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Background: Machine learning (ML) has been widely utilized for constructing
high-performance prediction models. This study aimed to develop a
preoperative machine learning-based prediction model to identify functional
recovery one year after hip fracture surgery.
Methods: We collected data from 176 elderly hip fracture patients admitted to the
Department of Orthopaedics and Oncology at Shenzhen Second People’s Hospital
between May 2019 and December 2019, who met the inclusion criteria. Patient’s
functional recovery was monitored for one year after surgery. We selected 26
factors, comprising 12 preoperative indicators, 8 surgical indicators, and 6
postoperative indicators. Eventually, 77 patients were included based on the
exclusion criteria. Random allocation divided them into the training set (70%) and
test set (30%) for internal validation. The Lasso method was employed to screen
prognostic variables. We conducted comparisons among various common
machine learning classifiers to determine the best prediction model. Prediction
performance was evaluated using the area under the receiver operating
characteristic curve (ROC), calibration curve, and decision curve analysis. To identify
the importance of the predictor variables, we performed the recursive feature
elimination (RFE) algorithm based on Shapley Additive Explanations (SHAP) values.
Results: The AUCs for the testing dataset were as follows: logistic regression (Logit)
model = 0.934, k-nearest neighbors (KNN) model = 0.930, support vector machine
(SVM) model = 0.910, Gaussian naive Bayes (GNB) model = 0.926, decision tree (DT)
model = 0.730, random forest (RF) model = 0.957, and Extreme Gradient Boosting
(XGB) model = 0.902. Among the seven ML-based models tested, the RF model
demonstrated the best prediction performance, incorporating four features:
postoperative rehabilitation compliance, marital status, age-adjusted Charlson
comorbidity score (aCCI), and clinical frailty scale (CFS).
Conclusion:We developed a prediction model for the functional recovery following
hip fracture surgery in elderly patients after one year, based on the Random Forest
(RF) algorithm. This model exhibited superior prediction performance (ROC)
compared to other models. The software application is available for use. External
validation in a larger patient cohort or diverse hospital settings is necessary to
assess the clinical utility of this tool.
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Introduction

The aging population is increasing in the contemporary world.

By 2050, the United Nations (1) projects a population of 2.1 billion

individuals aged 60 and above. Disabilities have a significant

impact on the quality of life for older individuals, with hip

fractures ranking among the most prevalent causes.

The international osteoporosis foundation (2, 3) reports that

patients with hip fractures experience a one-year mortality rate of

20%–24%, with this heightened risk persisting for over 5 years

(4, 5). Regarding functional prognosis, one year after hip

fracture, about 40% of patients experience impaired independent

ambulation, 60% require assistance, and 33% are fully reliant on

daily support or reside in nursing homes (4, 6, 7). With an aging

population, the prevalence of hip fractures in older individuals is

projected to increase. By 2050, an estimated 6.3 million hip

fractures will occur globally (8). Moreover, hip fractures impose a

substantial economic burden on healthcare systems and society.

The estimated cost of hip fractures in the United States was

17 billion dollars in 2015, and this figure is projected to reach

25.3 billion dollars by 2030 (9). The significant incidence,

mortality, morbidity, and economic burden associated with hip

fractures pose substantial social and medical challenges.

Predictive models for assessing the prognosis and potential

complications of hip fractures are pivotal in understanding health

outcomes related to this injury. These models employ diverse patient

characteristics, clinical factors, and demographic data to predict

outcomes, including mortality, functional recovery, and hospital

readmission rates. An example of such a model is the Nottingham

Hip Fracture Score (NHFS) (10), which is a well-established

predictive model developed by the University of Nottingham. The

NHFS was developed based on prospective collection of clinical and

surgical data from 4,967 patients aged 65 years and older who

underwent hip fracture surgery. The model includes six variables,

namely age, pre-fracture residence, dementia status, presence of

malignancy, serum creatinine level, and type of fracture, to predict

30-day mortality after hip fracture. Each variable is assigned a score,

and the cumulative score is utilized to estimate the risk of mortality.

