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Limitations and modifications in
the clinical application of calcium
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1Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City,
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Calcium sulfate and calcium sulfate-based biomaterials have been widely used
in non-load-bearing bone defects for hundreds of years due to their superior
biocompatibility, biodegradability, and non-toxicity. However, lower
compressive strength and rapid degradation rate are the main limitations in
clinical applications. Excessive absorption causes a sharp increase in sulfate
ion and calcium ion concentrations around the bone defect site, resulting in
delayed wound healing and hypercalcemia. In addition, the space between
calcium sulfate and the host bone, resulting from excessively rapid absorption,
has adverse effects on bone healing or fusion techniques. This issue has been
recognized and addressed. The lack of sufficient mechanical strength makes it
challenging to use calcium sulfate and calcium sulfate-based biomaterials in
load-bearing areas. To overcome these defects, the introduction of various
inorganic additives, such as calcium carbonate, calcium phosphate, and
calcium silicate, into calcium sulfate is an effective measure. Inorganic
materials with different physical and chemical properties can greatly improve
the properties of calcium sulfate composites. For example, the hydrolysis
products of calcium carbonate are alkaline substances that can buffer the
acidic environment caused by the degradation of calcium sulfate; calcium
phosphate has poor degradation, which can effectively avoid the excessive
absorption of calcium sulfate; and calcium silicate can promote the
compressive strength and stimulate new bone formation. The purpose of this
review is to review the poor properties of calcium sulfate and its
complications in clinical application and to explore the effect of various
inorganic additives on the physicochemical properties and biological
properties of calcium sulfate.
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Introduction

As the population ages, the incidence of bone defects as a result of infection, bone

tumor, surgery, or major trauma is increasing significantly (1, 2), and the consequent

demand for bone grafting materials is also continuously increasing. Currently, bone

substitute materials have been an area of intense research interest, and a variety of

materials have been used to fill bone defects and promote bone regeneration, including

autografts, allografts, calcium phosphate, bioglass, calcium sulfate, and their compounds

(3–12). However, each bone substitute has its own unique advantages and

disadvantages (7–19).
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Autologous grafts are considered the gold standard for defect

reconstruction (5, 6) as they confer complete histocompatibility

while possessing osteoinductive, osteoconductive, and osteogenic

healing potential. However, an autologous graft has 0.76%–39%

harvesting procedure-associated complications (7–9), which

include increased blood loss, operative time (10), and donor site

pain, as well as the potential for donor site infection, hematoma,

and nerve injury (8, 11). Another limitation is an inherently

limited availability (12). Allografts, including cortical, cancellous,

and demineralized bone matrix (DBM), are a bone substitute

alternative to autogenous bone. An allograft exhibits

osteoconductive and sometimes osteoinductive potential (such as

DBM). However, the potential for disease transmission,

immunogenic response, and quality variability makes an allograft

an imperfect substitute. In particular, for DBM, the

osteoinductivity of the allograft is greatly dependent on its

preparation technique (13). Calcium phosphate, mainly

tricalcium phosphate and hydroxyapatite (HA), has shown

favorable results. In particular, HA, which is structurally similar

to the mineral phase of bone, has been the most widely

employed bioceramic for hard tissue repair. However, its poor

resorbability hinders the formation of new bone and obstructs

bone healing (14, 15), and calcium phosphate cement hardly

induces the formation of a bone-like HA layer in vitro and

in vivo (16) Several previous studies have reported that

tricalcium phosphate resorbs over a period lasting between 6 and

18 months (10, 17), whereas hydroxyapatite can resorb over a

period ranging from 6 months to 10 years (11). Bioactive glasses

possess excellent osteoconductivity and the ability to stimulate

bone formation, while their high brittleness and poor

resorbability limit their application in load-bearing sites (18, 19).

Given the aforementioned complications, calcium sulfate (CS)

has attracted much attention due to its unique physicochemical

and biological properties, which not only provide many advantages

over other types of bone graft materials, such as biocompatibility,

osteoconductivity, and biodegradability (11), but also are very

effective at delivering high levels of local antibiotics or drugs due

to complete degradation in vivo (20). In addition, calcium sulfate

with injectability and moldability can fill bone defects with

irregular shapes and various sizes because it can be inserted in line

with the shape of a defective region (21). The main drawbacks of

CS are its low mechanical strength and fast absorption, which

means it is unable to provide any significant long-term mechanical

support for vertebral compression fracture or use in load-bearing

as a structural bone graft (22). The early use of pure calcium

sulfate, known as the “plaster of Paris”, showed the disadvantage

of delayed wound healing and osteolytic processes during rapid

resorption by pH lowering (23). The side effects caused by poor

properties should be sufficiently considered in the preparation of

materials or clinical applications (12).

To mitigate implant-related complications in clinical

applications, it is of great significance for clinicians and

researchers to understand the relationship between the inherent

limitations of calcium sulfate and its complications in

clinical application (24). Previous studies reported that the

complications caused by calcium sulfate may be related to
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absorption that is too fast. For example, many sulfate ions

released into surrounding tissue during degradation result in

wound drainage, and large amounts of calcium ions result in

hypercalcemia. Therefore, considerable efforts have been made to

improve the physical and chemical properties of CS by the

addition of a substance, e.g., calcium phosphate or calcium

silicate (23) (Figure 1).

