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Strategies to attenuate
maladaptive inflammatory
response associated with
cardiopulmonary bypass
Debolina Banerjee, Jun Feng and Frank W. Sellke*

Division of Cardiothoracic Surgery, Department of Surgery, Brown University/Rhode Island Hospital,
Providence, RI, United States
Cardiopulmonary bypass (CPB) initiates an intense inflammatory response due
to various factors: conversion from pulsatile to laminar flow, cold cardioplegia,
surgical trauma, endotoxemia, ischemia-reperfusion injury, oxidative stress,
hypothermia, and contact activation of cells by the extracorporeal circuit.
Redundant and overlapping inflammatory cascades amplify the initial response
to produce a systemic inflammatory response, heightened by coincident
activation of coagulation and fibrinolytic pathways. When unchecked, this
inflammatory response can become maladaptive and lead to serious
postoperative complications. Concerted research efforts have been made to
identify technical refinements and pharmacologic interventions that
appropriately attenuate the inflammatory response and ultimately translate to
improved clinical outcomes. Surface modification of the extracorporeal circuit
to increase biocompatibility, miniaturized circuits with sheer resistance,
filtration techniques, and minimally invasive approaches have improved clinical
outcomes in specific populations. Pharmacologic adjuncts, including aprotinin,
steroids, monoclonal antibodies, and free radical scavengers, show real
promise. A multimodal approach incorporating technical, circuit-specific, and
pharmacologic strategies will likely yield maximal clinical benefit.
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1 Introduction

The advent of cardiopulmonary bypass (CPB) revolutionized cardiac surgery and

dramatically improved patient outcomes. CPB activates various inflammation,

coagulation, fibrinolysis, apoptosis, and oxidation pathways. Exposure to nonphysiologic

conditions during CPB leads to an intense immunologic response that can affect the

function and recovery of multiple organ systems (1).

The body’s immunologic response is designed to sequester and destroy what it

recognizes as foreign. The initial stimulus or signal undergoes amplification due to

redundant and synergistic inflammatory cascades. Frequently, this results in activation

of both humoral and cellular components of the immune system, and the initial

inflammatory response to CPB is no different. The activation of these pathways leads to

release of multiple humoral mediators. Leukocytes, chiefly neutrophils, are then drawn

to the site of production of these mediators, become activated, and subsequently adhere

to endothelial cells by way of receptor interactions with adhesion molecules. Endothelial
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2024.1224068&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2024.1224068
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1224068/full
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1224068/full
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1224068/full
https://www.frontiersin.org/articles/10.3389/fsurg.2024.1224068/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2024.1224068
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Banerjee et al. 10.3389/fsurg.2024.1224068
cells in turn become activated, rendering regional and remote

capillary endothelium permeable to further migration of

neutrophils and other intravascular molecules. Extravasation

of neutrophils en masse results in release of large amounts of

cytokines, chemokines, vasoactive substances, proteases of the

coagulation and fibrinolysis systems, cytotoxins, and reactive

oxygen species (ROS). Elimination of foreign antigen is the final

step of this cascade of events.

Immunologic activation leading to inflammation is usually

physiologic and protective, often leading to self-limited

or subclinical organ dysfunction. However, on occasion,

nonimmunologic activation that persists following CPB can be

maladaptive and may progress beyond restoring homeostasis to

marked fluid shifts and formation of microemboli, particularly in

high-risk patients with limited functional reserve. This exuberant

systemic inflammatory response to CPB, often characterized as

systemic inflammatory response syndrome (SIRS), may manifest as

clinically significant increase in capillary permeability, interstitial

edema, and organ dysfunction. The link between CPB-induced

inflammatory response and adverse clinical outcomes is still not

well delineated. Several hypotheses have been proposed. One

hypothesis suggests the balance between pro-inflammatory and

anti-inflammatory cytokine release correlates with the magnitude of

multiorgan injury (2). Temporal and magnitude changes in

cytokine production patterns may further influence the clinical

presentation and course of SIRS postoperatively (3, 4). A second

hypothesis suggests SIRS is the result of a multifaceted

response with overall cytokine upregulation leading to both a

proinflammatory state (SIRS) as well as homeostatic, compensatory

anti-inflammatory response syndrome (CARS) leading to systemic

deactivation of the immune response, predisposing the patient to

immunosuppression and infectious complications (5). The multi-hit

hypothesis suggests CPB primes polymorphonuclear leukocytes

such that subsequent exposure to stimuli that otherwise may be

self-limiting (i.e., postoperative infection or ongoing ischemia)

results in enhanced cytotoxin release and downstream organ

dysfunction (5). This priming is thought to occur through various

processes, including the secretion of cytokines, leading to

pulmonary leucosequestration (5).

These harmful inflammatory effects are due to the interactions

of a wide spectrum of compounds, including inflammatory

triggers (complement-derived factors), mediators (cytokines and

adhesion molecules), or effectors (proteolytic enzymes, oxygen

free radicals, arachidonic acid metabolites, and immune

cells). Hallmarks of ensuing multiorgan dysfunction include

coagulopathy, myocardial dysfunction, pulmonary and renal

insufficiency, neurocognitive deficits, hepatic injury, splanchnic

bed hypoperfusion and bacterial translocation. Collectively, these

multiorgan effects have been linked to post-perfusion/post-pump

syndrome and ischemia-reperfusion injury.

Despite drawbacks attributed to the attendant inflammatory

response, CPB remains a mainstay technique in cardiothoracic

surgery, as it allows for adequate exposure of the lateral and

posterior coronary arteries and facilitates a bloodless field in

which to operate. While more drastic strategies have been

employed to blunt excessive inflammatory response and its
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sequelae (including off-pump coronary artery bypass and

minimally invasive techniques), an integrated approach to

modulate the stress response incorporating pharmacologic

measures and technical refinements has shown promise. Herein,

we characterize the pathophysiology of the inflammatory

response, and discuss potential strategies to intercept and

attenuate this response.
2 Pathophysiology of inflammatory
response following cardiopulmonary
bypass

Compared with off-pump approaches, CPB may trigger an

intense physiologic response due to several stimuli (Figure 1) (6, 7):

• Blood contact with synthetic surfaces within the perfusion

circuit and multiple tissues within the wound

• Abnormal blood-gas interface

• Pulsatile flow converted to laminar flow

• Hypothermia

• Surgical trauma

• Global myocardial ischemia during cardioplegic protection

• Ischemia-reperfusion injury to end-organs

• Endotoxemia proceeding from splanchnic hypoperfusion and

bacterial translocation

The inflammatory response following CPB is multifactorial, and

may become generalized and uncontrolled, leading to SIRS. The

“early” phase is initiated by blood contact with nonendothelial

surfaces of the extracorporeal circuit and ultimately involves

both humoral and cellular constituents of the immune system.

The “late” phase that perpetuates inflammatory cascades is

characterized by ischemia-reperfusion injury, endotoxemia,

coagulopathy, and heparin-protamine complex reactions (Table 1).

The link between inflammatory, coagulation, and fibrinolytic

cascades is complex and may partially be explained by acute phase

reactions during CPB similar to those seen in sepsis (8). Another

link may be nuclear factor kappa B (NFκB), a ubiquitous and

inducible transcription factor that is implicated during all

phases of the response but plays a central role in regulating pro-

inflammatory genes during the acute phase reaction (9).
2.1 Contact activation

The exposure of blood to air and nonphysiologic surfaces of the

extracorporeal circuit leads to simultaneous activation of

coagulation and fibrinolysis cascades as well as the complement

pathways of innate immunity (Figure 2).

Four proteins are involved in the contact activation pathway:

factor XII (Hageman factor), factor XI, prekallikrein, and high-

molecular-weight kininogen (HMWK). Upon exposure of blood

to foreign material of the CPB circuit, factor XII is converted to

its active form in the presence of prekallikrein and HMWK.

Activated factor XII activates factor XI of the intrinsic pathway,

ultimately leading to thrombin formation. Activated factor XII
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FIGURE 1

Inflammantory cascade following cardiopulmary bypass initiation. Figure created using Biorender.com.

TABLE 1 Humoral and cellular factors influencing systemic inflammatory
response associated with CPB.