The NHFS has demonstrated good discrimination and calibration in

predicting mortality following hip fracture.

The use of ML techniques has facilitated the development of

prognostic prediction tools in healthcare (11). These techniques

enable the evaluation of real-world data that often exhibit complex

nonlinear relationships. Moreover, machine learning can develop

models with superior performance compared to traditional

prediction methods (12), particularly for surgical procedures

(13–15). Clinicians can enhance outcomes by developing high-

performance prediction models that estimate the likelihood of

favorable functional recovery. Given the alarming global population

aging, the impact of physical and psychological changes associated

with advanced age on the functional recovery of hip fracture

surgery has garnered significant attention, particularly with respect

to frailty and comorbidities. Currently, there is limited research on

prognostic models for hip fractures in elderly patients considering

age-related indicators. Consequently, this study seeks to develop a

machine learning-based prediction model that incorporates age-
Frontiers in Surgery 02
related indicators to forecast the functional recovery of elderly

patients one year after hip fracture surgery.
Materials and methods

Sources of data

We collected data from 176 hip fracture patients who were

admitted to the Orthopaedics and Oncology Department of

Shenzhen Second People’s Hospital between May 2019 and

December 2019 and met the inclusion criteria. The patients’

functional recovery was assessed for one year following the

surgery. Eventually, 77 patients were included based on the

exclusion criteria. The research protocol was approved by the

Clinical Research Ethics Committee of Shenzhen Second People’s

Hospital (approval number: 20200601052-FS01). Informed consent

was obtained from each patient. The study was reported following

the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) statement (16).
Study population

Based on the patient’s medical history, symptoms, signs, and

imaging examination, a diagnosis of either an intertrochanteric

or femoral neck fracture was made.

Inclusion criteria: Patients aged 65 years or older, diagnosed

with unilateral hip fracture (intertrochanteric or femoral neck

fracture), and treated surgically at our hospital. The fractures

were caused by low-energy injuries (fractures that occur in daily

activities without significant external force or falls from a high

altitude) and not high-energy injuries, such as car accidents.

Patients had a complete medical history and provided informed

consent for their condition and surgical treatment. Mental illness

was an exclusion criterion if it hindered follow-up.

Exclusion criteria: Patients with pathological fractures (e.g.,

metastatic fractures). Fractures combined with other fractures in

the same or opposite lower limb, disabilities, or other conditions

leading to incomplete recovery of hip function were excluded.

End-stage patients with severe postoperative complications and

serious comorbidities who were unable to comply with the

prescribed rehabilitation exercises were also excluded. Patients

who were lost to follow-up, refused to participate in the follow-

up, or died during the study were excluded.
Data collection

The database was retrospectively reviewed to analyze the

demographic and clinical characteristics of patients. These

characteristics included 12 preoperative indicators: age, gender, marital

status, BMI, polypharmacy, clinical frailty scale (CFS), age-adjusted

Charlson comorbidity score (aCCI), fracture-admission time,

preoperative waiting time, Morse fall scale, Barden score scale, and

Caprini risk assessment for venous thromboembolism. Additionally, 8
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surgical indicators were considered: fracture type, operation, anesthesia,

ASA classification, postoperative white blood cell count, hemoglobin

level, albumin level, and blood transfusion. Furthermore, 7

postoperative indicators were examined: length of stay, postoperative

rehabilitation compliance, postoperative residence, postoperative

caregiver, postoperative anticoagulant drugs, postoperative anti-

osteoporosis drugs, and postoperative complications.

The data was reviewed by an investigator to ensure

completeness, and the follow-up process was completed. To

evaluate hip function recovery one year after the surgery, we

utilized the Harris score (17) through telephone follow-up. The

assessment content, consisting of 91 points, was evaluated

through dialogue. Due to the COVID-19 pandemic, many older

patients were unable to visit the hospital for evaluation.

