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Surgical resection is considered for most brain tumors to obtain tissue diagnosis
and to eradicate or debulk the tumor. Glioma, the most common primary
malignant brain tumor, generally has a poor prognosis despite the
multidisciplinary treatments with radical resection and chemoradiotherapy.
Surgical resection of glioma is often complicated by the obscure border
between the tumor and the adjacent brain tissues and by the tumor’s
infiltration into the eloquent brain. 5-aminolevulinic acid is frequently used for
tumor visualization, as it exhibits high fluorescence in high-grade glioma.
Here, we provide an overview of the fluorescent probes currently used for
brain tumors, as well as those under development for other cancers, including
HMRG-based probes, 2MeSiR-based probes, and other aminopeptidase
probes. We describe our recently developed HMRG-based probes in brain
tumors, such as PR-HMRG, combined with the existing diagnosis approach.
These probes are remarkably effective for cancer cell recognition. Thus, they
can be potentially integrated into surgical treatment for intraoperative
detection of cancers.
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1 Introduction

Surgical resection is the primary treatment for brain tumors, complemented by

radiotherapy or chemotherapy for malignant types (1–3). Total resection is often

challenging, especially for gliomas, due to their infiltrative nature and difficulty in

distinguishing from surrounding tissues (4–7). Fluorescence imaging, rapidly adopted in

neurosurgery, addresses these challenges. It offers low-cost, high-resolution visualization

of tumors, clearly differentiating them from adjacent brain tissue and aiding in the

identification of ill-defined boundaries. This method is particularly crucial in reducing

residual tumors and the associated risk of regrowth or relapse (8–11).

Panel diagnostics using next-generation sequencing have advanced the identification of

oncogenes in solid cancers, such as lung and breast cancers, paving the way for precision
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medicine (12, 13).While these omics analyses provide comprehensive

insights, they lack spatiotemporal data after cell homogenization.

In contrast, fluorescence imaging in surgery offers a non-invasive,

real-time, and high-resolution method for observing and

quantitatively analyzing biomolecules within tissues (8, 9).

Fluorescent probes can be broadly categorized based on their

features (14). The “always on” probes continuously exhibit

fluorescence, whereas “activatable” probes only become fluorescent

upon interaction with a specific target. Today, “always on” probes

such as indocyanine green (15) and fluorescein sodium are used

in the neurosurgical field (9, 16). However, these probes are not

always accumulating in tumor tissues and have tendency to emit

high background from the effect of “always on” (9). On the other

hand, 5-aminolevulinic acid (5-ALA) serves as an “activatable”

probe, distinguishing the tumor from the non-tumor tissues based

on metabolic activity variations (8).

This review highlights advancements in fluorescent

aminopeptidase probes, especially Hydroxymethyl Rhodamine

Green (HMRG), 2-Methyl silicon rhodamine (2MeSiR), and 2-O-

Methyl silicon rhodamine (2OMeSiR). These probes are expected

to enhance surgical precision and rapid cancer detection. Their

interaction with tumor enzymes allows accurate differentiation

between tumor and surrounding tissues. We will explore their

benefits and applications in fluorescence-guided surgery.
2 HMRG-based aminopeptidase
probes for various cancers

Miura et al. reported a rational design principle, Photoinduced

Electron Transfer, for modulating the fluorescence properties

of probes using fluorescein (17). Building upon this theory,

Urano et al. synthesized probes with 2,6-dicarboxyethyl-1,3,5,7-

tetramethyl boron-dipyrromethene (BODIPY) as a fluorescent
FIGURE 1

Chemical structure and reaction principle of HMRG probe. When dipeptidy
fluorescent. HMRG distinguishes tumor from the non-tumor tissue as an “a
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scaffold, enabling the detection of acidic pH changes in vitro