Humoral Cellular
Contact activation Endothelial cell (EC) activation

Intrinsic coagulation Adhesion molecules

Extrinsic coagulation Leukocyte activation

Complement activation ○ Neutrophils

Fibrinolysis activation ○ Lymphocytes

Cytokines ○ Platelets

Endotoxin ○ Monocytes
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also converts prekallikrein to kallikrein. Kallikrein then: (1) feeds

back to facilitate continued activation of factor XII, (2) induces

cleavage of HMWK to form bradykinin, (3) potentiates

mediators of the alternative complement pathway, and (4)

promotes conversion of plasminogen to plasmin. Plasmin is an

important link to the fibrinolytic cascade. Plasminogen is

activated to plasmin by activated factor XII in the intrinsic

pathway during contact activation, and by tPA as part of the

extrinsic pathway later during CPB. In addition to thrombin,

inflammatory mediators (cytokines and endotoxin) can activate

plasminogen. Activated factor XII and plasmin both play a role

in stimulating the classical complement pathway (10).
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Activation of prothrombin to thrombin by way of the extrinsic

pathway contributes significantly to systemic thrombin generation

and thrombus formation. Circulating levels of tissue factor and

activated factor VII increase following CPB and surgical trauma,

correlating with stimulation of pro-inflammatory mediators

interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and

endotoxin (11–13). CPB necessitates anticoagulation in the form

of high-dose heparin to prevent immediate clotting within the

circuit. Heparin potentiates antithrombin III to inhibit thrombin

and other coagulation factors (activated X, IX, XI, XII, and

kallikrein). During CPB, fibrinogen and fibrin are readily

deposited onto circuitry, thus creating a surface to which

thrombin avidly adheres. Upon binding to deposited fibrinogen/

fibrin, thrombin undergoes a conformational change that renders

it resistant to inhibition by heparin-activated antithrombin III.

Thus, while heparin can inhibit systemic thrombin, it is unable

to inhibit surface-bound thrombin. The surface-bound thrombin

continues to generate more circulating thrombin, that can in turn

activate a number of constituent blood elements, including

platelets. Activated platelets can bind fibrin- and fibrinogen-

coated surface of CPB circuitry, and also can individually provide

a scaffold for prothrombinase complexes to form and convert

prothrombin to thrombin. While high-dose heparin can limit
frontiersin.org
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FIGURE 2

Coagulation-fibrinolysis pathway activation. uPA, urokinase; tPa, tissue plasminogen activator. Figure created using Biorender.com.
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fibrin-rich thrombus during CPB, it cannot prevent thrombin

generation per se. Thrombin levels, measured as thrombin-

antithrombin complex and prothrombin fragment, increase

within minutes of initiating CPB, further increase following

discontinuation of CPB, and persist for up to 60 days after

surgery (14–17). Heparin concentrations, antithrombin III levels,

and activated coagulation time are not associated with thrombin

generation (10, 18).

Activated factor XII, thrombin, kallikrein, and products of

fibrinolysis potentiate the inflammatory response. Activated

factor XII and kallikrein stimulate neutrophil aggregation and

degranulation. Thrombin induces endothelial cells to express

receptors to facilitate neutrophil binding. Fibrinogen fragment D

(D-dimer) disrupts the integrity of endothelial cells and

stimulates continued complement activation.
2.2 Complement activation

Contact activation by biomaterials is a critical inciting event to

downstream generation of humoral mediators through its

activation of the alternative complement pathway. The CPB circuit

lacks inhibitors normally found on endothelial cells that limit

cofactor C3 binding and activation. This contact activation,

potentiated by kallikrein, leads to activation of C3 and C5 (19).

Their active split products, C3a and C5a, are anaphylatoxins that

are potent chemoattractants (20). Their activity is mediated by
Frontiers in Surgery 04
complement receptor type 1 (CR1), a transmembrane glycoprotein

expressed on leukocytes that regulates complement pro-

inflammatory activity while inhibiting other complement

pathways. C3a is a potent stimulator of platelet aggregation. There

is a significant rise in plasma C3a levels with CPB associated with

its duration (2), which is not observed when CPB is avoided (19,

21–26). C5a avidly binds to neutrophil receptors (19, 24, 27, 28)

thereby stimulating them to be chemotactically drawn to sites of

C5a production (29, 30), aggregate and adhere to endothelial cells

(31–33), degranulate to release proteases (29, 34), and produce

ROS (35). C5a levels are more difficult to directly measure as C5a

is internalized rapidly upon binding to neutrophil receptors, but

several studies have shown decreased available C5a receptors and

increased levels of terminal complement complex C5b-C9, which

provide evidence for C5a generation during CPB (28, 36).

Endotoxin is a powerful activator of the alternative complement

pathway, with a smaller role in activating the classical complement

pathway (25). Endotoxin, or lipopolysaccharide Lipid A, arises

from cell walls of gram-negative bacteria and is released upon

disruption of their cell walls. They may appear in circulation

during CPB due to contamination of CPB circuitry, pulmonary

arterial catheters, intravenous fluids, or banked blood production.

The primary mechanism for endotoxemia, however, is due to

splanchnic hypoperfusion and vasoconstriction during aortic

cross-clamping and resultant transient gastrointestinal bacterial

translocation (37–40). Transient ischemia and laminar flow in the

gut increases intestinal permeability (37, 41), facilitating endotoxin
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release into circulation (42). Here, endotoxin can activate

complement and stimulate production of inflammatory cytokines

(43, 44). Endotoxin circulates in plasma by binding to LPS-

binding protein. This complex binds to CD14 receptors on

macrophages, enhancing TNF-α production (25, 45, 46).

Endotoxin also stimulates endothelial cells to produce IL-6 (43).

Levels of circulating endotoxin rise during and after CPB (25, 40,

42, 47–50), and are correlated with duration of aortic cross-

clamping during CPB (48). Elevated LPS levels lead to myocardial

dysfunction (46). Increased endotoxin levels in children with

congenital heart defects undergoing CPB are associated with

increased mortality after CPB (51).

CPB induces the classical complement pathway through contact

activation (activated factor XII and plasmin) and heparin reversal

with protamine, as evidenced by increased levels of the terminal

complex C5b-C9, C3a, and C4a (27, 28, 52, 53). This further

augments levels of C3a and C5a. The extent of complement

activation has been correlated with duration of CPB (19).

It remains unclear whether complement activation portends worse

outcomes. While higher levels of C3a have been reported in those

requiring prolonged mechanical ventilation, other groups have

failed to identify a correlation between complement activation and

acute lung injury or adverse hemodynamic responses (54–56).

Equivocal findings may be due to the difficulty of parsing out the

role of the complement system in the context of the complex

inflammatory response associated with CPB (57).
2.3 Conversion to laminar flow

Following initiation of CPB, physiologic pulsatile aortic flow is

converted to continuous laminar flow. Endothelial cells sense

mechanical stresses through their attachments to the basement

membrane and through membrane proteins on their luminal

surface. Changes in mechanical stresses result in changes in

downstream transcription of genes regulated by promoter regions

containing shear stress-responsive elements. Conversion from

pulsatile to laminar flow may induce expression of genes related

to a pro-inflammatory phenotype. One group showed differential

gene expression was responsible for a quiescent endothelial

phenotype (lung Kruppel-like factor) after endothelial cells were

exposed to pulsatile or laminar flow (58). Antioxidant proteins,

including thioredoxin reductase and ferritin, were among shear-

regulated gene products. Other studies have shown Mn2+- and

Cu2+/Zn2+-superoxide dismutase to be shear-regulated as well

(59). Reduced activation of transcription factor NFκB and

expression of pro-inflammatory cytokines, including IL-6, TNF-

α, and IL-1 (60, 61) as well as decreased endothelial activation

(62, 63) in the group undergoing pulsatile perfusion compared to

the group undergoing non-pulsatile perfusion has been described.
2.4 Oxidative stress

Free radicals are molecules with unpaired electrons that render

them highly reactive. ROS are free radicals derived from oxygen,
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and can be formed by activated neutrophils during their cytotoxic

oxidative burst as a response to C5a stimulation (64–66). Exposure

of blood to material of the CPB circuit as well as ischemia-

reperfusion both generate various ROS implicated in oxidative

damage, including superoxide anion, hydrogen peroxide, hydroxyl

radical, peroxynitrite, hypochlorous acid, and singlet oxygen.

Natural defense mechanisms to neutralize ROS and restore

balance (redox state) include enzymes and free radical scavengers.

Antioxidant enzymes include superoxide dismutase, glutathione

peroxidase, and catalases. Mitochondrial scavenger complexes

integrate thioredoxin and peroxiredoxin proteins (67–70). Should

the body’s detoxifying capacity be outstripped, ROS can cause

direct damage to endothelial cell and fibroblast membrane lipids

compromising membrane integrity, render proteins dysfunctional,

induce nucleic acid damage that results in downstream changes in

transcriptional programs via NFκB modulation, and provide

positive feedback to inflammatory cascades.