Therefore, this study recorded the 91 points that could be

obtained via telephone follow-up. We then converted this score

to a complete count, such as 91 points out of 100 points.
Prediction model development

ML models were employed to develop a prediction model for the

functional recovery of older individuals after 1-year hip fracture
FIGURE 1

Data inclusion and exclusion flow and machine learning development proces
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surgery. Initially, the Lasso regression was applied to screen pre-test

variables in the prediction model. Subsequently, the database was

randomly divided into a training set and a test set with a 7:3 ratio.

We selected various standard ML classifiers, such as logistic

regression (Logit), k-nearest neighbors (KNN), support vector

machine (SVM), Gaussian naive Bayes (GNB), decision tree (DT),

random forest (RF), and Extreme Gradient Boosting (XGB)

models, to make initial predictions based on the variables identified

through Lasso regression. Finally, the model with the highest AUC

value was chosen as the final model (refer to Figure 1). To assess

the importance of the feature variables, we utilized the recursive

feature elimination algorithm based on SHAP values.
Statistical analyses

Data normality was evaluated using the Shapiro-Wilk test. The i-

test was utilized to compare continuous variables presented as mean

± standard deviation (SD). For non-normally distributed data,

Mann–Whitney U tests were employed. Categorical data were

compared using either a chi-squared test or Fisher’s exact test. The

model’s discriminative ability in predicting functional recovery after

1-year of hip fracture surgery was assessed using the AUC.
s.
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Detailed analysis of the model’s performance involved calibration

plots and decision curve analysis (DCA). Due to the small sample

size, our study sample did not contain any missing values.

Empowerstats version 4.0 (www.empowerstats.com) and Python

version 3.7.0 (Python Software Foundation, www.python.org) were

used for all statistical analyses. Statistical significance was

determined using a two-tailed test with a significance level of P > 0.05.
Results

Baseline demographics and characteristics

We analyzed a cohort of 77 older patients with hip fractures, of

whom 21 experienced poor functional recovery. Furthermore, a
TABLE 1 Demographic and clinical characteristics of patients (preoperative a

Harris s

<70 (n = 21)

Preoperative indicators
Age 86 ± 8

Gender

Male 2 (9.52%)

Female 19 (90.48%)

Marital status

Married 11 (52.38%)

Widowed/divorced 10 (47.62%)

BMI 24.7 ± 9.1

Polypharmacy 2 ± 2

aCCI 6 ± 2

CFS 5 ± 1

Fracture-admission time(h) 40.8 ± 50.0

Preoperative waiting time(h) 41.8 ± 31.3

Morse fall scale 44 ± 9

Barden score scale 13 ± 1

Caprini risk assessment for VTE 8.3 ± 1.8

Surgical indicators

Fracture type

Intertrochanteric fracture 11 (52.38%)

Femoral neck fracture 10 (47.62%)

Operation

Artificial femoral head replacement 12 (57.14%)

Total hip replacement 2 (9.52%)

Internal fixation of intertrochanteric fracture 6 (28.57%)

Internal fixation of femoral neck fracture 1 (4.76%)

Anesthesia

Intraspinal anesthesia 17 (80.95%)

General anesthesia 3 (14.29%)

≥2 anesthesia types 1 (4.76%)

ASA

2 3 (14.29%)

3 15 (71.43%)

4 3 (14.29%)

WBC 10.7 ± 5.9

Hg 104.6 ± 21.3

Albumin 35.1 ± 6.3

Transfusion 3.6 ± 2.7

aCCI, age-adjusted Charlson comorbidity score; CFS, clinical frailty scale; ASA, Americ