Currently, few studies have reported the mechanism of the

problems mentioned above caused by the poor properties of

calcium sulfate and the modified methods to prevent these

complications. Therefore, the aim of this study was to summarize

the insufficient properties of calcium sulfate and consequent

complications and to elaborate the interaction mechanism.

Another purpose was to investigate the effect of inorganic salt

additives on the compressive strength and degradation rate to

design and fabricate more perfect calcium sulfate-based materials

for researchers.
Rapid degradation rate

An ideal bone graft substitute should have the same speed of

degradation as the formation of new bone tissue (25). Absorption

that is too slow will hinder cell penetration into the implants and

impede bone remodeling (26, 27), while absorption that is too

fast will create a gap between native bone tissue and implanted

material (28), which is very harmful to the reconstruction of the

bone defect (29). Therefore, the degradation rate of bone graft

substitutes is a critical design parameter for bone tissue

regeneration, exerting a crucial impact on the early-stage and

long-term performance of bone tissue repair (30).

Resorption of calcium sulfate usually occurs faster than bone

formation (31). Previous studies reported that pure calcium

sulfate resorbs over a period of 4–6 weeks in a contained osseous

defect (31–34). Petruskevicius et al. (35) do not recommend

calcium sulfate for implantation in humans, as 6 weeks is too

short a time for complete degradation. The main reason for

rapid resorption is the absence of a strong chemical bond

between the calcium sulfate particles, which makes it easy for

them to be dissolved by tissue fluid. The property of rapid

resorption has an adverse effect on results in clinical application,

which can decrease new bone growth or fusion rate (36), reduce

mechanical stability (37), and increase implant-related

complications by releasing large amounts of hydrogen and

calcium ions into surrounding tissue early after implantation (36,

37). Glazer PA et al. (36) investigated the degradation rate and

fusion rate of CS as a bone graft substitute in promoting spine

fusion in a rabbit model and found that no fusions were

observed in the group containing only calcium sulfate because it

was completely absorbed within 4 weeks after surgery.

The degradation mechanism of calcium sulfate may be related

to the process of dissolution in vivo and subsequent cellular

phagocytosis (38–41). Therefore, to fabricate calcium sulfate with

a controllable absorption rate, a possible method is to mix

inorganic materials with a low dissolution rate, which can adjust

the overall degradability by controlling the proportion of
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FIGURE 1

Repair effect of bone cement in bone injury. (A) The original bone cement is mainly composed of calcium phosphate, which mainly plays a supporting
role and has poor absorption, requiring surgical removal. The commonly used composite bone cement now consists of calcium dihydrogen
phosphate, calcium sulfate, and calcium sulfate hemihydrate. Calcium sulfate hemihydrate is easily degraded to form mesopores, leaving room for
bone cell growth and vascular growth. (B) After a bone injury occurs, the bone cement composite is injected into the injury site. The bone
cement supports the growth of blood vessels and bone cells. After the wound is repaired, the bone cement is completely absorbed.

Lun et al. 10.3389/fsurg.2024.1278421
additives (42). At present, the commonly used inorganic additives

include calcium carbonate, calcium silicate, and calcium phosphate.

The mechanism by which calcium carbonate reduces the

degradation rate of calcium sulfate is not clear. The early

hypothesis was that calcium carbonate adheres to the surface of

calcium sulfate to form agglomerates, which have a low

dissolution rate in body fluids (43, 44). Dewi AH et al. (43)

investigated the effect of the addition of calcium carbonate on

the degradation performance and new bone formation of CS in

vitro and in vivo and found that the incorporation of calcium

carbonate into CS can decrease the degradation rate of the

cements and induce faster bone formation in vitro. In vivo, a rat

femoral defect model was used to further observe the

degradation and osteogenesis of the calcium sulfate and calcium

carbonate complex, and the results demonstrated that the

addition of CaCO3 not only reduced the degradation rate of CS

but also increased the initial bone formation. The author

considered that combined CS and CaCO3 is a promising bone

graft substitute. D. Pförringer et al. (44) further verified the effect

of the addition of calcium carbonate on the degradation

performance of CS in a rabbit model and found that calcium

sulfate hemihydrate (CSH) containing calcium carbonate revealed

slow and similar degradation from the 4th to the 12th week, with

well-distinguishable implants at 12 weeks, while CSH alone was

subject to quick degradation, which was only faintly detectable

after the 4th week and had already disappeared radiologically
Frontiers in Surgery 03
after 6 weeks. The author concluded that the addition of calcium

carbonate makes CS more resistant to resorption, leaving new

bone time to form during a prolonged degradation process. At

present, there are commercially available composite products of

calcium sulfate and calcium carbonate, Herafill from Germany,

which are used mainly as antibiotic carriers in the treatment of

periprosthetic infection (44, 45). In addition, calcium sulfate

incorporated with calcium carbonate has also been shown to

stimulate bone regeneration in an animal model (43). However,

further analyses are needed to determine whether it is effective in

patients with uninfected bone defects.