Direct measurement of ROS is difficult given its short half-

life and highly reactive properties, but indirect methods via

measurement of more stable intermediates have shown increased

ROS activity during and after CPB (24, 71–74). The onset of CPB

and aortic cross-clamping creates transient ischemia, subjecting the

myocardium and other organs to direct hypoxic cellular damage.

CPB itself may induce generation of ROS in the area drained by

the inferior vena cava (73, 74) as well as systemic oxidative stress

(75). Reperfusion occurs upon removing the aortic cross-clamp,

which generates further oxidative stress through recruitment of

activated neutrophils to post-ischemic tissue. Following

reperfusion, ROS may impair nitric oxide (NO) availability and

predispose myocardial vessels to spasm and thrombose (76–78).

A correlation has also been observed between timing of lipid

peroxidation and degree of complement activation (24).

Hypothermia may also influence ROS production by altering

neutrophil-endothelium interactions during CPB (79–82).
2.5 Cytokines

Cytokines are another major group of humoral mediators that

play a central role in inflammation and cell signaling. The body

produces cytokines constitutively whereby subsets of immune

cells maintain baseline levels of cytokines under normal

conditions. Cytokines must bind cell membrane receptors to

exert their effects, and the action of one or more cytokines is

necessary to mount an immune response. These molecules form

an intricate network in the development of inflammation, as the

production of one cytokine influences the synthesis or response

of others. The overlapping actions of different cytokines can be

explained by both pleiotropy (single cytokine: multiple effects)

and redundancy (multiple cytokines: same effect). The ability of

certain cytokines to signal via more than one type of receptor

complex also contributes to their pleiotropic actions wherein

separately activated pathways contribute to distinct downstream

effects. Simultaneously, redundant actions of cytokines allow for

signal amplification; different cytokine receptors with similar

motifs mediate coupling to other processes, ultimately leading to
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activation of converging inflammatory pathways in potentiating the

immune response.

Broadly, cytokines include tumor necrosis factor, interleukins,

interferons, and several growth factors. The production and release

of cytokines is induced by complement factors and their

degradation products during CPB-related acute phase reaction.

A number of other factors may also contribute, including

endotoxin, oxidative stress, ischemia-reperfusion, and effects of

cytokines themselves. While cytokines are generally considered to

be products of mature leukocytes, their secretion may be

modulated by other cell types, including platelets and endothelial

cells (83–90). The degree of the inflammatory response is strongly

influenced by the balance between pro-inflammatory (TNF-α, IL-

1, IL-6, and IL-8) and anti-inflammatory (IL-10) cytokines (3).

2.5.1 Tumor necrosis factor α (TNF-α)
Tumor necrosis factor α (TNF-α, or cachectin) functions within a

complex and tightly regulated cytokine network. It has a role in

orchestrating the inflammatory response by inducing expression of

other pro-inflammatory cytokines (IL-1 and IL-6) as well as

increasing its own production. It functions in cell signaling through

interactions with p55 and p75 receptors localized to the

myocardium (91). It induces nitric oxide synthase and therefore

increases concentrations of nitric oxide following CPB. It usually

peaks shortly after surgery and then undergoes rapid degradation,

but excessive production may lead to organ dysfunction. In the

lung, it induces apoptosis and has been implicated in pulmonary

complications. Infusion of antibodies to TNF-α prevented

pulmonary edema, improved oxygenation, and significantly reduced

markers of inflammation (neutrophil count, plasma TNF-α levels,

malondialdehyde concentrations) in a rabbit model (92). TNF-α

has been implicated in renal dysfunction as it induces fibrin

deposition in the kidney glomerulus, promoting cell infiltration and

vasoconstriction, thereby reducing glomerular filtration rate (93).

TNF-α and IL-1 synergistically suppress myocardial contractility

through a mechanism mediated by sphingosine impeding calcium-

induced calcium release from the sarcoplasmic reticulum. This may

result in low cardiac output, decreased vascular smooth muscle

tone, and development of thrombosis, thereby contributing to

dysfunction and hemodynamic instability after CPB (46, 94–96).

Trends in TNF-α levels following CPB are variable, as some studies

have shown increased levels while others have failed to demonstrate

this. Additionally, inter-individual differences in TNF-α production

may be attributed to genetic variability (97). In contrast to other

cytokines (i.e., IL-6), there is no evidence that indicates TNF-α is

released in large amounts following CPB (98).

2.5.2 Interleukins
Interleukins (IL) comprise a broad group of cytokines that

function as intermediaries between different leukocytes and regulate

various stages of the inflammatory response. IL-1 is an endogenous

pyrogen. Levels of IL-1β usually increase after CPB, but this

cytokine is difficult to detect due to hemodilutional effects of CPB.

The IL-1 response pattern is consistent with its role as a key

mediator of inflammation, both through its synergistic actions on

TNF-α as well as its induction of other pro-inflammatory cytokines,
Frontiers in Surgery 06
including IL-6. IL-6 is a pleiotropic cytokine role that chiefly

coordinates the acute phase reaction. It also induces the expression

of adhesion molecules on cardiac myocytes to facilitate neutrophil

adhesion, inhibits apoptosis in various cell types, enhances antibody

production by activated B lymphocytes, and has negative inotropic

effects on cardiac myocytes through induction of local nitric oxide

release (99–104). In this way, it may be more a precise marker for

progression of inflammation after CPB. A marked increased in IL-6

occurs during CPB, peaking within a few hours following CPB

(105, 106), with a gradual decrease toward preoperative levels within

24 h (28). Peak IL-6 concentrations were a function of aortic cross-

clamping duration. This characteristic trend in IL-6 levels has been

observed in the setting of bubble and membrane oxygenators (105),

after hypothermic and normothermic CPB (107), and with and

without heparin-coating CPB circuitry (28). The magnitude of

increase in IL-6 levels was positively correlated with duration of

CPB but not duration of aortic cross-clamp time (108). In the

pediatric population, duration of CPB and aortic cross-clamp time

were attributed to pronounced postoperative inflammation, with

only a modest influence of the degree of hypothermia (109). Rise in

IL-6 after CPB has been correlated with increasing age, as those

older than seventy years had a greater increase in plasma IL-6 levels

during ischemia and reperfusion than their younger counterparts

(110). Postoperative IL-6 levels are significantly higher in patients

with complications compared to those without (111). Increased

levels of IL-6 have been associated with myocardial dysfunction and

wall motion abnormalities (112, 113), while effects on

hemodynamics are less clear (114). Rise in IL-6 has not been

correlated with complement activation.

IL-8 is a potent chemotactic agent involved in the homing of

neutrophils and macrophages sites of inflammation (115). It may

also play a role in ischemia-reperfusion injury, as postoperative

cardiac troponin-I levels correlate strongly with IL-8 levels in

patients following coronary artery bypass grafting (CABG) (116,

117). It has been implicated in precipitating vascular damage,

particularly in the lungs and kidneys. Increased levels of IL-6 and

IL-8 following CPB have been reported (81, 106, 107, 113, 118–

123), and correlate with duration of cardiac ischemia during CPB

and regional wall motion abnormalities (113, 118).

IL-10 has anti-inflammatory properties via its downregulation

of pro-inflammatory cytokine synthesis by type 1 T helper cells,

neutrophils, and monocytes (124–126). It has been associated

with decreased production of TNF-α, IL-1, IL-2, and interferon-

γ, ROS and nitric oxide derivatives (124, 127, 128). While several

pro-inflammatory cytokines (TNF-α, IL-6, and IL-8) have been

shown to originate from myocardium (120, 121, 129), the liver

has been shown to be the primary source of IL-10 in patients

undergoing CPB (120, 121, 130, 131). Rapid and transient

secretion of IL-10 has been noted following CPB (132, 133).