The bold P-value indicates that the value is statistically significant.
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comparison of 27 features, consisting of 12 preoperative

indicators, 8 surgical indicators, and 7 postoperative indicators,

was conducted to examine the demographic and characteristic

differences between the poor functional recovery group (Harris

score <70) and the good functional recovery group (Harris score

≥70) (refer to Tables 1, 2). Following Lasso regression (refer to

Figure 2), we identified 4 crucial features, namely marital status,

aCCI, CFS, and postoperative rehabilitation compliance, for

developing a prediction model.
RF model development

Among the seven machine learning-based models, the RF

algorithm exhibited the highest prediction performance
nd surgical indicators).

core OR (95%CI) P-value

≥70 (n = 56)

77 ± 7 1.13 (0.60, 1.66) <0.001

0.38 (−0.13, 0.88) 0.177

13 (23.21%)

43 (76.79%)

0.95 (0.43, 1.47) <0.001

51 (91.07%)

5 (8.93%)

22.5 ± 5.1 0.29 (−0.21, 0.80) 0.193

1 ± 2 0.29 (−0.21, 0.80) 0.26

4 ± 1 1.17 (0.63, 1.70) <0.001

3 ± 1 1.44 (0.89, 1.99) <0.001

215.8 ± 634.1 0.39 (−0.12, 0.89) 0.212

40.1 ± 36.8 0.05 (−0.45, 0.55) 0.852

40 ± 15 0.31 (−0.19, 0.82) 0.267

14 ± 1 0.67 (0.16, 1.18) 0.019

8.1 ± 2.1 0.14 (−0.37, 0.64) 0.608

0.38 (−0.13, 0.88) 0.139

19 (33.93%)

37 (66.07%)

0.95 (0.43, 1.48) 0.016

15 (26.79%)

26 (46.43%)

14 (25.00%)

1 (1.79%)

0.46 (−0.05, 0.96) 0.246

34 (60.71%)

16 (28.57%)

6 (10.71%)

0.69 (0.18, 1.21) 0.037

23 (41.07%)

31 (55.36%)

2 (3.57%)

10.9 ± 13.1 0.02 (−0.48, 0.52) 0.941

116.2 ± 16.0 0.62 (0.10, 1.13) 0.012

39.8 ± 4.0 0.91 (0.26, 1.56) 0.002

2.1 ± 2.0 0.63 (0.12, 1.14) 0.009

an Society of Anesthesiologists; WBC, white blood cell; Hg, hemoglobin.
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TABLE 2 Demographic and clinical characteristics of patients (postoperative indicators).

Harris score OR (95%CI) P-value

<70 (n = 21) ≥70 (n = 56)

Postoperative indicators
Length of stay 10.8 ± 3.3 10.3 ± 4.3 0.14 (−0.36, 0.64) 0.614

Postoperative rehabilitation compliance 1.34 (0.80, 1.89) <0.001

Negative 15 (71.43%) 9 (16.07%)

Positive 6 (28.57%) 47 (83.93%)

Postoperative residence 0.34 (−0.16, 0.84) 0.118

Nursing home 2 (9.52%) 1 (1.79%)

Home 19 (90.48%) 55 (98.21%)

Caregiver 0.74 (0.23, 1.26) 0.013

Nursing workers 9 (42.86%) 7 (12.50%)

Relatives 12 (57.14%) 48 (85.71%)

Self Care 0 (0.00%) 1 (1.79%)

Postoperative anticoagulant drugs 0.43 (−0.08, 0.93) 0.235

None 4 (19.05%) 6 (10.71%)

Heparin 12 (57.14%) 43 (76.79%)

Novel oral anticoagulants 5 (23.81%) 7 (12.50%)

Postoperative anti-osteoporosis drugs 0.55 (0.04, 1.06) 0.057

None 6 (28.57%) 17 (30.36%)

Single drug 5 (23.81%) 3 (5.36%)

Two drugs 10 (47.62%) 36 (64.29%)

Postoperative complications
Anemia 0.14 (−0.36, 0.65) 0.571

No 7 (33.33%) 15 (26.79%)