The mechanism of calcium silicate decreasing the absorption

rates of calcium sulfate-based compounds is that calcium silicate

hydrate, a product of the reaction between calcium silicate and

water, has a significantly lower dissolution rate than calcium

sulfate dihydrate and in turn decreases the degradation rate of

the composite materials. Moreover, the adherence of calcium

silicate hydrate particles on the surfaces of calcium sulfate

dihydrate crystals could reduce the contact of calcium sulfate

dihydrate crystals with the soaking solution, thereby resulting in

a decrease in dissolution. Huan et al. (44) investigated the effect

of tricalcium silicate on the degradability of composite cements

and found that the higher the percentage of tricalcium silicate

was, the lower the degradation rate. It took 7 days to be

completely absorbed for pure CSH, 10 days for 20% tricalcium

silicate, and 21 days for 30% and 40% tricalcium silicate. In
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addition, the compressive strength increased with the addition of

tricalcium silicate. Multiple studies have shown that tricalcium

silicate can combine with various substances to improve the

compressive performance of composite bone repair materials. For

example, Chen et al. (45) found that the compressive strength of

tricalcium silicate/sodium alginate is as high as 54 Mpa, while Ji

et al. (48) successfully fabricated novel bioactive organic–

inorganic composite bone elements from tricalcium silicate,

sodium alginate, and calcium sulfate hemihydrate. Depending on

the synergistic combination of hydration and gelation, composite

cements (45/45/10 wt%) obtained extremely higher compressive

strength by up to 92.41 MPa as compared with each single

component. A result from a previous study by Hao et al. (49)

showed that the percentage of residual material for cement with

40% tricalcium silicate was 69.33% at the 8th week and 47.16%

at the 12th week after implantation, whereas the pure CSH was

resorbed entirely at the 8th week. The author concluded that the

reason for the lower degradation rate of composite cement than

pure CS was due to the presence of tricalcium silicate, which has

moderate degradability. In addition, Chen et al. (50) found that

the addition of dicalcium silicate had the ability to decrease the

degradation rate of CSH. The pure CSH cement degraded

completely by 90 days, while the degradation rates of CSH with

20%, 40%, 60%, 80%, and 100% CSH were still as high as 60%,

50%, 41%, 29%, and 12% after 180 days of the soaking

experiment, respectively, which indicated a significant difference.

In short, these results show that calcium silicate can significantly

reduce the degradation rate of calcium sulfate, and the

degradation rate decreases with increasing calcium silicate

concentration. At present, there is still no commercially available

product of the calcium silicate/calcium sulfate complex. However,

the advantages of calcium silicate make it one of the more

popular composite materials.

Calcium phosphate has good osteogenic and biocompatibility

and can be prepared into different forms (51). Compared to CS,

α-Tricalcium phase(α-TCP) has injectability, plasticity, self-

setting, and a slow degradation rate (52). Calcium phosphate is

the first inorganic salt material used in the preparation of

calcium sulfate-based products because of its slower absorption

performance. Whether calcium phosphate can reduce the

degradation rate of calcium sulfate remains controversial.

Researchers have attempted to combine calcium phosphate and

CS to prepare bone cement with an appropriate degradation

rate and maintain a balance with the formation rate of new

bone (4). Cheng et al. (53) successfully developed a novel type

of tricalcium phosphate/calcium sulfate particles, which are

injectable, biocompatible, osteogenic, and in situ self-fixing

two-phase particles capable of forming macroporous scaffolds.

Xu et al. (54) mixed silk fiber nanofibers (SFF) or deionized

water with α-CSH and calcium sulfate dihydrate (CSD), and

α-TCP solid phase was mixed in different proportions to prepare

composite materials. When the α-TCP content is less than 25%,

SFF and the addition of α-TCP can reduce the degradation rate of

bone cement from 98.6 ± 2.7% to 55.5 ± 14.1%. Yang et al. (55)

reported the in vivo performance of injectable biphasic synthetic
Frontiers in Surgery 04
bone graft material composed of calcium sulfate and β-tricalcium

phosphate. Their results revealed that new bone formation was

detected with an appropriate material resorption after 8 weeks into

the sheep vertebral bone defect model. Nadkarni et al. (46)

reported that composites of calcium sulfate with calcium

phosphate can be formulated to resorb at controlled rates. A

composite containing 35% of the weight of calcium phosphate

showed that 33.3% of the implant volume was resorbed after

3 weeks in femoral metaphyseal defects in rabbits, while after

6 weeks, the resorption was 51.28% (56). An in vitro dissolution

study indicated that 90% of the implant material was resorbed

after 7 days for the pure CaSO4 controls and after 24 days for the

CaSO4/CaPO4 composite graft samples (57) (Figure 1).

As documented, the ideal absorption time of the material

should be 12–16 weeks, requiring a moderate and homogeneous

degradation performance in equilibrium with the bone healing

process (58). It is believed that the degradation time of calcium

sulfate can reach this ultimate goal by adjusting the type and

dosage of additives.
Compressive strength

Compressive strength is a crucial factor in assessing the

excellent performance of calcium sulfate bone materials (59, 60).