with HER2-positive cells. Significantly, these probes possessed the

added advantage of reversibility, making them suitable for in vivo

applications in lung cancer detection (18). To address the slower

reaction rate of endo-peptidase detectable probes that hydrolyze

non-terminal peptides, we employed intramolecular spirocyclization

(19). This concept facilitated rapid responsiveness and precise

molecular design, targeting the amino-terminal or carboxyl-

terminal ends (19–21). Furthermore, Kuriki et al. established

HMRG-based probe libraries that potentially targeted different

enzymes achieved by substituting the acetyl group of Ac-HMRG

with various amino acids (22) (Figure 1).
2.1 γ-Glutamyl (gGlu)-HMRG probe

Urano et al. applied gGlu-HMRG to human ovarian cancer cell

lines (SHIN-3) and normal human umbilical vein endothelial cells,

observing high fluorescence intensity and γ-glutamyltransferase

(GGT) activity exclusively in SHIN-3 cells (23). gGlu-HMRG,

reacting with GGT expressed on tumor cells, produces a highly

fluorescent reaction product (24, 25). In experiments with mice

bearing SHIN-3 tumors, intraperitoneal injection of gGlu-HMRG

led to distinct high fluorescence in tumor areas, visible to the

naked eye, while normal mice without tumors showed no such

fluorescence and had low GGT background activity. This

fluorescence was also confirmed in vitro with many human ovarian

cancer cell lines tested. Spraying gGlu-HMRG on the peritoneal

surface of mice injected with six of these cell types resulted in strong

fluorescence in four types. In further studies, SHIN-3 cells

transfected with red fluorescent protein (RFP) and injected into

mice revealed complete overlapping fluorescence with gGlu-HMRG

10 min post-injection. Notably, the detection of SHIN3-RFP cells

using gGlu-HMRG showed 100% sensitivity and specificity (23).
l-HMRG reacts with the enzyme in tumor, it becomes HMRG and gets
ctivatable” probe.
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2.2 Glutamyl-prolyl (EP)-HMRG probe

Dipeptidyl peptidase IV (DPP-IV), a ubiquitous enzyme found

in the kidney, liver, intestine, and other organs, is implicated in

various cancers including prostate adenocarcinoma, thyroid

cancer, and esophageal cancer (26–29). It can cleave EP-HMRG,

resulting in fluorescence emission (30).

Onoyama et al. developed peptidase probes for esophageal

squamous cell cancer (30). Screening was performed using a

series of HMRG-based aminopeptidase-activatable fluorescence

probes such as γ-glutamyltranspeptidase, DPP-IV, fibroblast

activation protein (AcGP-HMRG), cathepsin H (Arg-HMRG),

against fresh biopsy samples. They discovered that glycine-prolyl-

HMRG (GP-HMRG), targeting DPP-IV, exhibited a rapid,

substantial, and specific increase in fluorescence in tumor cells.

After assessing DPP-IV expression levels and enzymatic activity,

they synthesized HMRG probes with various N-terminal amino

acids, such as Glutamic acid, Lysine, Tyrosine, Leucine, and

Proline, to determine their affinity. The EP-HMRG probe,

showing the highest affinity and lowest Michaelis constant (Km)

for DPP-IV, was selected. Validation of EP-HMRG involved

measuring the increase in fluorescence intensity in tumor and

normal samples over time, revealing a significant increase

in tumor samples.
2.3 Proline-arginine (PR)-HMRG probe

Recently, we published our research on the development of

fluorescent probes designed for glioblastoma, relying on

enzymatic activity (31). We initially screened 320 fluorescent

probes using homogenized tumor lysates from patients,

selecting the top 10% of promising probes based on their ability

to differentiate between glioblastoma and surrounded tissues.

We further narrowed down these candidates in a secondary

screening with fresh surgical specimens, identifying the top

three probes that demonstrated the highest differential

fluorescence intensities for glioblastoma detection. These results

were comprehensively analyzed, and a tertiary screening

involved computational, mathematical, and pathological

analysis. The proline-arginine-HMRG (PR-HMRG) probe

showed the highest reactivity with 79.4% accuracy for detecting

glioblastoma. We also attempted to identify the enzyme-

cleaving PR-HMRG using Diced Electrophoresis Gel (DEG)

assay, followed by Liquid Chromatography/Tandem Mass

Spectrometry (LC/MS) (32). Through LC/MS, we identified four

potential enzymes, with calpain 1 (CAPN1) as the responsible

one, confirmed by enzyme inhibition experiments and CAPN1

RNA expression analysis. In U87 glioblastoma cells, CAPN1

knockdown reduced PR-HMRG fluorescence (31). In a U87

orthotopic xenograft model, PR-HMRG displayed higher

fluorescence in tumor areas, consistent with CAPN1 expression.