Yes 14 (66.67%) 41 (73.21%)

Cardiac insufficiency 0.06 (−0.44, 0.56) 0.81

No 20 (95.24%) 54 (96.43%)

Yes 1 (4.76%) 2 (3.57%)

Hypoalbuminemia 0.42 (−0.09, 0.92) 0.113

No 7 (33.33%) 30 (53.57%)

Yes 14 (66.67%) 26 (46.43%)

Electrolyte disturbance 0.54 (0.03, 1.05) 0.018

No 16 (76.19%) 53 (94.64%)

Yes 5 (23.81%) 3 (5.36%)

Pneumonia 0.30 (−0.20, 0.81) 0.193

No 18 (85.71%) 53 (94.64%)

Yes 3 (14.29%) 3 (5.36%)

Phlebothrombosis 0.10 (−0.40, 0.60) 0.706

No 20 (95.24%) 52 (92.86%)

Yes 1 (4.76%) 4 (7.14%)

Urinary infection 0.03 (−0.47, 0.53) 0.917

No 20 (95.24%) 53 (94.64%)

Yes 1 (4.76%) 3 (5.36%)

Pulmonary embolism 0.19 (−0.31, 0.69) 0.538

No 21 (100.00%) 55 (98.21%)

Yes 0 (0.00%) 1 (1.79%)

Hepatic dysfunction 0.17 (−0.33, 0.67) 0.493

No 18 (85.71%) 51 (91.07%)

Yes 3 (14.29%) 5 (8.93%)

Delirium 0.19 (−0.31, 0.69) 0.538

No 21 (100.00%) 55 (98.21%)

Yes 0 (0.00%) 1 (1.79%)

The bold P-value indicates that the value is statistically significant.

Lin et al. 10.3389/fsurg.2023.1160085
(AUC = 0.957) for the initial prediction of functional recovery

(refer to Figure 3). Consequently, the RF model was chosen

as the ultimate prediction model. The impact of each
Frontiers in Surgery 05
feature on the final model results is depicted in Figure 4A,

while Figure 4B presents the assessment of feature

importance using SHAP values.
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FIGURE 2

Lasso regression for screening prognostic variables. (A) A coefficient profile plot was generated based on the logarithmic sequence of lambda. (B) The
binomial deviance curve was plotted against the logarithm of lambda in the Lasso model, and dotted vertical lines were added based on the
1 standard error criterion.

FIGURE 3

Comparisons of different machine learning models. Logit, logistic regression; KNN, k nearest neighbors; SVM, support vector machine; GNB, Gaussian
naive Bayes; DT, decision tree; RF, random forest; XGB, Extreme Gradient Boosting.

Lin et al. 10.3389/fsurg.2023.1160085
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FIGURE 4

(A) characteristics of the selected model (random forests model): SHAP value summary graph of variables and their impact on the prediction. (B)
Importance of the predictor variables in the random forest model. aCCI, age-adjusted Charlson comorbidity score; CFS, clinical frailty scale.

Lin et al. 10.3389/fsurg.2023.1160085
Model evaluation and validation

Table 3 presents the evaluation indicators, including AUC,

accuracy, sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), F1-score, and Matthews

correlation coefficient (MCC), for each model using the 4

features in the internal validation sets. The RF model

achieved the highest values in AUC, specificity, and PPV, as

indicated in Table 3. Furthermore, calibration curve plotting
TABLE 3 Model evaluation.

Model_name AUC Accuracy Sensitivity
Logit 0.934 0.917 0.938

KNN 0.930 0.875 0.813

SVM 0.910 0.875 0.813

GNB 0.926 0.875 0.813

DT 0.730 0.792 0.938

RF 0.957 0.875 0.813

XGB 0.902 0.833 0.813

Logit, logistic regression; KNN, k nearest neighbors; SVM, support vector machine; GNB

Boosting; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthew

Frontiers in Surgery 07
and decision curve analysis (DCA) were performed in this

study. To simplify the comparison, the Logit, KNN, SVM,

GNB, DT, and XGB models were compared with the RF

model (refer to Figures 5, 6). Finally, a software program

was developed based on the 4 features to predict the

probability of good functional recovery (refer to Figure 7).