Bone materials with high compressive strength exhibit

advantages such as high strength and robust durability, making

them more suitable for areas with heavy loads (61). However,

their compressive strength is not directly proportional to their

performance. Excessive compressive strength can result in

heightened foreign body sensation and may even impact the

natural healing of bones (62). Conversely, bone materials with

low compressive strength share characteristics closer to natural

bone, but they also manifest the same drawbacks. Due to limited

compressive strength, they are prone to brittle fractures and

diminished mechanical stability (63). Low compressive strength is

one of the main defects of calcium sulfate, which limits its

application in load-bearing areas. A previous study showed that

the compressive strength of medical-grade injectable CS is only

2.4 MPa after 7 min of mixing and approximately 10 MPa after

1 h (22). A higher initial mechanical strength is of great

significance to provide temporary structural support during

remodeling (64). In addition, the mechanical properties of

materials will also change greatly with the time of implantation

or immersion (65), which will affect defect stability during the

whole process of new bone growth. The mechanical strength of

the material should be maintained for at least 4 weeks optimally

in vivo (66). However, Chen et al. (67) reported the weight loss

of calcium sulfate-based compounds at different time points after

SBF soaking and found that the compressive strength of the

cement decreased to 13.6 MPa after 14 days from 18.0 MPa after

immersion for 1 day and then sharply dropped to 2.7 MPa after

42 days. We can infer that the mechanical properties of calcium

sulfate are characterized by the inherent low compressive
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strength and sharp decrease of compressive strength with

rapid absorption.

The mechanism of compressive strength in the conversion of

hemihydrate calcium sulfate to dihydrate calcium sulfate has

been elaborated. Morphological studies by Singh et al. (68) have

shown that the strength developments in the hydrating

hemihydrate paste are related to the interlocking structure of

CSH. Finot et al. (69) found that the mechanical properties of

calcium sulfate are related to interlocking structures and

adhesion forces between particles during setting by atomic force

microscopy. Amathieu (70) also proposed that the mechanical

strength is due to an interlocking structure and intercrystalline

interactions. Thus, the combined effect of the interlocking

structure and the force of adhesion between gypsum crystal faces

controls the mechanical properties. However, it is challenging to

manufacture a high compressive strength similar to that of

PMMA by relying solely on the original interlocking structure

and adhesive force.

Considerable efforts have been made to improve compressive

strength. Nilsson et al. (64) found that the compressive strength

decreased with increasing tricalcium phosphate (TCP), reached a

minimum at 20 wt% (5 MPa), and then increased linearly with

the increasing weight proportion of TCP, starting from cement

containing 20 wt% to cement consisting only of TCP (34 MPa).

The authors deemed that the structure of interlocking needles

produced the strength of calcium sulfate dihydrate, which was

lost when less than 20% TCP was added. Sony et al. (71)

investigated the effect of the addition of hydrogen

orthophosphate on the mechanical properties of calcium sulfate

paste and found that the compressive strength increased with

higher concentrations of hydrogen orthophosphate, which may

possibly have been driven by the decrease in particle size due to

the occurrence of secondary nucleation during precipitation and

the consequent tight packing. In addition, the interconnecting

aggregate structures also have a significant role in increasing the

compressive strength. Chang et al. (72) found that the

compressive strength increased as calcium phosphate cement

(CPC) was added and was strongly correlated with the weight

ratio of CPC. The lowest compressive strength was that of the

pure CSH cement (15.3 MPa), and the highest compressive

strength was that of CPC (40.4 MPa).

In addition, calcium silicate has been shown to improve the

compressive strength of calcium sulfate. Huan et al. (46)

investigated the effect of tricalcium silicate on the mechanical

properties of composite cements and found no significant

difference in the compressive strength between CSH alone and

CSH containing tricalcium silicate after the final setting time.

However, a significant difference was seen after a prolonged time,

and the compressive strength of CSH with 40% tricalcium silicate

was 11.9 ± 0.6 MPa, which was significantly higher than the

compressive strength of pure CSH (5.8 ± 0.5). Chen et al. (50)

found that the incorporation of dicalcium silicate decreased the

mechanical properties of CSH in a short period after the final

setting time because the hydration reactions of calcium sulfate

and silicic acid were inhibited by each other by mutually

hindering contact with water. Thereafter, the compressive
Frontiers in Surgery 05
strength increased with increasing dicalcium silicate content. In

addition, the authors investigated the relationship between the

strength and soaking time in SBF and found that all specimens

gradually lost their compressive strength with an increased

soaking time. Bioglass, whose main component is silicate, has

been used to improve the strength of calcium sulfate. Mehran

Dadkhah et al. (73) compared the compressive strengths of

calcium sulfate, calcium sulfate with 20 wt% bioglass, and

calcium sulfate with 40 wt% hydroxyapatite and found that CSH

containing bioglass exhibited the highest compressive strength

after setting for 7 days (18.1 ± 0.8 MPa), followed by pure CSH

(16.5 ± 3.1 MPa) and CSH containing HA (7.3 ± 0.6 MPa).

However, the increase in compressive strength occurred at the

cost of prolonging the setting time and accelerating the

degradation rate. After 28 days of soaking in SBF, 83.3% of the

CSH/bioglass compound, 61.5% of the pure CSH, and 100% of

the CSH/HA compound were degraded. In addition, the final

setting time increased from 31 min for pure CSH to 57 min for

CSH/bioglass and 51 min for CSH/HA. The mechanism of

increasing compressive strength by adding calcium silicate into

calcium sulfate was proposed as follows: (1) calcium silicate

hydrate particles tend to fill the micropores between the calcium

sulfate dihydrate crystals, in turn reducing the microporosity of

the bone cement; and (2) the continuous hydration of tricalcium

silicate results in the progressive polymerization of the calcium

silicate hydrate gels and the development of a solid network,

which could further fill the vacant regions within the composite

cement, reduce the porosity of the material after prolonged

setting time, and enhance the long-term compressive strength of

the composite cement (46).