In vivo kinetics of IL-10 release are similar to those observed in

murine endotoxemia experiments following lipopolysaccharide

challenge but contrast with in vitro data from human monocytes

following lipopolysaccharide stimulation (134, 135). IL-10

produced during CPB may represent an in vivo regulatory

mechanism for controlling activation of cells that synthesize pro-

inflammatory cytokines.
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There are several caveats in relating serum cytokine levels

associated with CPB to organ dysfunction. Plasma concentrations

often do not reflect local effects. Several cytokines may also

avidly bind to other plasma proteins, leading to inaccurate

detection. Inter-individual genomic differences also contribute to

heterogeneity in cytokine levels, and have implications for

identifying therapeutic targets and developing preventative

strategies that can be broadly applied. Genetic variants of

promoter regions encoding IL-6 (−174 G/C polymorphism, −572
G/C polymorphism), TNF-α (308 G/A polymorphism), and

antioxidant response elements (NQO1) have been linked to

increased cytokine production and postoperative complications

(136–142). A prevalent single-nucleotide polymorphism (SNP) of

the gene encoding IL-18 was shown to be associated with

increased TNF-α levels and decreased IL-10 levels. Apolipoprotein

E4 allele has been correlated with increased IL-8 and TNF-α

generation and decreased IL-10 levels, with a speculated link to

postoperative cerebral injury (143–145). While the A allele of this

SNP was associated with 30-day and 50-year mortality in the

INFLACOR study, post-hoc analysis revealed the C allele of −572
G/C polymorphism to be significantly associated with reduced

benefit of prophylactic administration of dexamethasone on

postoperative IL-6 levels compared to the G allele. Its effects on

C-reactive protein (CRP), however, did not appear to be genotype-

dependent. These genomic differences pose a challenge to

randomized controlled trials (RCTs) evaluating clinically relevant

responses to prophylactic measures. Second-generation studies,

including genome-wide association studies (GWAS), may be able

to more completely evaluate genotype-phenotype relationships.
2.6 Cellular immune activation

CPB-induced cellular immune activation plays a key role in the

ensuing inflammatory response (146). Recruitment of immune cells

is mediated by upregulation of cytokines, chemokines, complement

system proteins, and adhesion molecules, including selectins and

integrins (147). Primary adhesion occurs when freely moving

neutrophils are converted to the “rolling” state following

upregulation of P- and E-selectin on endothelium and

upregulation of L-selectin on neutrophils. This leads to neutrophils

initially traveling in the center of postcapillary venules to

tumble along endothelial walls endothelium-neutrophil selectin

interactions. C5a, which is released in response to contact

activation during CPB, is a potent stimulator of endothelial P-

selectin expression (148). E-selectin subsequently replaces P-

selectin on endothelium to maintain primary adhesion. Secondary

adhesion of neutrophils is mediated by integrins. Integrins CD11a/

CD18 and CD11b/CD18 are expressed by neutrophils; IL-8 and

C5a are potent stimulators of CD11b/CD18 expression on

neutrophils (147, 149, 150). Activated integrins bind adhesion

molecules on endothelium (intercellular adhesion molecule-1 and

intercellular adhesion molecule-2) and extracellular matrix

elements including fibrinogen (147). Both selectins and integrins

have been shown to increase following CPB (150). Transmigration

of neutrophils follows secondary adhesion (151). CD11b/CD18
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binding to endothelium during secondary adhesion and

transmigration primes neutrophils to degranulate and undergo

respiratory burst for up to 24 h following CPB (49, 147, 151).

Elastase, myeloperoxidase, and ROS released from neutrophils

result in cytotoxic damage to endothelium and tissues (49, 66,

151). Modulation of adhesion, transmigration, and neutrophil

priming is heavily influenced by platelet-activating factor, IL-8,

and C5a (147, 152). Normalization of C5a levels limits the extent

of CPB-induced inflammatory response (149). Increased secretion

of monocyte chemoattractants leads to upregulation of selectins

and integrins and further activation of circulating monocytes

and macrophages. Naïve monocytes and granulocytes are

hyperstimulated following exposure to post-CPB plasma. Impaired

oxidative burst and phagocytic activity have been observed 48 h

following CPB, suggesting a biphasic course characterized by early

tissue cytotoxicity and late neutrophil dysfunction (146, 153, 154).

Clinically, increased cellular immune activation leads to

pulmonary leukocyte sequestration that has been associated with

severe histologic lung injury (155, 156). Inhibition of CD11/CD18

expression or function improves myocardial function following

CPB, and neutrophil adhesion blockade reduces pulmonary injury

during CPB (157–159). Reduction of circulating activated

leukocytes has been associated with reduced organ injury (160).
2.7 The endothelium and glycocalyx
degradation

The endothelium is central to inflammatory pathophysiology

following CPB (161). The endothelial glycocalyx protects the

endothelial cell monolayer and is composed primarily of

transmembrane heparan sulfate and syndecan proteoglycans. The

glycocalyx plays important roles in leukocyte and platelet adhesion

following immune activation, vascular permeability facilitating

leukocyte transmigration, and regulation of the coagulation cascade

on the luminal endothelial surface (161–163). Following CPB,

activated metalloproteinases and TNF-α induce shedding of

syndecan-1 and heparin sulfate from the glycocalyx; increased

plasma levels of these glycocalyx breakdown products following

CPB initiation have been extensively documented (164–170).

Membrane-bound syndecan-1 reduces cytokine production while

soluble syndecan-1 results in neutrophil activation and monocyte

chemotaxis (171–173). Pro-inflammatory IL-6 and IL-8 levels at

two timepoints (preoperatively and 6 horus postoperatively) and

anti-inflammatory IL-10 have been correlated with CPB-induced

inflammation (174). Syndecan-1 levels have been shown to

prognosticate acute kidney injury following CPB in children though

levels vary widely between patients and do not correlate

intraoperatively (174, 175).
3 Strategies to modulate CPB-
associated inflammatory response

Innovations and potential therapeutic targets have been

investigated to better modulate the inflammatory response to
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CPB. The main challenge remains to balance mitigating the

effects of excessive inflammation and immune activation

while still preserving host defenses and wound healing (176).

The most clinically effective way to curb CPB-associated

inflammation involves targeting multiple inflammatory mediators

simultaneously using a combination of surgical, pharmacologic,

and mechanical pump approaches as no single intervention is

supported by strong level A evidence (Figure 3). Interventions

with level A evidence include off-pump surgery, miniaturized

CPB circuits, coated circuits to improve biocompatibility,

leukocyte filtration, complement (C5) inhibition, preoperative

aspirin, and corticosteroid prophylaxis. Interventions with level B

evidence include, but not limited to, hemofiltration, aprotinin,

nitric oxide donors, C1 esterase inhibition, neutrophil elastase

inhibition, N-acetylcysteine, and intensive insulin therapy (177).

The precise combinations of studied interventions tailored to

specific patient populations have yet to be determined.
3.1 Non-pharmacologic strategies

3.1.1 Coated CPB circuits
Heparin-coated circuits improve biocompatibility of the

extracorporeal circuit, and translation into clinical benefit has

been demonstrated in certain populations (178, 179). Heparin

molecules bound to the surface of the CPB circuit resemble

heparin sulphate glycosaminoglycans on endothelial cells and
FIGURE 3

Multimodal approach to attenuating CPB-associated inflammation. COX, cyclo
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reduce direct contact of blood with the otherwise artificial,

nonendothelial material lining the CPB circuit. These coated

circuits improve biocompatibility through various mechanisms.

Heparin-coated circuits reduce cytokine release, complement

activation in vivo and in vitro, kallikrein, and leukocyte activation

(180–184). They have been shown to reduce platelet adhesion

and improve platelet function, as well as inhibit the release of

pro-inflammatory cytokines TNF-α, IL-6, IL-8 as well as soluble

TNF receptors (180, 185–187). Significant reduction in mean

concentrations of polymorphonuclear (PMN) elastase and soluble

C5b-9 (p < 0.001 and p = 0.006, respectively) at one hour

following initiation of CPB have been reported. Heparin coating

also reduced postoperative blood loss (188–190). An RCT

conducted in the Netherlands showed reduced complement

activation that correlated with improved clinical performance

scores in patients who underwent CPB with heparin-coated

circuits in combination with full systemic heparinization (191).

A large, multicenter RCT demonstrated improved clinical

outcomes, shorter length of stay (hospital and ICU), and

decreased respiratory and renal dysfunction in high-risk patients

(192). A meta-analysis of 41 RCTs showed heparin coating was

associated with 40% reduction in re-sternotomy rates (p = 0.002)

and 20% reduction in patients requiring blood transfusion but no

significant difference in 24-h blood loss or adverse events.

Heparin coating reduced average ventilation time by 80 min, ICU

length of stay by 9 h (p < 0.001), and average hospital length of

stay by 0.5 days (p = 0.02) (193). In cardiac reoperations, use of
oxygenase; PDE, phosphodiesterase. Figure created using Biorender.com.
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heparin-coated circuits with full systemic heparinization was

associated with decreased rates of reoperation for bleeding (p =

0.058) and lower blood transfusion requirement (p = 0.035)

without significant difference in adverse events (189).