Human surgical specimens also showed elevated CAPN1

expression by both immunohistochemistry and western

blotting, indicating the potential of this probe for glioblastoma

detection during the surgery in the future (31). PR-HMRG
Frontiers in Surgery 03
probe showed early fluorescence onset within 5 min of

application (31) (Figure 2).
2.4 Other HMRG-based probes

Kuriki et al. found promising probes lysine-histidine-HMRG

(KH-HMRG) for gastric cancer (negative staining) and lysine-

lysine-HMRG (KK-HMRG) for lung cancer from among 380 types

of HMRG-based fluorescent probes, which detect tumor tissues

with high expression of puromycin-sensitive aminopeptidase (PSA)

and aminopeptidase N (APN), respectively (22).

Takahashi et al. selected the promising fluorescent probe GP-

HMRG for pancreatic cancer from our probe library (33).

Dipeptidyl peptidase, or DPP-IV-like enzyme, was identified as

the target enzyme.

Ac-lysine-glutamine-leucine-arginine-HMRG (Ac-KQLR-

HMRG) is a fluorescent probe for visualizing prostate cancer.

Yogo et al. synthesized Ac-KQLR-HMRG, which is activated by

hepsin and matriptase. This probe showed specific fluorescence

of various prostate cancer cell lines in vitro (34).

Yamamoto et al. synthesized an avidin-conjugated fluorescent

probe, the Avidin-Leu-HMRG (35). Avidin is a protein which

has a high affinity for lectin on cancer cells. In a mouse model

of peritoneal ovarian metastasis, this probe demonstrated high

fluorescence intensity at tumor locations, attributable to the

fluorescence activity of lysosomal leucine aminopeptidase.

HMRG-based fluorescent probes may be useful for various

diseases other than cancers. Yamashita et al. evaluated the

fluorescence intensity in pancreatic juice and intestinal juice

discharged after the pancreatic ventricle or central pancreatectomy

using glutamyl-phenylalanine-HMRG (gPhe-HMRG) (36). They

showed that it is possible to measure protease (chymotrypsin)

activity in drained pancreatic fluid samples.
3 2MeSiR and 2OMeSiR probes

Challenges with green HMRG probes include interference from

tissue autofluorescence and attenuation related to blood absorption

(37). To circumvent these limitations, researchers have identified

alternative scaffolds that emit at longer wavelengths. Kushida et al.

demonstrated that 2MeSiR600, a red fluorescent scaffold, could be

used to design activatable probes targeting proteases, although it

exhibited high background fluorescence due to its relatively high

fluorescence quantum yield (38). Addressing this, Ogasawara et al.

modified 2MeSiR600 to reduce background signals and

synthesized 2OMeSiR600 probes for aminopeptidase activity

detection, controlled by photoinduced electron transfer (39).
3.1 Proline-methionine-2MeSiR
(PM-2MeSiR)

Takahashi et al. developed a fluorescence imaging technique

to identify the extrahepatic biliary tree (eCCA) using an
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FIGURE 2

Fluorescence-guided resection using 5-ALA and PR-HMRG in glioma surgery. (A) Corticotomy site visualized under white light. (B) Visualization of the
tumor core and margins using 5-ALA-induced fluorescence at an emission wavelength of approximately 630 nm. (C) Post-resection view showing no
residual fluorescence, suggesting complete removal of the tumor. (D) Schematic representation of PR-HMRG probe activation, depicting the transition
from a colorless state to fluorescence upon enzymic reaction with the tumor.
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enzyme-activated probe for diagnostic imaging of liver cancer (40).

They selected the most specific probe for eCCA from 384

HMRG-based fluorescent probes, 400 2MeSiR-based probes, and

16 types of Hydroxymethyl N-(2,2,2-trifluoroethyl) rhodol

(HMRef) -based fluorescence probes for glycosidases that

they had synthesized (41). PM-2MeSiR emerged as the most

specific fluorophore for eCCA, targeting a puromycin-sensitive

aminopeptidase (40).
TABLE 1 Details of HMRG, 2MeSiR and 2OMeSiR probes.