In addition, some additives can decrease the strength of

calcium sulfate due to the reduction in the contact points

between particles and weakening of adhesion forces (2). The

impact of hydroxyapatite on the compressive strength of calcium

sulfate is controversial. In vitro studies by Nilsson et al. (56)

found that the strength decreased with increasing HA content

because of the absence of reaction or chemical bonding between

calcium sulfate and HA. SEM showed that the two phases are

only held together by the CSD matrix. It can be inferred that

HA is merely mechanically incorporated into the crystal structure

and does not contribute to binding the material together.

However, great achievements have been made in the clinical

application of the mixture of calcium sulfate and HA, especially

in the treatment of elderly patients with osteoporotic spinal

fracture through percutaneous vertebroplasty (74).
Wound drainage

In clinical applications, delayed wound healing or wound

drainage is a recognized complication, especially in subcutaneous

bones such as the tibia and ulna or when larger volumes of

calcium sulfate are used (75). Friesenbichler et al. (76) originally

attempted to evaluate the efficacy of calcium sulfate/TCP on the

resorption profile and bone healing in 40 patients with bone

defects in a prospective study, but the study was stopped as a
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result of serious complications after enrollment of the first 31

patients. In the report, 16% of patients had wound-related

complications. In all, 2 patients experienced delayed wound

healing due to sterile inflammation adjacent to the implants, 1

patient suffered from moderate-to-severe skin damage in the area

of the scar and needed revision surgery, and 2 other patients

developed inflammatory cystic formations in the soft tissues with

sizes up to 15 cm. The authors did not support this type of bone

substitute used in the treatment of bony defects. Saadoun et al.

(77) reported that all 3 patients with spinal tumors had severe

complications after cervical surgery. Of these patients, 2 patients

suffered from wound infection and skin breakdown, and 1

patient experienced delayed pharyngeal perforation because of

inflammatory destruction induced by adjacent calcium sulfate/

TCP implants. In addition, the authors investigated the incidence

of wound breakdown from 10 orthopedic surgeons in different

units that used sulfate/TCP at least once as a bone filler during

non-spinal surgery, finding that 40% of orthopedic surgeons

experienced wound breakdown/purulent discharge.

With the increasing use of calcium sulfate in clinical

application, wound problems have become a more concerning

topic, compelling clinicians to identify the possible causes or

mechanisms. Currently, the possible causes of this problem still

include rapid resorption and subsequent low pH values. Previous

studies have noted that the degradation products (such as sulfate

radical ions) of calcium sulfate decrease the pH and produce an

acidic microenvironment, which might lead to an inflammatory

reaction with host tissues in vivo (67). The early use of pure

calcium sulfate has revealed the disadvantage of delayed wound

healing and osteolytic processes during resorption by pH

lowering (23). An acidic microenvironment has been implicated

in causing some local wound issues, with serous ooze in a

proportion of cases (78–80), although this seems to be self-

limiting (81). In addition, we hypothesized that the placement of

calcium sulfate alters the osmolality of the operating field,

leading to the movement of water out of cells with the

accumulation of fluid and wound drainage (80–82).

However, numerous of studies have revealed that changes in

the extracellular fluid pH of the local biological

microenvironment can profoundly affect cell metabolism and

function (83, 84). Walsh et al. (85) reported that the potential

mechanism for inducing osteogenesis at low pH is that local

acidity leads to the demineralization of adjacent bone, releasing

matrix-bound BMPs and resulting in a stimulatory effect. We

can infer that a local acidic environment caused by the

dissolution of calcium sulfate has two functions: positive effects

on new bone formation and negative effects on incision healing.

How to reduce implant-related complications without

jeopardizing osteogenic properties is still controversial.

Considering the causes of complications, a possible method to

inhibit wound-related complications should be to incorporate

alkaline additives or materials with low degradation performance.

The former can buffer the low pH caused by calcium sulfate

absorption, and the latter can avoid a great release of sulfate ions

to surrounding soft tissues in a short time after implantation.
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Previous studies have shown that the degradation products of

calcium carbonate and silicate are alkaline substances, which can

neutralize the acidic environment produced by the dissolution of

calcium sulfate. D. Pförringer et al. (43) demonstrated that the

rationale for the use of calcium carbonate as an additive is its

ability to delay degradation of CS and buffer the pH value in the

implant region, thus counteracting healing problems of the tissue

in a rabbit model. Feng et al. (86) pointed out that silicates

neutralize the acidic degradation byproducts and stabilize the pH

of the surrounding environment. Lin et al. (30) investigated the

effect of calcium silicate on the pH of CSH composites and

found that the pH values of the composites containing calcium

silicate rapidly increased with an increase in setting time,

achieving a maximum (pH 8.8–9.3) at 24 h, and thereafter

remained stable. In contrast, the pH value of pure CSH was

reduced to 7.0 within 8 h and then maintained a small change.