A study investigating heparin-coated circuits with administration

of reduced systemic heparin dose showed decreased intraoperative

platelet counts, maximal intraoperation concentrations of platelet

factor 4 and PMN elastase, as well as 12-h blood loss with heparin-

coated circuits but no difference adverse events or 30-day mortality

(190). A departmental analysis revealed patients undergoing CPB

with heparin-coated circuits received lower dose of systemic

heparin, showed improvements in clinical parameters, and had a

decreased rate of adverse events (10%, p = 0.035) compared to their

counterparts (194).

Heparin-albumin and polymer-coated circuits as well as

phosphorylcholine-coated circuits have been shown to induce

fewer inflammatory responses and oxidative stress compared to

other circuits (195, 196). However, heparin-coated circuits are

associated with better preservation of endothelial glycocalyx

compared with phosphorylcholine-coated circuits (197). An RCT

investigating albumin-coated circuits in patients undergoing aortic

arch replacement with deep hypothermic circulatory arrest showed

mitigation in platelet reduction as evidenced by decreased

transfusion requirement but no effect on platelet dysfunction

(198). A study investigating hyaluronan-based heparin-coated

circuits in various risk cohorts showed improved platelet

preservation and better perioperative outcomes; ventilation time,

hemorrhage, and degree of inflammation were reduced in high-

risk groups, which translated to shorter ICU and hospital length

of stay (p = 0.001 and p = 0.006, respectively) (199). New data is

still emerging for pediatric populations. A randomized pilot study

recently demonstrated application of new ternary polymer, SEC-1

coatTM in pediatric cardiac operations improved biocompatibility

with regard to platelet preservation and attenuated coagulation

activation and overall inflammatory reaction (200). Another study

showed no purported benefit in improving coagulation

derangements during pediatric CPB as assessed by primary

endpoint of concentration of β-thromboglobulin across all time

points, as well as secondary endpoints of other markers of

coagulation and platelet function (201).

Multiple studies found reductions in inflammatory markers,

marginal improvement in biocompatibility, but minimal or no

correlation with improved outcomes (202, 203). One such study

showed reduced complement activation and synthesis of pro-

inflammatory cytokines but no significant differences in

fibrinolysis, platelet activation, time to hemostasis, postoperative

blood loss at 12 h, total blood transfusion requirement, or

intubation time (202). Another multicenter trial similarly found

decreased complement activation but no association with release

of specific neutrophil granule enzymes, myeloperoxidase,

lactoferrin, or clinical outcome (203). A multimodal approach

incorporating heparin-coated circuits, high-dose aprotinin, and

pre-CPB hemofiltration reduced inflammatory response and

improved clinical outcomes in high-risk patients (179).

Overall, heparin-coated circuits and newer third-generation

heparin-polymer-coated circuits induce fewer inflammatory
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responses and are associated with improved outcomes and,

therefore, justify their additional cost. Newer third-generation

circuits preserve platelet function and improve perioperative

outcomes, including reduced blood loss, reoperation rates,

ventilation, time, and length of stay.

3.1.2 Hemofiltration
Hemofiltration, or ultrafiltration, removes excess fluid and low-

molecular-weight substances from plasma through a hydrostatic

pressure gradient. It has been shown to improve hemodynamic

parameters, cardiac and pulmonary function, and reduce

inflammation with greatest benefit in pediatric patients. It

has been associated with reduced levels of TNF-α, IL-1, IL-6,

IL-8, C3a, and myeloperoxidase levels postoperatively in this

population (204–208). Clinical benefits include improved

hemodynamic stability and early postoperative oxygenation and

decreased postoperative blood loss and duration of mechanical

ventilation. It has been associated with decreased endothelin-1,

potentially explaining improvement in pulmonary hypertension

following congenital heart surgery (204, 206, 207, 209–211).

Modified ultrafiltration has been associated with improved left

ventricular systolic function and diastolic compliance, increased

blood pressure, and reduced inotropic drug administration in the

early postoperative period in infants (212–214). Hemofiltration

has shown less clinical advantage in adults as it is less effective

in removing pro-inflammatory cytokines (215). However,

modified hemofiltration has been associated with decreased early

morbidity, postoperative bleeding, and blood transfusion

requirements in adults and its use was not associated with

hemodynamic instability in adults (215–217).

3.1.3 Leukocyte filtration
Activated leukocytes form the first line of defense against

foreign substances and are critical players in potentiating the

inflammatory response. Leukocyte-specific filters that trap

activated neutrophils and monocytes implicated in SIRS attenuate

inflammation and oxidative stress and have been associated

with improved outcomes in the immediate postoperative period

(218–222). Filters decrease concentrations of circulating platelets

and leukocytes by interfering with endothelial-mediated leukocyte

activation and subsequent neutrophil transmigration. This effectively

decreases the endothelial-mediated component of the CPB-

associated inflammatory response.

Leukocyte filtration may limit postoperative myocardial and

pulmonary dysfunction following CPB. Results of a prospective

randomized study showed patients undergoing coronary

revascularization had decreased total leukocyte counts during and

after CPB, and significantly decreased activated leukocyte counts

at all timepoints. The rate of alveolar exhaled NO production

and alveolar-arterial oxygenation index were significantly

increased in the control group, where NO was a marker for lung

inflammation. Leukocyte depletion was also associated with lower

pro-inflammatory cytokine (IL-6 and IL-8) burst postoperatively

in those with normal preoperative oxygenation capacity. There

were no differences in intubation time, ICU, or hospital length of

stay (223–226). Though, as expected, the rate of alveolar NO
frontiersin.org

https://doi.org/10.3389/fsurg.2024.1224068
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Banerjee et al. 10.3389/fsurg.2024.1224068
production increased in both groups following CPB, absolute NO

production was shown to be lower with leukocyte depletion,

suggesting filtration may be lung-protective. Leukocyte depletion

at early reperfusion in those with limited preoperative

oxygenation capacity (mild lung dysfunction and chronic

obstructive pulmonary disease) and with increased duration of

CPB time was associated with improved oxygenation, shorter

intubation time, and shorter ICU and hospital length of stay

(227, 228). Filtration may improve postoperative lung function

by mitigating pulmonary reperfusion injury. Leukocyte depletion

of residual blood prior to re-transfusion also improved lung

function. In patients undergoing urgent CABG for unstable

angina, leukocyte depletion of re-transfused blood and during

CPB reduced markers of myocardial injury, whereas leukocyte

depletion did not confer clinical benefit in low-risk patients

(229). In patients with decreased left ventricular function,

leukocyte depletion of blood cardioplegia alone improved early

myocardial function and attenuated myocardial injury (160, 230).

In those with left ventricular hypertrophy undergoing valve

surgery, terminal blood cardioplegia reduced myocardial injury

and improved heart function (231, 232). A large-scale clinical

trial showed reduced overall 60-day mortality with leukocyte

depletion of transfused blood, mainly attributed to reduction in

noncardiac causes of death including multisystem organ failure.

In those who received greater than 3 units of blood,

postoperative infection rate was lower with leukocyte depletion

(233). More recently, a study showed preoperative neutrophil

response to in vitro stimuli may predict clinical outcome

following CPB, but leukocyte filtration did not offer significant

benefit (234).

Leukocyte depletion may provide renal protection. A

prospective randomized study of in 40 patients undergoing

CABG showed leukocyte filtration decreased indices of

glomerular and tubular injury, namely microalbumin/

creatinine ratio, urinary excretion of microalbumin, and retinol-

binding protein (235). Filtration of neutrophils containing

myeloperoxidase decreased apoptosis, caspase-3 activity, and IL-

1β activation and effectively improved post-ischemic renal

function and structure in a porcine model of isolated kidney

perfusion (236).

3.1.4 Cytokine adsorption
Extracorporeal blood purification through hemoadsorption

utilizes biocompatible highly porous nonpolar polymer sorbent

beads to sequester hydrophobic cytokines based on size exclusion

and concentration-dependent surface adsorption throughout the

beads. Nonspecific adsorptive characteristics allow for reduction

in circulating pro-inflammatory cytokines, sequestration of free

hemoglobin and bilirubin, and fortifying the endothelial

glycocalyx. Clinical benefits include improved hemodynamic and

metabolic stabilization postoperatively. No adverse effects of

hemolysis or leukocyte removal have been reported. The first

RCT investigating hemoadsorption with Cytosorb in cardiac

surgical patients found prolonged anti-inflammatory IL-10 effect

in the treatment group (237). A trial at a single center in

Switzerland showed neither increased nor decreased cytokine
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levels (pro- or anti-inflammatory) with use of Cytosorb (238).