The predictive software of this study is available on Baidu

Netdisk (https://pan.baidu.com/s/16Iq93rxvu8fh5PTgYsqZNw?

pwd=ea6z, code: ea6z).
Specificity PPV NPV F1 MCC
0.875 0.938 0.875 0.938 0.813

1.000 1.000 0.727 0.897 0.769

1.000 1.000 0.727 0.897 0.769

1.000 1.000 0.727 0.897 0.769

0.500 0.789 0.800 0.857 0.508

1.000 1.000 0.727 0.897 0.769

0.875 0.929 0.700 0.867 0.657

, Gaussian naive Bayes; DT, decision tree; RF, random forest; XGB, Extreme Gradient

s correlation coefficient.
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FIGURE 5

Calibration curve of different machine learning models. Logit, logistic regression; KNN, k nearest neighbors; SVM, support vector machine; GNB, Gaussian
naive Bayes; DT, decision tree; RF, random forest; XGB, Extreme Gradient Boosting.

FIGURE 6

Decision curve analysis of different machine learning models. Logit, logistic regression; KNN, k nearest neighbors; SVM, support vector machine; GNB,
Gaussian naive Bayes; DT, decision tree; RF, random forest; XGB, Extreme Gradient Boosting.

Lin et al. 10.3389/fsurg.2023.1160085
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FIGURE 7

An example of the prediction software. aCCI, age-adjusted Charlson comorbidity score; CFS, clinical frailty scale.

Lin et al. 10.3389/fsurg.2023.1160085
Discussion

This study developed a prediction model using machine learning

(ML) algorithms. Among the 7 ML models tested in the internal

validation set, the random forest (RF) model demonstrated the highest

performance. The RF model revealed that being widowed or divorced,

having high scores of age-adjusted Charlson comorbidity index (aCCI)

and clinical frailty scale (CFS), and exhibiting negative rehabilitation

compliance were significant risk factors for functional recovery.

Conversely, being married, having low scores of aCCI and CFS, and

exhibiting positive rehabilitation were significant protective factors for

functional recovery. These findings indicate that our prediction model

can identify patients at risk of poor functional recovery prior to

surgery, enabling early intervention. The initial step involves effective

communication with patients and their families regarding treatment

options and associated risks. To ensure optimal utilization of

multidisciplinary resources, healthcare providers, families, and

caregivers should promptly make clinical decisions, including regular

monitoring and optimization of patients’medical conditions, increased

home visits, caregiver support, and tailored rehabilitation programs.
Logistic regression (LR)

Logistic regression (LR) is a generalized linear regression analysis

model that employs the sigmoid function to accurately map the

regression value to the range of 0–1, enabling precise prediction of

an event’s probability (18). LR finds wide application in numerous

fields, including the automated diagnosis of diseases, due to its

remarkable interpretability, prediction accuracy, and computational

efficiency. However, the model tends to underfit when dealing

with complex feature spaces, requiring users to manually construct

features in order to enhance model accuracy.
k nearest neighbors (KNN)

The k nearest neighbors (KNN) is a non-parametric learning

algorithm that determines the category of a sample by conducting
Frontiers in Surgery 09
a vote among its k nearest training samples (19). Typically, the

Euclidean distance is employed to measure the distance between

samples. KNN is applicable for nonlinear classification without

making assumptions about data distribution. However, its accuracy

tends to suffer in the presence of imbalanced samples.
Support vector machine (SVM)