Fluorescent
scafold

Abbreviation Disease and

HMRG gGlu-HMRG Breast cancer, renal cortex, neck squamous ce
hepatic cancer, colon cancer, prostate cancer,
diabetic Kidney disease and glomerular diseas

EP-HMRG Esophageal cancer

gPhe-HMRG Postoperative pancreatic fistula

PR-HMRG Glioblastoma

Ac–KQLR–HMRG Prostate cancer

Avidin-Leu-HMRG Prostate cancer

GP-HMRG Pancreatic cancer

KH-HMRG Gastric cancer

KK-HMRG Lung cancer

2MeSiR QA-2MeSiR Lung cancer

PM-2MeSiR Extrahepatic biliary tree (eCCA)

2OMeSiR EP-2OMeSiR Esophageal cancer

QA-2OMeSiR Lung cancer
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3.2 Glutamine-alanine-2MeSiR
(QA-2MeSiR) and glutamine-alanine-
2OMeSiR (QA-2OMeSiR)

QA-2MeSiR and QA-2OMeSiR are probes developed for

detecting tumors in lung cancer. Kawashima et al. screened these

probes, selecting those with the highest fluorescence intensity for

lung cancer (42). They found QA-2OMeSiR to have a lower
event Target enzyme

ll carcinoma, oral cancer, lung cancer,
ovalian cancer, thymic carcinoma,
es

γ-Glutamyl transpeptidase

Dipeptidyl peptidase IV (DPP-IV)

Chymotrypsinogen

Calpain-1

Hepsin and matriptase

Lysosomal leucineaminopeptidase

Dipeptidyl-peptidase IV

Puromycin-sensitive aminopeptidase (PSA)

Aminopeptidase N (APN)

Dipeptidyl peptidase IV (DPP-IV)

Puromycin-sensitive aminopeptidase

Dipeptidyl peptidase IV (DPP-IV)

Dipeptidyl peptidase IV (DPP-IV)
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background than QA-2MeSiR, targeting enzymes like DPP-IV

and PSA (42).

Table 1 shows a summary of the HMRG-based and 2MeSiR-

based fluorescent probes.
4 Other fluorescent aminopeptidase
probes

Leucine aminopeptidase (LAP) is an enzyme that cleaves a type

of amino acid from the end of a peptide. It has been confirmed that

LAP’s blood concentration increases due to bile stagnation, and

LAP is present in various cancer cells (43). Gong Q et al.

developed the fluorescent probe of the incorporating L-leucine

into the skeleton of cresyl violet as a recognition moiety using

confocal fluorescence imaging (44). They analyzed changes in

LAP concentration using human liver cancer-derived HepG2 and

human lung cancer-derived A549 cells under cisplatin treatment.

A higher concentration increase of LAP was found in HepG2

cells. Inhibitor experiments of LAP expression with siRNA

further reduced cell viability. This result indicated that LAP was

highly resistant to cisplatin. LAP is known to be involved in

detoxifying cisplatin in hepatoma cells and contributes to

inherent drug resistance (44). He X et al. developed a specific

and sensitive near-infrared fluorescent probe (HCAC) for in vivo

imaging of LAP activity in liver disease models. HCAC showed

acetaminophen-induced liver injury and upregulation of LAP in

tumor mouse models (45).

Pyroglutamate aminopeptidase-1 (PGP-1) enzyme plays an

important role in inflammation involving immune cells, blood

vessels, and molecular mediators (46). Cao et al. designed a red-

emitting ratiometric fluorescence sensor (DP-1) that specifically

detects PGP-1. They showed that PGP-1 expression was

associated with inflammation using human liver cancer-derived

HepG2 and mouse macrophage-like cell line RAW264 cells by

imaging of the DP-1. Furthermore, imaging of mouse tumor

models has shown that PGP-1 is closely associated with some

inflammation and tumor disease (46).

Prolyl aminopeptidases (PAP) are often present in infectious

disease bacteria, which is a potential biomarker and therapeutic

target for pathogen infection (47). Liu X. et al. developed a near-

infrared fluorescent “turn-on” probe (NIR-PAP) for detecting

and imaging the activity of PAP in vivo. They indicated that this

probe exhibited high specificity and reactivity to PAP under

physiological pH and temperature conditions in vitro (47).