Results showed no change in relevant clinical outcomes though

the procedure was both feasible and safe. The REFRESH 1 pilot

RCT showed Cytosorb signgicantly reduced C3a and C5a, as well

as plasma-free hemoglobin during valve replacement operations

(239). When comparing hemoadsorption to glucocorticoids,

methylprednisolone was shown to more effectively reduce

inflammatory markers (IL-6, TNF-alpha, and IL-8) though no

differences in cardiac index or parameters of clinical outcomes

were reported (240, 241). An RCT investigating intraoperative

hemoadsorption showed clinical benefit as evidenced by reduced

incidence of severe acute respiratory distress syndrome and a

trend toward shorter ventilation times (242).

3.1.5 Temperature
Studies comparing the acute phase reaction associated with

normothermic vs. hypothermic CPB have conflicting results. This

is due in part to inconsistent definitions of hypothermia.

Hypothermia has been shown to delay but not completely

prevent the expression of inflammatory mediators as

increased levels of adhesion molecules and leukocyte proteolytic

enzymes were seen at 34°C compared to moderate hypothermia

(26°C–28°C) (80–82). Still other studies have shown no

difference between patients randomly assigned to undergo CPB

at various temperatures: > vs. 27-° in one study; 28°C, 32°C, vs.

37°C in another study (243, 244). Increased levels of NO were

seen with CPB at 34°C when compared to CPB at 28°C, resulting

in reduced systemic vascular resistance (245). A prospective

randomized study in patients undergoing valve operations

showed those undergoing normothermic CPB had similar levels

of myocardial protection as measured by dynamics of troponin I

while those undergoing hypothermic CPB benefitted from

significantly lower ventilation times (p = 0.01) (246). A study

investigating 262 different proteins using high-throughput

technology showed deep hypothermic circulatory arrest (DHCA)

and rewarming potentially exert a significant effect on the plasma

proteome in patients undergoing aortic operations as evidenced

by suppression of complement activation during hypothermia.

These findings were confirmed by changes in terminal

complement complex (C5b-9) levels. Following rewarming,

however, these levels of terminal complement complex were

more increased with DHCA than with normothermic CPB while

48 other proteins were significantly downregulated (247).

In patients with left ventricular dysfunction, normothermia was

found to enable decreased requirement for defibrillation after

aortic unclamping and postoperative cardiac pacing, translating

to improved myocardial protection. Normothermia had no effect

on development of postoperative stroke, atrial fibrillation, renal

failure, or mortality (248). A large-animal study recently showed

hypothermic CPB attenuated platelet degranulation and

coagulopathy and better maintained oxygenator performance in

swine (249). Several RCTs studying pediatric populations showed

normothermic CPB as noninferior to hypothermic CPB with

endpoints including inotrope duration, intubation time, hospital

stay, and early neurodevelopmental outcomes in low-risk

populations (250, 251).
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3.1.6 CPB pumps and oxygenators
Studies evaluating the potential benefit of pulsatile pumps have

not yielded conclusive results regarding clinical outcomes.

Few studies have reported reduced levels of endotoxin and other

pro-inflammatory mediators while other studies have not. Routine

use of centrifugal pumps for CPB has not shown clear clinical

advantages compared to roller pumps, and in fact several studies

have showed increased levels of anaphylatoxins, pro-inflammatory

cytokines, adhesion molecules, and leukocyte elastase with the use

of centrifugal pumps. Radial-flow-patterned oxygenators may limit

the extent of inflammation triggered by oxygenators in CPB when

compared axial-flow-patterned oxygenators as evidenced by the

results of a recent prospective RCT that noted significantly lower

levels of humoral inflammatory markers (IL-1, IL-6, and TNF-α)

24 h postoperatively (252). In pediatric patients, controlled

reoxygenation during CPB has shown benefit in single-ventricle

patients as evidenced by reduced markers of organ damage,

inflammation, and oxidative stress when compared to their

double-ventricle counterparts (253).
3.1.7 Miniature CPB circuits
Miniature extracorporeal circulation (MECC) systems have

been developed to eliminate blood-foreign surface interface,

shorten tubing length, reduce priming volume, eliminate venous

reservoirs and cardiotomy suction, minimize hemolytic and

consumptive effects on blood cells, and maximize blood re-

transfusion (254). These systems consist of a centrifugal pump,

membrane oxygenator, and arterial filter with all components of

the system coated with heparin to optimize biocompatibility.

An RCT confirmed a milder induced inflammatory response

compared to conventional CPB with reduced levels of IL-6, TNF-

α, and elastase release. A more recent RCT also showed reduced

migration inhibitory factor levels associated with MECC systems

in addition to decreased release of pro-inflammatory cytokines in

the immediate postoperative period. This overall reduction

correlated with decreased blood transfusion requirement and

shorter mechanical ventilation time on bypass (255). The initially

reduced levels of inflammatory markers seen with MECC may

not be sustained throughout the postoperative period. An RCT

investigating type 2 MECC compared to conventional CPB

circuit in 50 patients undergoing aortic valve replacement found

significantly lower levels of pro-inflammatory markers at 2 h

postoperatively (p = 0.013) but no difference at 24 h (p = 0.990)

when adjusting for type of oxygenator and hemoglobin. MECC

was still associated with shorter perfusion times and less

transfusion requirements (256). A small prospective RCT showed

decreased IL-6, decreased hemolysis peaks as evidence by

plasma-free hemoglobin levels, higher cardiac index and reduced

pulmonary vascular resistance within 30 min postoperatively

associated with MECC (257). However, these differences were

not significant, and larger prospective RCTs are lacking.

Normothermic CPB using MECC systems may be beneficial for

perioperative preservation of pulmonary function and hemostasis

in low-risk patients (258). These systems offer a promising

minimally invasive approach to CPB.
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3.1.8 Minimally invasive and off-pump
cardiac surgery

Advances in minimally invasive cardiothoracic surgery, including

laparoscopic and thoracoscopic operations, allow for comparable

outcomes while avoiding a full median sternotomy. The reduced

size of surgical incisions significantly decreases the inflammatory

response, but these approaches have not infrequently been

associated with increased duration of CPB and aortic cross-

clamping time. These results have been seen with minimally

invasive valve operations as well as minimally invasive pulmonary

embolectomy. While ventilator time and ICU length of stay were

similar, minimally invasive operations resulted in decreased overall

hospital length of stay by almost 5 days (259). In a retrospective

analysis comparing video-assisted thoracoscopic surgery (VATS) vs.

open operation for mitral valve disease, VATS was associate with

longer duration of CPB and aortic cross-clamping but decreased

ventilation time and ICU length of stay. Clearance of lactate was

increased while levels of pro-inflammatory C-reactive protein,

neutrophil-lymphocyte ratio, and cardiac troponin levels were

significantly decreased at 24 h postoperatively in those undergoing

VATS (260). These results suggest a totally thoracoscopic approach

may be superior to conventional median sternotomy with regard to

extent of inflammatory reaction, cardiac injury, and postoperative

recovery (260).

Miniature aortic valve replacement (mini-AVR) has been

evaluated in recent studies. A prospective RCT showed minimal

difference in operative time on CPB, cross-clamp time, and

overall operating time when evaluating patients undergoing AVR

through median sternotomy compared to right anterolateral

thoracotomy (261). However, cosmesis and patient satisfaction

were significantly higher with reduced length of incision

associated with thoracotomy approach. Ministernotomy for AVR

has been associated with significant reduction in intraoperative

blood loss compared to counterparts undergoing median

sternotomy, though transfusion requirements were unchanged

(262). This same prospective randomized study also reported no

difference in respiratory function between the two groups, which

was supported by results of another prospective RCT comparing

outcomes in patients undergoing AVR with partial upper

sternotomy vs. median sternotomy (263). This study also found

the minimally invasive approach did not affect neurological

outcomes or myocardial protection. In contrast, a separate

randomized trial showed reduced transfusion requirement,

shorter ventilation times, greater sternal stability, improved

respiratory function, and earlier extubation and hospital

discharge with ministernotomy AVR compared to median

sternotomy approach (264).

Off-pump cardiac surgery has been attributed to reduced

postoperative SIRS, but operative trauma, regional ischemia/

reperfusion injury, and endotoxin release induced even in the

absence of CPB and aortic cross-clamping may contribute to

postoperative biological derangements and clinical morbidity.