The results of an in vitro study by Wang et al. (84) suggested

that the addition of calcium silicate with or without Sr into

calcium sulfate cement may have caused a pH fluctuation toward

high pH values within the initial 7 days, and it became relatively

stable for the remaining soaking procedure. Perhaps this is of

great benefit for osteogenic cell activity and bone regeneration.

Ding et al. (87) investigated the effect of magnesium–calcium

silicate on the pH value of the solution and found that the pH of

pure CSH decreased sharply from 7.4 to 6.96 within 14 days and

further decreased to 6.89 after soaking for 84 days. However, the

pH for those containing 20 wt% and 40 wt% magnesium–

calcium silicate showed mild changes (from 7.4 to 7.22 and from

7.4 to 7.26, respectively) within 14 days and gradually increased

to 7.28 and 7.34, respectively, after soaking for 84 days. The

author concluded that magnesium–calcium silicate could

neutralize the acidic degradation products of calcium sulfate and

prevent the pH from dropping. In addition, magnesium–calcium

silicate markedly improved the attachment, proliferation, and

differentiation of cells on the surface of the bone graft. However,

the authors also found that the degradation ratio increased, and

the compressive strength decreased with increasing m-MCS

content, suggesting that calcium magnesium silicate is not an

ideal additive for calcium sulfate.

In addition, the effect of calcium phosphate on pH has also

been reported. Chen et al. (67) studied the physical and chemical

properties of a mixed power containing tetracalcium phosphate

(TTCP)/dicalcium phosphate anhydrous DCPA/calcium sulfate

hemihydrate with a weight of 2.69:1:4.51 and found that the pH

value of the immersion solution decreased from 6.5 for 1 day to

6.2 for 3 days due to the dissolution of CSH and formation of

CSD. Within 7 days, the pH value of the solution started to

increase, probably due to the continual dissolution of TTCP and

DCPA. After 7 days, the average pH value became 6.6 and

remained stable until 28 days. After 42 days, the average pH

value decreased to 6.3, probably as a result of the formation of

HA and the dissolution of CSD. All pH values were easily found

to be in the weakly acidic range from 6.2 to 6.6 during the entire

immersion process when calcium phosphate was incorporated

into the CSH powder.
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At present, it is generally believed that the wound problem

could be related to the acidic environment caused by the

degradation products of calcium sulfate. From the aspect of

production technology, additives that can increase the pH value

or slow the release of acid, such as sulfate ions, should be added.
Hypercalcemia

Hypercalcemia resulting from calcium sulfate is a rare but

severe side effect, and alterations in mental status are the most

common clinical symptoms. In addition, a few patients may have

renal failure or acute encephalopathy secondary to hypercalcemia

or antibiotic toxicity (88, 89). Hypercalcemia was first described

in a canine model, but elevated serum calcium levels were not

sustained, and no symptoms were noted in the 1950s (41). In

2005, the FDA warned that calcium sulfate may cause

hypercalcemia based on an adverse reaction report about

transient hypercalcemia following the placement of vancomycin-

infused CSBs in a patient undergoing hip arthroplasty (90).

However, it was not until 2015 that the first clinical case of

hypercalcemia following the use of absorbable calcium sulfate in

hip arthroplasty was reported and published by Carlson et al.

(88). Another study in the same year by Kallala et al. (91)

demonstrated that 3 of 15 patients with a periprosthetic joint

infection developed hypercalcemia, with 1 patient developing

symptoms of altered mental status, who received CS-containing

antibiotics in revision arthroplasty.

The reasons for hypercalcemia resulting from the use of

calcium sulfate are unclear (82). One hypothesis is a dose-

dependent relationship between the volume of calcium sulfate

used and hypercalcemia (91). Kallala et al. (93) evaluated

complications of CS in a cohort of 755 patients with revision

arthroplasty: 41 patients developed hypercalcemia, of whom 2

exhibited symptoms and received treatment with intravenous

fluids and a single dose of bisphosphonate. The authors found

that the incidence of hypercalcemia increased with the dosage of

calcium sulfate. Although the conclusion was drawn from the

largest number of cases (93), no direct correlation between

hypercalcemia and calcium sulfate concentration was found in

subsequent studies. A recent study by Jiang et al. (94)

investigated the relationship between the incidence of

hypercalcemia and the dosage of calcium sulfate in patients who

received local CS implantation for the management of

posttraumatic osteomyelitis and found that none of the patients

had hypercalcemia, and no significant links were identified

between CS volume and postoperative calcium levels. In another

recent case report, Vora et al. (88) demonstrated that the volume

of CS placed was not related to hypercalcemia. To date, there is

no evidence that a large amount of calcium sulfate can increase

the risk of transient hypercalcemia.

Another possibility is that the sudden release of Ca2+ into body

fluid due to rapid degradation of CS leads to locally increased

concentrations of calcium, which then enters the blood vessels in

a short period (92). Carlson et al. (89) reported that the

complete absorption time of CS is only 5 days after surgery in
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patients who underwent surgical placement of calcium-based

beads into a hip arthroplasty, which could be the cause of

hypercalcemia. Challener et al. (95) found accelerated

degradation of calcium sulfate beads through a CT scan of the

lower extremity, which made the authors highly suspicious that

hypercalcemia might be related to the degradation rate.

