load and highly stressed zone of tibial cartilage

and meniscus. According to the findings of a population baseline

survey, the incidence of medial cartilage injury in individuals

with varus malalignment is 3.59 times that observed in the

normal population (29). Felson et al. (30) reported that valgus

malalignment has a strong relation with lateral meniscal and

cartilage damage. Furthermore, some studies have suggested that

knee varus/valgus malalignment is an important risk factor for

anterior cruciate ligament (ACL) injury (31, 32). Finally,

subchondral osteosclerosis represents a significant clinical

manifestation of knee arthritis, resulting from bone remodeling

under conditions of excessive abnormal load. Bobinac et al. (33)

suggested that subchondral bone morphological changes are even

faster than cartilage changes in patients with knee arthritis. Tibial

deformity has been demonstrated to significantly alter the stress
Frontiers in Surgery 07
distribution of the knee subchondral bone, which will ultimately

lead to sclerosis of the knee subchondral bone.

The knee joint is composed of a variety of tissues, and damage to

any tissue can affect the function and structure of other tissues as well.

Damage to the ACL can result in tears to the meniscus, chronic knee

instability, cartilage damage, and knee arthritis, due to alterations in

the stability and alignment of the knee joint (31, 34, 35). Injuries to

the meniscus can also lead to cartilage destruction and knee

arthritis by changing the stability of the knee joint (36, 37).

Additionally, sclerosis of the subchondral bone can result in a

reduction of the cushioning force, leading to stress concentration in

the cartilage and subsequent damage to the cartilage (38). The

meniscus, cartilage, cruciate ligament, and subchondral bone of the

knee joint are closely related to each other in tissue structure and

function (39). Tibial varus and valgus deformities could cause

damage to the normal structure of the knee joint, and various

structures also interact, together leading to an increased incidence

of knee arthritis for a long time. Therefore, early osteotomy can

avoid the occurrence and progression of knee TA. To accurately

construct soft tissue models, such as knee ligaments, we employed a

knee brace to maintain the knee in a state of extension, thereby

limiting the range of motion and reducing the discrepancy between

CT and MRI images. Furthermore, this study also drew upon data

reported in the literature and human anatomy to determine the

initial and final points of the ligaments (40–42). The finite element

model of the ligament was then constructed with precision through

the aforementioned methods.

In addition to knee replacement, osteotomy is an important

treatment to correct tibial varus and valgus deformities especially

in the young population. However, correction goals for

osteotomy are currently controversial. Coventry et al. (43)

suggested that the intended tibiofemoral correction angles for

varus knee was overcorrection to a lower limb anatomical axis of
frontiersin.org
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8°–10° of valgus angulation. Hernigou et al. (44) recommended that a

postoperative mechanical axis of 3°–6° of valgus angulation should be

maintained. Jung et al. (45) demonstrated that cartilage regeneration

in the medial compartment of knees with standard correction is

superior to that observed with overcorrection and undercorrection,

with respect to both cartilage regeneration and clinical outcomes.

Nevertheless, some studies have indicated that there is no

significant distinction in the impact of overcorrection and standard

osteotomy on the knee joint (46, 47). Naudie et al. (47) posited that

the intended mechanical axis of the lower limb should be

maintained within the normal range. This study aimed to

investigate the relationship between the magnitude of the deformity

and the load in the medial and lateral compartments of the knee

joint. This will enable the load in the medial and lateral

compartments of the knee joint to be distributed quantitatively,

thus providing an accurate reference for clinical osteotomy. Finally,

the degree of osteotomy has not been quantified in the long-term

prognosis of osteotomy. Future studies should still focus on the

relationship between the overall survival time of osteotomy and loads.

This study has shown that tibial varus and valgus deformity can

significantly affect the biomechanical properties of the knee joint.

Therefore, our findings can provide clinical evidence on two

aspects of tibial fracture management. Firstly, the reduction of the

tibial shaft fracture should be kept in a clean alignment, and

the fracture reduction should be more finely adjusted to keep the

internal and external deformity angle less than 5°. Secondly, in

view of the above evidence, the tibial internal and external

deformity should be corrected aggressively for the deformity angle

greater than 5° to prevent long-term complications such as arthritis.

Our study is not without limitations. First, this study simulates

the human standing on one foot, ignoring the lower limb muscles,

which may be different from the real load condition of the human

body. Second, all models were assigned isotropy and homogeneity

to simplify the model. However, the finite element model of the

lower limb was validated with reported research, and the

difference is within acceptable limits. Finally, the finite element

model of the lower limb in this study does not include the foot,

which may be different from the real lower limb.

In conclusion, tibial varus/valgus deformity has a significant

influence on the contact force, contact area, and stress of the

medial and lateral compartments of the knee joint. This study

provides a mechanical basis and reference for clinical evaluation

of tibial fracture reduction and osteotomy for tibial deformity.
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