The support vector machine (SVM) employs a hyperplane to

classify samples into different categories within the input space

(20). The learning process involves finding the coefficients of the

hyperplane that optimally separates the classes. The model is

capable of handling high-dimensional feature problems and

capturing nonlinear characteristics. However, finding an

appropriate kernel function can be challenging, and SVM is

typically used for solving binary classification problems.
Gaussian naive Bayes (GNB)

The Gaussian naive Bayes (GNB) (21) is based on the Bayesian

theorem and the naive hypothesis, assuming that each feature

within each category follows a normal distribution. Probabilities

are calculated using the probability density function of the

normal distribution for each feature in each category. The model

exhibits a fast prediction speed and is applicable to multi-

classification problems; however, its effectiveness heavily relies on

the underlying data distribution.
Decision tree (DT)

The decision tree (DT) is employed as a tree-based model for

solving classification problems (22). Nodes represent the

decision conditions, while the leaves indicate the decision

outcomes. The objective of optimization is to minimize

information entropy. The DT model is characterized by its

high interpretability and can be transformed into decision
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rules using if-else-then statements. Nevertheless, the

conventional decision tree algorithm tends to overfit easily and

disregards feature interactions.
Extreme gradient boosting (XGB)

The Extreme Gradient Boosting (XGB) is an ensemble of

classification and regression trees trained using a boosting

technique called integrated learning (23). The XGB model is

capable of handling both classification and regression problems.

It can achieve high prediction accuracy even without extensive

parameter tuning, outperforming many other machine learning

models. However, the model is not suitable for processing

unstructured data types, such as images and texts.
Random forest (RF)

The random forest (RF) is an ensemble learning algorithm that

constructs multiple decision trees in random subspaces of the

feature space, which helps preserve the generalization capability

compared to traditional training methods for decision trees (24).

Several studies have demonstrated the reliable classification

capability of RF in medical applications (25, 26). Compared to

other models, the RF algorithm exhibited superior prediction results

in this study, demonstrating its exceptional generalization capability.

To develop robust prediction models, we recommend utilizing the

RF algorithm.

While it is true that most machine learning algorithms are

capable of handling complex relationships between variables and

outcomes, interpreting real-world problems can present certain

challenges (27). To comprehend the contribution of each predictor

variable to the outcome, one can rank the variables based on their

impact on the model using SHAP values (27, 28). Figures 4, 5

depict SHAP-value graphs that illustrate the influence of variables

on predictions made by the RF model.

Undoubtedly, rehabilitation plays a pivotal role in facilitating

postoperative functional recovery. Several high-quality studies

(29, 30) have provided evidence that postoperative

rehabilitation can enhance hip function following hip fracture

surgery. Furthermore, Ziden et al. (29) reported that home-

based physical therapy yielded positive outcomes in terms of

physical functioning, activities of daily living, and patient

satisfaction. High-quality studies (31, 32) provide additional

evidence that intensive exercise training combined with

physical therapy after discharge leads to improved functional

outcomes. A study (31) demonstrated that home-based leg-

strengthening exercises significantly enhanced leg muscle

strength, gait speed, and the 6-minute walk distance among

community-dwelling older patients recovering from hip

fracture over a 6-month period. In a randomized controlled

trial involving a 3-month leg-muscle strength training program

(32), rehabilitation was found to enhance mobility and

instrumental activities of daily living in patients recovering

from hip fracture surgery while residing at home.
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This finding aligns with our prediction model, confirming that

rehabilitation is the primary determinant influencing postoperative

functional recovery. Moreover, we hypothesize that marital status,

the variable with the second highest weight in our prediction

model, indirectly influences rehabilitation and, consequently,

postoperative functional recovery. In contrast to married patients

with surviving spouses, widowed or single patients may engage in

reduced outdoor activities, limited social interactions, decreased

exercise, and exhibit poor adherence to rehabilitation due to the

absence of a companion. These factors can impact the recovery

of hip function following surgery. In a qualitative study (33), it

was found that the involvement of caregivers plays a crucial role

in providing physical and emotional care for patients with hip

fractures. In a literature review conducted by Rocha et al. (34), it

was found that older patients with hip fractures are typically

attended to by female family members following surgery. In the

majority of cases, the spouse assumes the role of the primary

caregiver, and informal caregivers play a beneficial role in

promoting the postoperative functional independence of patients.