Interestingly, patients with hypercalcemia are those with

periprosthetic joint infections. In addition, Table 1 shows that all

calcium sulfate materials used in these studies were mixed with

antibiotics in advance. We can infer from the above that

antibiotics coated with calcium sulfate damage the interlocking

structure and reduce the adhesion forces between calcium sulfate

particles, which may greatly increase the degradation rate and

lead to the release of large amounts of calcium ions and

antibiotics into body fluids (89). At present, there is no report

about this complication in patients with spinal fusion, bone

defect reconstruction, and bone non-union.

While few studies have reported methods to overcome this

defect, it can be observed that controlling the degradation rate

can prevent hypercalcemia. The method for controlling the

degradation rate has been introduced above and will not be

repeated here. Except for the defects of calcium sulfate itself,

clinicians should be reminded to pay attention to the mental

state of patients and monitor serum calcium and creatinine levels

within 72 h after calcium sulfate implantation (95). Patients at

risk of developing hypercalcemia, including those with pre-

existing hypercalcemia, renal impairment, critical illness,

prolonged immobilization, and parathyroid disorders, should be

approached with additional caution, and alternative strategies

should be considered.

Another way to prevent hypercalcemia is through the addition

of hydrophobic material, which renders the originally hydrophilic

calcium sulfate more hydrophobic, and ensuring that no relevant

quantities of calcium ions are dissolved in the blood (11).

Hydrophobic materials generally refer to organic materials, which

are not addressed in this study. Further studies concerning the

effect of organic materials on the properties of CS are needed.
Osteogenic activities

Calcium sulfate pellets or bone cement have been clinically used

for more than a century because of their biocompatibility and

biodegradability. At present, there are two possible mechanisms of

osteogenesis (96). The first is that the release of calcium and

sulfur ions in the biological environment results in apatite

formation, and elevated calcium ion concentrations may increase

osteoblastic activity, including osteoblastic genesis and

differentiation (96–98). It can promote bone regeneration, that is,

improve the mechanical stability of bone. The second is that a

local drop in pH during calcium sulfate dissolution causes surface

demineralization of the surrounding bone and subsequent

exposure of growth factors such as transforming growth factors

and bone morphogenetic proteins, thus stimulating new bone

formation (88, 99). In addition, mechanical stability is also

necessary in the process of bone healing (24). In 1892, Dreesmann
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TABLE 1 Clinical application of calcium sulfate and antibiotic mixed bone material.

Author State
(time)

Gender Age Disease Site Number Product Antibiotic

Vora and Ali (89) USA
(2019)

Female 58 Infection after arthroplasty left hip 1 – –

Kallala and Haddad (92) UK
(2015)

– 64.8
(41–
83)

Infection after arthroplasty Revision arthroplasty 3/15 Stimulan 1 g vancomycin
240 mg
Gentamicin per 20 g CS

Magdaleno and McCauley
(93)

USA
(2019)

Female 61 Infection after arthroplasty Right knee 1 tobramycin and
vancomycin

Kallala et al. (94) UK
(2018)

– – after arthroplasty 456 knee and 299 hip 41/755 Stimulan –

Challener and Abu Saleh
(96)

USA
(2019)

Female 90 Infection after internal
fixation

Left trochanteric
fracture

1 – 7.2 g gentamicin
6 g of vancomycin
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et al. (100) first reported the use of calcium sulfate to treat large bone

defects. Subsequent reports showed good results with complete bone

regeneration (101, 102). Peltier (41) reported on 20 patients and

concluded that calcium sulfate showed good biocompatibility and

did not cause any complications even in infected cavities. In

addition, Siemund et al. (103) first reported the use of calcium

sulfate-based bone cement to replace PMMA in the treatment of

osteoporotic vertebral fracture. Then, Rauschmann et al. (104)

used calcium sulfate/hydroxyapatite as a substitute for PMMA to

treat 15 patients with osteoporosis vertebral fractures involving 16

vertebrae and found that pain relief was maintained over 18

months and that no adjacent fractures were observed. Other

studies have also proven the efficacy of calcium sulfate cement in

the treatment of osteoporotic or traumatic vertebral fractures by

percutaneous vertebroplasty (74, 105).

However, the osteogenic activity or intrinsic osteoinduction of

calcium sulfate is still controversial (106). A prospective

randomized controlled trial by D’Agostino et al. (107) did not

demonstrate a beneficial osteogenic effect of the calcium sulfate/

DBM complex in the treatment of this category of distal radial

fractures. Yu et al. (108) reported the poor results and early

failure of using CaSO4/CaPO4 composite grafts for the treatment

of osteonecrosis of the femoral head. The author did not

recommend continuing the application of such materials. The

results were completely opposite to those of Civinini et al. (109),

who found that the use of CaSO4/CaPO4 composite grafts could

relieve hip pain and prevent the progression of osteonecrosis of

the femoral head. Additionally, Turner et al. (33) identified

that calcium sulfate merely provided an osteoconductive

substrate. Furthermore, Beuerlein et al. (110) clearly elucidated

that the shortage of calcium sulfate was neither osteoinductive

nor osteogenic.