APN is expressed in ovarian carcinoma cells and is an

important biomarker for cancers such as osteosarcoma and

hematopoietic tumors (48–50). NIR fluorescent probes have been

developed for detecting APN activity. He X et al. have developed

an NIP fluorescent probe detecting APN (51). Using confocal

microscopy, they showed that hepatoma cells had higher APN

content than normal cells. Additionally, APNs were imaged in

cells and mice in vivo. CD3/aminopeptidase N is an ectoenzyme

with multiple functions, including tumor growth, migration,

angiogenesis, and metastasis. LiH et al. have developed the first

two-photon NIR fluorescent probe for in vitro and in vivo
Frontiers in Surgery 05
tracking of APN (52). Hydrolysis of the amino group of the N-

terminal alanyl moiety restored the intramolecular charge

transfer effect, resulting in strong fluorescence. In addition, the

probe DCM-APN distinguished normal cells (LD2 cells) from

cancer cells (human liver cancer-derived HepG-2 and malignant

melanoma B16/BL6 cells).
5 Discussion

The standard treatment for most brain tumors is surgical

resection under a microscope, often accompanied by adjuvant

radiotherapy and/or chemotherapy for malignant types (1–3).

Maximal resection is attempted for prolonged tumor control and

improved patient survival in most cases, except for certain tumors

like malignant lymphoma and germinoma, which are sensitive to

either radiotherapy or chemotherapy (53, 54). The utilization of

fluorescent probes in surgical procedures offers a significant

advantage by enabling surgeons to accurately differentiate tumor

from normal or surrounding tissues in real-time (55–57). This

enhanced visualization, provided by the fluorescence of these

probes, leads to increased resection rates—a critical factor in surgical

success. Importantly, achieving a higher extent of resection,

especially Gross Total Resection (GTR), has been independently

associated with improved progression-free survival (PFS) and overall

survival (OS) in patients with high-grade and supratentorial low-

grade gliomas. Therefore, by facilitating more precise and extensive

tumor resections, fluorescent probes have the potential to further

improve PFS and OS outcomes in brain tumor patients.

The development of aminopeptidase probes, particularly

HMRG-based and 2MeSiR-based probes, presents promising

advancements in cancer detection and monitoring as biomarkers.

These probes offer unique advantages, such as rapid activation

and reduced background signals. The HMRG probes react

quickly, yielding results within minutes, a benefit already

confirmed in esophageal cancer and brain tumor studies (30, 31).

In their studies, probes that target enzymes like g-glu, DPP4,

CAPN1, LAP, PGP-1, and APN hold significant promise for

detecting a variety of diseases, encompassing both cancer and

infections (58, 59). Present, three fluorescent agents that have

been studied and utilized widely in human neurosurgical fields

are fluorescein sodium, ICG, and 5-ALA (8, 9).

ICG is a water-soluble molecule that is excited at a wavelength

of approximately 780 nm and emits fluorescent within the

700–850 nm range, making it detectable only with a filtered

scope. ICG is observed a few seconds after 0.2–0.5 mg/kg IV

administration, reaching its peak around 10 min (15, 60, 61).

ICG is widely used to confirm blood flow and patency in

vascular surgeries for aneurysms, AVMs, and anastomoses. It can

also be beneficial in assessing the circulatory status when tumors

compress or infiltrate cerebral circulation (62, 63). The Second

Window ICG technique uses tumors’ vascular permeability and

poor clearance. Delivering substantial quantities of ICG allows

neurosurgeons to locate tumors during surgery. However, it takes

19–30 h to visualize and does not accumulate in a tumor-specific

manner (64, 65).
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Fluorescein demonstrates fluorescence, peaking at around

530 nm when excited at approximately 480 nm with high

detection rate for glioma in multicentric prospective phase II

trial (66). For lower concentrations, observation through a

560 nm filter is typically required to detect its fluorescence (67).

Notably, at higher doses, specifically 20 mg/kg, fluorescein’s

fluorescence becomes visible to the naked eye (68). The

technique of confocal endoscopy and endomicroscopy, which

has been employed with fluorescein, is notable for its

application in brain tumor imaging (69, 70). ICG and

fluorescein does not selectively activate fluorescence in

malignant glioma cells. Instead, it tends to concentrate in areas

where the blood-brain barrier is disrupted, a common

characteristic of tumor sites (67, 71).