The coexistence of multiple diseases is characteristic of older

individuals. The Age-adjusted charlson comorbidity index (aCCl)

(35) is a widely utilized scoring system for comorbidities that

accounts for age factors in addition to the CCI. Typically, it is

employed to estimate mortality rates attributed to comorbidities,

considering their number and severity. According to a

retrospective analysis (36), there were no significant differences

in functional outcomes after surgery at 1 or 2 weeks regarding

CCI. These findings suggest that CCI may not have a statistically

significant impact on short-term functional recovery. Our study

revealed a significant increase in aCCI among the poor recovery

group, indicating that aCCI serves as a predictor of functional

recovery one year after hip fracture surgery.

Frailty is a prevalent geriatric syndrome. However, there is a lack

of consistent criteria for assessing and diagnosing frailty. Various

frailty assessment methods exist, including the Fried frailty

phenotype, FRAIL scale SOF Index, and CFS (37). Kistler et al.

(38), using the Fried frailty phenotype, identified frailty in up to

51% of older patients with hip fractures. However, conducting

frailty assessments among surgeons poses challenges due to varying

assessment criteria, multiple assessment items, complex assessment

content, and the requirement for specialized assessment equipment.

Through a literature review, Dent et al. (37) found that the CFS

had a short evaluation time, averaging less than 5 min. A detailed,

comprehensive geriatric assessment was unnecessary, as the degree

of frailty could be assessed and graded solely based on charts and

descriptions, making it suitable for rapid assessment in clinical

practice. Chen CL et al. (39), defining frailty using the CFS,

observed that hip fracture surgery patients over the age of 50 with

frailty experienced a poor prognosis and high mortality rate. These

findings align with our conclusion that CFS values were higher in

the poor recovery group, indicating its predictive role in the

functional recovery of older individuals one year after fracture surgery.

Our machine learning (ML)-based prediction model aids

clinicians in making clinical decisions by accurately predicting

patients who are likely to experience poor postoperative

functional recovery through preoperative analysis. Additionally, it
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can serve as a motivator for physicians to provide counseling to

patients and caregivers, thereby promoting adherence to medical

interventions.
Strengths and limitations

Our study resulted in the development of a predictive model for

assessing the functional recovery of older patients undergoing hip

fracture surgery after one year. To the best of our knowledge, no

machine learning (ML)-based prediction model has been

developed to assess the functional recovery following one-year hip

fracture surgery in older patients. Moreover, we evaluated several

machine learning (ML) algorithms to determine their accuracy in

prediction. Additionally, we developed an online software program

capable of predicting the probability of favorable functional recovery.

The present study had several limitations. Firstly, the Harris

score was evaluated and recorded only through telephone follow-

up, resulting in a maximum score of 91 out of 100 points.

Therefore, we adjusted the score to reflect the complete range.

For instance, a score of 91 points was adjusted to 100 points.

Secondly, the prediction model underwent internal validation

without external validation. While internal validation indicated

favorable predictive ability, external validation is necessary for

further validation. Thirdly, due to the small sample size, our

study did not include a comparison of patient demographics and

characteristics between the training set and test set.
Conclusion

A prediction model based on ML algorithms was developed,

incorporating four features: marital status, aCCI, CFS, and

postoperative rehabilitation compliance. The RF model

demonstrated the highest AUC and specificity among the seven

models tested, enabling preoperative prediction of functional

recovery after one year of hip fracture surgery in older patients.

Additionally, the software for this model is accessible online.

Future external validation is necessary to validate these findings.
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