The endothelium has been increasingly implicated in multiorgan

dysfunction following cardiac surgery, particularly in relation to

hemostasis and oxidative stress. In a randomized clinical trial,

patients undergoing off-pump cardiac surgery experienced
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reduction in systemic inflammatory response as measured by

decreased plasma TNF-α, IL-10, myeloperoxidase, but avoiding

CPB and aortic cross-clamping did not alter circulating levels of

endothelial adhesion molecules (265). Differences between on-

pump and off-pump cardiac surgery in this context have been

limited to the final steps of the operations and early hours

thereafter, suggesting that global surgical trauma may play a

more important role in activation of systemic inflammatory and

coagulation-fibrinolytic pathways (266). Complement activation

and release of IL-8 is dependent on extracorporeal CPB circuit,

while release of products of endothelial and leukocyte activation

are temporally similar but decreased in magnitude in off-pump

cardiac surgery. A procoagulant state and no rise in anti-

inflammatory IL-10 following off-pump cardiac surgery may

offset other benefits. Neurocognitive decline and pulmonary

function outcomes following off-pump cardiac surgery are

variable (267).
3.2 Pharmacologic strategies

3.2.1 Aprotinin
Serine proteases comprise a large portion of effector proteins

downstream of pro-inflammatory cytokines, complement

activation, and hemolytic cascades. As these proteins amplify the

inflammatory reaction, serine protease inhibitors have been

investigated as potential therapies to mitigate excessive

inflammation. Aprotinin is one such inhibitor and is perhaps one

of the most well-studied. Aprotinin dually functions as an

inhibitor of thrombin generation via the intrinsic pathway and

has also been shown to preserve cellular junctions and reduce

myocardial edema following cardioplegia and regional ischemia

(268, 269). Its use has been previously associated with reduced

intraoperative blood loss, while higher dosages may suppress the

inflammatory response (270–272). These effects include

attenuation of platelet activation, maintenance of platelet

function, decreased complement and leukocyte activation,

inhibition of kallikrein production, inhibition of endogenous

cytokine-mediated NOS induction, inhibition of upregulation of

adhesion molecules, and reduced release of several pro-

inflammatory mediators (TNF-α, IL-6, and IL-8) (9, 150,

273–278). High-dose aprotinin has been associated with reduced

post-CPB inflammation, myocyte damage, myocardial ischemia,

and hospital length of stay in high-risk patients (7, 279, 280).

High-dose aprotinin has also been associated with increased pro-

inflammatory 8-isoprostane levels in the lungs relative to plasma

levels. This effect disappeared with low-dose aprotinin, suggesting

its action varies in a dose-dependent manner. The effect of high-

dose aprotinin in decreasing circulating 8-isoprostane as

estimated by lung passage (based on blood sampled from

pulmonary and radial arteries) may signify a shift toward an

anti-inflammatory milieu (281). Aprotinin may also decrease

postoperative pulmonary and cerebral injury. Initial concerns of

lower graft patency and renal dysfunction with aprotinin appear

unfounded (7, 282). A meta-analysis revealed aprotinin reduced

surgical blood loss, blood transfusion requirement, and need for
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redo thoracotomy. It also decreased perioperative mortality

almost twofold without an associated increase in risk of

myocardial infarction (270). A large, international, multi-

institutional prospective study comparatively assessing the safety

profile of aprotinin and lysine analogs (aminocaproic acid and

tranexamic acid) use in patients presenting for coronary artery

bypass surgery found that patients administered aprotinin had

doubled risk of renal failure requiring dialysis, 55% increase in

risk of myocardial infarction or heart failure, 181% increase in

risk of stroke or encephalopathy, and increased risk of mortality.

Neither of lysine analogs studied was associated with increased

risk of cardiac, renal, or cerebral adverse events (283) and

reduction in blood loss during surgery was similar for all three

drugs. The BART study, a blinded RCT comparing aprotinin and

lysine analogs in patients undergoing high-risk cardiac operations

had to be prematurely terminated due to increased mortality

associated with aprotinin, leading to suspended use of aprotinin

in these patients (284). Subsequent initiatives that revisited

limitations of these studies resulted in resumed use of aprotinin

in select patients in both Canada and the European Union, while

use of aprotinin in USA is still restricted.

3.2.2 Phosphodiesterase inhibitors
Pentoxifylline is a nonspecific phosphodiesterase inhibitor with

various anti-inflammatory effects, including attenuation of TNF-α

and endotoxin release, cytokine synthesis, pulmonary leukocyte

sequestration and vascular resistance, and reduction in indices of

endothelial injury and permeability (285–289). Pentoxifylline was

associated with decreased levels of pro-inflammatory cytokines

(TNF-α and IL-6). Its use was also associated with improved left

ventricular ejection fraction, decreased ICU length of stay,

ventilation time, requirement of inotropic agents, and transfusion

requirement (290).

Other phosphodiesterase inhibitors have been evaluated in the

context of maximizing splanchnic perfusion as a strategy to

attenuate excessive inflammation associated with CPB. Milrinone

has been associated with reduction in venous and hepatic

endotoxin levels, decrease in gastric intramucosal pH, and

decreased IL-6 levels postoperatively in otherwise healthy patients

undergoing cardiac operations (291, 292).

3.2.3 Corticosteroids
Steroids have potent anti-inflammatory effects, and the

mechanisms by which they exert their effects are multifactorial.

Preoperative administration of glucocorticoids has been shown to

attenuate endotoxin release and complement activation in

response to CPB (293–295). Methylprednisolone was associated

with decreased levels of postoperative pro-inflammatory

mediators IL-6, IL-8, and TNF-α along with increased levels of

anti-inflammatory IL-10 and IL-1ra (120, 121, 275, 296–300).

Corticosteroids blunted the activation of leukocytes, upregulation

of neutrophil adhesion molecules, and sequestration of

neutrophils in the pulmonary parenchyma and vasculature (275,

294, 301, 302). Combination treatment of patients with

methylprednisolone and aprotinin resulted in improved

postoperative indices of cardiovascular, pulmonary, hemostatic,
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and renal function (303). Low-dose aprotinin had similar effect as

methylprednisolone in blunting TNF-α release and neutrophil

integrin CD11b upregulation (275). Another study showed

methylprednisolone pretreatment was associated with improved

cardiac performance and decreased bronchial inflammation post-

CPB (275, 300). Short course of methylprednisolone has been

shown to reduce incidence of postoperative atrial fibrillation

(304). Low-dose methylprednisolone in pump priming solutions

attenuated degree of myocardial damage (305). Preoperative plus

pre-CPB administration may be superior to pre-CPB

administration alone. Methylprednisolone prophylaxis was

associated with lower levels of neuron-specific enolase, a

biomarker for neuronal damage, suggesting it may be useful in

reducing post-CPB cerebral injury (296). Benefits of

corticosteroid use for reducing pulmonary inflammation,

endotoxemia, and complemented activation are still disputed

given the results of more recent RCTs, and differences in dosing

regimen, formulation, and timing of administration may partially

account for conflicting results. The SIRS trial showed no

difference in risk of death or major morbidity between those

randomized to receive methylprednisolone or placebo at 30 days

postoperatively, while the most common adverse effects in both

experimental arms were infectious or delirium-related (306).

Overall, a clear benefit attributed to corticosteroid treatment in

the setting of CPB remains to be demonstrated (293, 302, 306–

310). The need for further studies investigating optimal dosage

regimens, characterizing adverse events, and optimizing clinical

outcomes cannot be overstated.

3.2.4 Antioxidants and free radical scavengers
Myocardial antioxidant enzymes (including glutathione

reductase, superoxide dismutase, and catalase) become activated

in proportion to the degree of myocardial ischemia and

reperfusion injury, but host antioxidants may become depleted

after CPB (311–313). When ROS production exceeds host

defense scavenging capacity, cellular injury results (314, 315).

Increased preoperative total plasma antioxidant status has been

associated with decreased levels of lipid peroxidation, which is

directly correlated with indices of myocardial injury (313).

Vitamin C and vitamin E levels decline intraoperatively and

remain low over two days postoperatively (316). High-dose

vitamin C is an effective scavenger of free radicals and has been

associated with decreased membrane lipid peroxidation, indices

of myocardial injury, improved hemodynamics, and shorter ICU

and hospital length of stay (314, 317). High-dose vitamin E has

been associated with decreased plasma hydrogen peroxide

concentrations and decreased membrane lipid peroxidation after

CPB (26, 314). Prophylactic coadministration of vitamin C,

vitamin E, and n-PUFAs (eicosapentaenoic acid:docosahexaenoic

acid ratio 1:2) has been associated with reduced incidence of

postoperative atrial fibrillation (318).