Although the osteogenesis mechanism has been reported by

researchers, several poor properties of calcium sulfate for new

bone growth were not ignored. First, the voids between implants

and surrounding bone by rapid absorption made calcium sulfate

lose its osteogenesis ability, which is an indisputable fact. In

addition, the implant cannot provide a long enough mechanical

environment for osteogenesis, which has proven to be possible by

Yu et al. (97), who pointed out that although the graft may have

enough strength initially, its structural integrity would be lost in
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the very early postoperative period, which damages the

mechanical environment of osteogenesis during new bone

formation. Third, the implant cannot form chemical bonds

between the calcium sulfate grafts and bone tissue, which may

influence the differentiation, metabolism, and growth of

osteoblasts (111, 112). Fourth, the lack of porosity has been

shown to decrease the osteoconductivity of calcium sulfate, having

an adverse impact on creeping substitution (113, 114). Therefore,

calcium sulfate is rarely used alone in clinical applications (115).

To promote osteogenesis, additives should be selected carefully.

Any additives that can deteriorate the degradation rate or decrease

the compressive strength can affect new bone growth (36), which

also explains the poor effect of the CS/DBM complex (116, 117).

Another study by Kelly (68), in comparing the effect of pure

calcium sulfate and the calcium sulfate complex on osteogenesis,

also proved that DBM or autogenous bone may decrease new

bone growth, finding that patients treated with calcium sulfate

alone had 99% pellet resorption and 98% bone growth at 6

months and 100% pellet resorption and 99% bone growth into

the defect at 1 year. Patients who were treated with the calcium

sulfate complex had 98% pellet resorption and 83% bone

ingrowth at 6 months and 100% pellet resorption and 92% bone

ingrowth at 1 year.

Additives that can improve the properties of calcium sulfate

can promote osteogenesis. Previous studies showed that the role

of silicate may extend beyond the ability to form an HAP surface

layer that bonds to bone, and silicon dissolved into the body

fluid could upregulate osteoblast proliferation, differentiation, and

bone-related gene expression (118). In addition, an appropriate

Si concentration is beneficial to collagen type I formation (119).

Hao et al. (49) found that soluble silicate contributed to the

formation of an amorphous SiO2-rich surface layer, which

attracted the migration of Ca2+ and PO43−, forming a calcium

phosphate (CaeP)-rich layer on silicate-based materials that

ultimately formed a hydroxyapatite (HAP) layer after

crystallization of the CaeP layer; HAP could bond to living bone.

Urban et al. (57) investigated the effect of calcium phosphate on

the osteogenesis of calcium sulfate in a critical-sized canine bone

defect model. They found that the area fraction of new

mineralized bone was twofold greater in defects treated with the

composite graft material than in defects treated with
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conventional CaSO4 pellets and in normal bone at 13 weeks after

implantation. The authors observed that the new bone layered on

the surfaces of the residual DCPD matrix and TCP material,

forming a concentric ring-like pattern. The addition of calcium

carbonate can promote the formation of carbonated apatite and

induce blood vessel growth or new bone formation

(120). D. Pförringer (43) reported that the addition of calcium

carbonate can delay the degradation of the implants and result in

synchronization of the ingrowing bone with biomaterial

resorption but does not have negative effects on biocompatibility.

In terms of improving osteogenesis, the purpose of adding

inorganic salt is mainly to decrease the resorption rate and

provide a stable microenvironmental pH, which promotes the

deposition of calcium salt and metabolic activity and contributes

to cell adhesion, proliferation, and differentiation of osteoblasts

(118, 119). In fact, the osteogenesis of calcium sulfate is not as

bad as the values in the literature, so it is very important to

choose the right indication. With the development of preparation

technology for the calcium sulfate complex, its osteogenesis

will improve.
Conclusions

Calcium sulfate is a relatively inexpensive, widely available

synthetic bone substitute. However, pure calcium sulfate is rarely

used in the clinic because of its poor compressive strength and

rapid degradation rate and subsequent complications, such as

wound drainage, hypercalcemia, and osteogenic activities.

Calcium sulfate-based composites are the main clinical

application form, in which inorganic salt is the main additive to

improve the physical and chemical properties of calcium sulfate.

At present, common inorganic composite materials include

calcium phosphate, calcium carbonate, and calcium silicate.

(1) Calcium carbonate has a positive effect on reducing the

degradation rate, improving the osteogenic ability, and

buffering the acidic environment, but this is at the expense

of compressive strength (119). Calcium carbonate can only

be used to fill small bone defects or non-weight-bearing

parts and treat bone defects as a drug release carrier (121).

(2) Calcium silicate, including tricalcium silicate and dicalcium

silicate, has the ability to stimulate new bone formation,

decrease the degradation rate, and increase the compressive
Frontiers in Surgery 09
strength of calcium sulfate (118). Bioglass containing silicon

dioxide can increase compressive strength at the cost of

prolonging setting time and accelerating the degradation rate (73).

(3) Calcium phosphate, including hydrogen orthophosphate and

tricalcium phosphate, has been shown to significantly

accelerate calcium phosphorus deposition, decrease the

degradation rate, and reinforce the CSH composite at

different time stages in vivo and in vitro (122). However, the

effect of hydroxyapatite, as a form of calcium phosphate, on

compressive strength is still controversial (56).
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