The purpose of this study was to develop a machine learning model to identify preoperative and intraoperative high-risk factors and to predict the occurrence of permanent stoma in patients after total mesorectal excision (TME).
A total of 1,163 patients with rectal cancer were included in the study, including 142 patients with permanent stoma. We collected 24 characteristic variables, including patient demographic characteristics, basic medical history, preoperative examination characteristics, type of surgery, and intraoperative information. Four machine learning algorithms including extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM) and k-nearest neighbor algorithm (KNN) were applied to construct the model and evaluate the model using k-fold cross validation method, ROC curve, calibration curve, decision curve analysis (DCA) and external validation.
The XGBoost algorithm showed the best performance among the four prediction models. The ROC curve results showed that XGBoost had a high predictive accuracy with an AUC value of 0.987 in the training set and 0.963 in the validation set. The k-fold cross-validation method was used for internal validation, and the XGBoost model was stable. The calibration curves showed high predictive power of the XGBoost model. DCA curves showed higher benefit rates for patients who received interventional treatment under the XGBoost model. The AUC value for the external validation set was 0.89, indicating that the XGBoost prediction model has good extrapolation.
The prediction model for permanent stoma in patients with rectal cancer derived from the XGBoost machine learning algorithm in this study has high prediction accuracy and clinical utility.