Allopurinol inhibits xanthine oxidase, a pivotal generator of

free radicals during reperfusion injury. Some studies have

demonstrated allopurinol reduced myocardial formation of

cytotoxic free radicals, decreased myocardial injury, and

improved myocardial recovery following CPB (315, 319–322).
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Other studies showed conflicting results, showing no benefit in

myocardial injury or function with allopurinol alone (319, 323,

324). Preoperative supplementation of allopurinol in combination

with vitamin C and vitamin E reduced cardiovascular

dysfunction in both stable and unstable patients undergoing

CABG, with unstable patients sustained lesser degree of

myocardial injury and lower incidence of perioperative

myocardial infarction (325). Results of other studies, however,

have refuted effects of vitamin C and vitamin E supplementation

on myocardial injury (326). Use of allopurinol in neonates to

improve neurodevelopment following cardiac operations for

congenital heart disease is an active area of research as it has

already demonstrated benefit in infants with hypoplastic left

heart syndrome (327, 328).

Preoperative or intraoperative administration of high-dose

N-acetylcysteine, another scavenger of free radicals has been

shown to reduced neutrophil oxidative burst response and

elastase activity (329–331). N-acetylcysteine improved

oxygenation and lung mechanics in patients with known acute

lung injury, though no change in rates of progression to acute

respiratory distress syndrome was noted (332). Clinical

outcomes were not significantly affected with regard to

mortality, myocardial infarction, bleeding, transfusion

requirements, intubation time, and hospital length of stay

(333). Low-dose N-acetylcysteine as an adjunct to cardioplegia

reduced myocardial oxidative stress in patients undergoing

CABG (334). Modified N-acetylcysteine via preparation with

activated carbons to create sustained-release microcapsules

demonstrated greater cardioprotection than N-acetylcysteine

alone in a rat model of myocardial ischemia-reperfusion (335).

In another rat model of CPB, N-acetylcysteine was shown to

ameliorate CPB-associated intestinal injury via reduction in

inflammation and oxidative stress as measured by decreased

levels of intestinal malondialdehyde, TNF-α, IL-6, and serum

diamine oxidase (336). A number of studies have recently

shown N-acetylcysteine to improve pulmonary, hepatic, and

renal outcomes in patients undergoing CPB with and without

preexisting pulmonary and renal insufficiency (337–342).

Mannitol pretreatment has been associated with decreased

myocardial formation of cytotoxic free radicals following CPB (315).

Post-CPB endothelial dysfunction is in large part mediated by

ROS. In this way, free-radical scavengers, antioxidants, and iron

chelators represent a potential therapeutic adjunct to mitigate

deleterious effects of CPB-associated inflammation.

3.2.5 Monoclonal antibodies, complement
inhibition, and inhibition of endothelial cell
activation

Another approach for decreasing contact activation and

downstream inflammation may be utilizing endogenous soluble

complement inhibitors. An RCT investigating a monoclonal

antibody to human C5 demonstrated its efficacy and safety in the

setting of CPB. Inhibition of synthesis of mediators in

complement activation and formation of adhesion molecules

in a dose-dependent fashion clinically translated to a reduction

in coagulopathy, myocardial injury, and postoperative
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neurocognitive deficits (343). Compstatin, a peptide inhibitor of

complement, completely inhibited heparin-protamine-induced

complement activation in vivo in non-human primates without

associated adverse events (344).

Other promising strategies for complement inhibition

therapy include C1 inhibitor, recombinant soluble inhibitor-1

or soluble complement receptor 1, monoclonal antibodies to

C3 and C5a, neutrophil elastase inhibitor, membrane-bound

regulators of complement, and attenuation of complement

receptor-3-mediated adhesion of inflammatory cells to vascular

endothelium (7). In unstable patients with acute myocardial

infarction undergoing emergency CABG, administration of C1

esterase inhibitor effectively limited complement activation

and reduced myocardial ischemia-reperfusion injury as

measured by significant reduction in cardiac troponin I. Its

use was associated with improved cardiac function and

hemodynamic performance without an impact on early

mortality (345, 346). Soluble human complement receptor 1

effectively inhibited complement activation during CPB and

significantly decreased mortality and myocardial infarction in

male patients (347). Neutrophil elastase inhibitor, sivelestat,

reduced levels of neutrophil elastase, IL-6, and IL-8 while also

attenuating the pattern of physiological deterioration of gas

exchange as measured by relative effect on alveolar-arterial

oxygen index (348).

C5 complement inhibitor, pexelizumab, may offer mortality

benefit. Results of an RCT enrolling over 3,000 patients showed a

significant risk reduction of death or postoperative myocardial

infarction within 30 days postoperatively in patients undergoing

CABG with or without valve surgery. However, the study was

not powered to detection reduction in mortality alone (349).

These results were reproduced in a more recent RCT.

Additionally, an exploratory analysis showed a significant

mortality benefit in high-risk patients (350).

Selective inhibition of vascular endothelial activation may

reduce deleterious effects of uncontrolled inflammation.

Adhesion molecular blockade may interfere with adherence

within 24 h following CPB, thereby preventing neutrophil-

mediated widespread organ damage. Blockade of neutrophil

and endothelial selectin molecules resulted in notable

attenuation of cerebral injury in an animal model of CPB and

DHCA, while inhibition of neutrophil adhesion markedly

decreased pulmonary injury in a swine model of CPB (351,

352). A caveat to adhesion molecule blockade is increased

susceptibility to infection due to impaired neutrophil

demargination and recruitment to sites of infection (353).

Strategies to prevent nuclear localization of transcriptional

activator NFκB, a key mediator of pro-inflammatory signaling,

have also showed promise but studies demonstrating efficacy

and safety are pending (151).

3.2.6 Cyclooxygenase inhibitors
Constitutive cyclooxygenase 1 (COX-1) and its inducible

isoform, cyclooxygenase 2 (COX-2), are sensible targets for

modulating immune activation in response to CPB.

Antiplatelet agents, including inhibitors of COX-1 and COX-2,
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prevent platelet aggregation. Acetylsalicylic acid, or aspirin

(ASA), is one of the most commonly prescribed medications

for the prevention of cardiovascular diseases. It irreversibly

acetylates a serine residue of COX-1, thereby preventing

release of thromboxane A2 and its downstream effects on

platelet aggregation. The beneficial effects of ASA are not

confined to platelet aggregation, as other mechanisms

including attenuating inflammation, reducing oxidative stress,

inhibiting prostaglandin formation, and inhibition of

thromboxane-mediated vasoconstriction may be modulated for

clinical benefit. Continued ASA treatment until the time of

CABG has been shown to reduce inflammation as

demonstrated by lower levels of plasma high-sensitivity CRP at

all time points, though no change in cytokines was observed

(354). Aspirin and clopidogrel in combination with aprotinin

did not significantly affect clinical outcomes (355).
4 Limitations and conclusion

Over the past several decades since modern extracorporeal

circulation was first conceived of by Gibbon, strategies for

controlling CPB-associated inflammation had some success but

have fallen short of controlling SIRS. Surface modification of

the extracorporeal circuit, technical advances including control

of flow dynamics in the CPB circuit, and mechanical

refinements in pumps, oxygenators, tubing, filters, and other

material components of the CPB circuit have reduced adverse

sequelae and shown clinical benefit. Initial studies completed

several decades prior investigating strategies that reduced

circulating interleukins and other pro-inflammatory mediators

showed limited translational benefit or showed contradictory

results; more recent studies investigating these strategies are

few as new technologies and therapies have emerged.

Appropriate application of adsorptive blood purification

techniques or use of immunomodulatory pharmacologics to

mitigate hyperinflammatory states following CPB still remains

uncertain given inconclusive efficacy and safety results from

several studies. Though initially promising, aprotinin has been

associated with a significant adverse event profile in target

populations reported in several large studies, leading to

restricted use in several countries. Postoperative SIRS may

delay diagnosis of sepsis and septic shock following cardiac

surgery, particularly in high-risk patients. The Sequential

Organ Failure Assessment (SOFA) score may be more sensitive

for predicting physiologic effects of infection, while Sepsis-3

criteria may be a useful tool for early identification and

management of sepsis in patients following cardiac surgery

(356). Overall, improving biocompatibility of the CPB circuit

and more minimally invasive techniques may lead to improved

myocardial preservation. Investigations into pharmacological

adjuncts to more specifically and effectively attenuate inflammation

continue. A multimodal approach incorporating technical, circuit-

specific, and pharmacologic strategies will likely yield maximal

clinical benefit.
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