5-ALA can be used to visually distinguish tumor tissues from

normal ones (72, 73). 5-ALA transforms into protoporphyrin IX

(PpIX), which is a photosensitizer and precursor in heme

synthesis. PpIX excites and emits at 405 nm (violet) and 633 nm,

enabling broad-spectrum activation (74). PpIX accumulation

results from increased 5-ALA levels, elevated 5-ALA synthase

activity, or malfunctioning ferrochelatase (FECH) enzyme,

facilitating its conversion into heme (75). Glioblastoma exhibits

reduced FECH expression compared to normal brain tissue,

contributing to PpIX accumulation (76). Instances of ventricular

wall fluorescence, indicating false positives, are observed even in

cases where magnetic resonance imaging (MRI) or macroscopic

observation show no evidence of tumor involvement (77).

Stummer et al. noted that 5-ALA was effective in increasing

tumor resection rates to 65% and enhancing six-month

progression-free survival to 41%, as opposed to lower rates

without it. However, its fluorescence is stronger in high-grade

gliomas but weaker in low-grade ones. The compound becomes

fluorescent six hours after intake but loses potency over time as

it is metabolized. Other disadvantages include the potential for

false positives in cases of radio-necrosis or inflammation, and

false negatives in low-density areas (78–82).

Recent advancements have led to the development of both

flexible and rigid endoscopic systems that utilize 5-ALA

fluorescence, thereby enhancing surgeons’ capabilities in the

diagnosis and resection of brain tumors. The flexible endoscope

system is particularly adept at observing 5-ALA fluorescence,

aiding in the accurate identification of tumor margins (83).

Conversely, the rigid endoscope system, which has been

commercially available and widely reported, demonstrates

effectiveness in 5-ALA fluorescence-guided surgery, significantly

contributing to surgical outcomes (84, 85). However, despite

these significant advancements, the diagnostic utility of these

endoscopic systems as adjuncts to microsurgery remains

somewhat limited. The integration of confocal endomicroscopy

with 5-ALA is proposed as a promising approach to overcome

these limitations. This integration potentially allows for a more

detailed and nuanced observation of brain tumors at the

microstructural level, which could be particularly beneficial in

cases of suspected low-grade gliomas (86, 87).

Economically, PR-HMRG, as a fluorescent-guided surgery,

may provide a cost-effective alternative compared to the
Frontiers in Surgery 06
acquisition of other supportive equipment such as navigation

systems, intraoperative MRI, or intraoperative ultrasound

sonography (88, 89). This makes the initial cost relatively

low, especially when integrated into existing systems designed

for 5-ALA, leading to avoidance of the substantial initial

investments associated with other advanced diagnostic

imaging methods (88, 89). These microscopes are already

fitted with the necessary light source and fluorescence display

monitors. Utilizing the existing setup with a filter exchange

avoids the significant costs associated with major equipment

modifications. Integrating HMRG and 2MeSiR probes into

neurosurgical microscopes equipped with 5-ALA systems

involves switching the microscope’s internal filters to match

the specific excitation and emission profiles of these probes.

HMRG requires blue light excitation at 488 nm for its green

fluorescence emission at 524 nm, while 2MeSiR needs an

excitation filter at 593 nm to enable its 613 nm red

fluorescence emission (31, 39).

Recent advancements in aminopeptidase probes, particularly

those based on HMRG and 2MeSiR, are showing significant

promise in improving cancer detection and monitoring as

disease biomarkers (90, 91). These probes offer distinctive

advantages, such as rapid activation and reduced background

signals. Probes targeting enzymes like GGT, DPP-IV, CAPN1,

LAP, and APN demonstrate potential in detecting various

cancers and infections. Ongoing research aimed at enhancing

their accuracy and minimizing false results is crucial. Systematic

reviews and meta-analyses will likely play a key role in

evaluating these newer probes as they transition from preclinical

to clinical applications. In summary, fluorescent aminopeptidase

probes represent a promising advancement in tumor

visualization and image-guided surgery.
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