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Introduction: Current clinical practice suggests using patellar and quadriceps
tendon autografts with a 10 mm diameter for ACL reconstruction. This can be
problematic for patients with smaller body frames. Our study objective was to
determine the minimum diameter required for these grafts. We hypothesize that
given the strength and stiffness of these respective tissues, they can withstand a
significant decrease in diameter before demonstrating mechanical strength
unviable for recreating the knee’s stability.
Methods: We created a finite element model of the human knee with boundary
conditions characteristic of the Lachman test, a passive accessory movement
test of the knee performed to identify the integrity of the anterior cruciate
ligament (ACL). The Mechanical properties of the model’s grafts were directly
obtained from cadaveric testing and the literature. Our model estimated the
forces required to displace the tibia from the femur with varying graft diameters.
Results: The 7 mm diameter patellar and quadriceps tendon grafts could withstand
55–60 N of force before induced tibial displacement. However, grafts of 5.34- and
3.76-mm diameters could only withstand upwards of 47 N and 40 N, respectively.
Additionally, at a graft diameter of 3.76 mm, the patellar tendon experienced 234%
greater stiffness than the quadriceps tendon, with similar excesses of stiffness
demonstrated for the 5.34- and 7-mm diameter grafts.
Conclusions: The patellar tendon provided a stronger graft for knee
reconstruction at all diameter sizes. Additionally, it experienced higher maximum
stress, meaning it dissociates force better across the graft than the quadriceps
tendon. Significantly lower amounts of force were required to displace the tibia
for the patellar and quadriceps tendon grafts at 3.76- and 5.34-mm graft
diameters. Based on this point, we conclude that grafts below the 7 mm
diameter have a higher chance of failure regardless of graft selection.
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FIGURE 1

Cadaveric experiments; sketch of our experimental setup: (A) patellar
tendon and (B) quadriceps tendon.
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Introduction

The ACL originates at the medial side of the lateral femoral

condyle and runs an oblique course through the intercondylar

fossa. It is the primary restraint to anterior tibial translation and

secondary restraint to internal rotation of the weight-bearing and

non-weight-bearing knee (1). An anterior cruciate ligament

(ACL) injury can result in significant impairment, especially in

highly active individuals. Numerous graft sources have been

described during the evolution of ACL reconstruction surgery

(2, 3). Traditionally, the surgical approach to ACL reconstruction

favored the use of allografts or autografts from the patellar

tendon, although the hamstrings, and to a lesser degree, the

quadriceps tendon have become popular grafts amongst many

surgeons and institutions throughout the years (4). Many studies

have been conducted to investigate the biomechanical properties

of these grafts to guide surgeons in choosing the graft most

suitable for their patients (5, 6). More specifically, these studies

define biomechanical properties such as tensile strength,

elasticity, stiffness, stress and strain responses, and the

anatomical measures of these individual grafts. These measures

were simulated by the model employed in the study to

adequately predict, based on graft selection, how the

reconstructed joint functions in consideration of the geometric

dimensions employed when designing these individual grafts.

One main limitation of the literature regarding this topic is the

need for more data for the quadriceps tendon graft compared to

the other graft sources. Additionally, a 2022 systematic review

noted a need for studies investigating the effects of diameter on

graft selection (4). Considering this second point, two studies

investigating this question found that smaller diameter patellar and

hamstring tendon autografts are associated with weaker tensile

strength and a greater risk of failure (7). However, neither of these

studies investigated how the diameters of these grafts would affect

the knee mechanics in its working environment. More

importantly, no studies have been conducted to determine how

diameter affects the strength of the quadriceps tendon. This can be

attributed to the fact that the quadriceps were the latest grafts to be

popularized by Orthopaedic surgeons (4). Therefore, this study

aimed to investigate how diameter affects the biomechanical

properties of the quadriceps graft while also comparing it to the

“gold standard” patellar tendon graft (8, 9). We hypothesize that

when changing the diameters of the quadriceps and patellar grafts,

these grafts will tolerate a significant decrease in diameter before

they become too weak to meet mechanical requirements for ACL

reconstruction, with the patellar tendon capable of withstanding a

more substantial reduction in diameter when compared to the

quadriceps. Furthermore, we introduced a controlled Lachman test

as a measure of knee stability similar to the passive accessory

movement test of the knee performed to identify the integrity of

the anterior cruciate ligament (ACL). Finally, we aimed to

determine how changes in the dimensions of the grafts affect their

interaction with various bony and ligamentous features of the

reconstructed joint, with an emphasis placed on the graft-

epicondylar interface.
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Methods

Patellar and quadriceps autografts
mechanical testing

The extensor apparatus was harvested from fresh-frozen, non-

irradiated human knees from male and female donors aged 70–90

without any musculoskeletal pathology. Seven quadriceps

tendon-patella-patellar ligament-tibial tuberosity complexes were

obtained. Each complex was further divided into two complexes

(i) a segment of the quadriceps tendon with the proximal half of

the patella attached (QT-P); and (ii) the distal half of the patella,

the patellar ligament, and a distal insertion of the tibia (P-PL-T)

by performing a transverse cut at the midline of the patella using

an oscillating saw following a methodology already used by

Staubli (10). The exposed tendon and ligament were wrapped

with 0.9% NS-soaked gauze throughout the harvesting and

placement procedure. To ensure a proper fixation for the

experimental testing, the distal ends of each complex were

cemented in a metal box with polyester resin. Stabilizing wires

were placed at a perpendicular angle through the longitudinal

axis of the tendon complex, and the ends of the stabilizing wires

were clamped securely to both sides of the box. This procedure

was performed for the P-PL-T for both ends (Figure 1A). For

the QT-P complex, a Krackow suture was placed within the free

tendon end with 3–0 PDS and then secured to the stabilizing

wires using multiple suture loops (Figure 1B). The metal boxes

were clamped to the materials testing machine (Instron, Instron

Corporation, Canton, MA, USA) through a wire loop and a

screw. Before testing, 250 N was applied to secure the sutures.

Uniaxial tensile testing was performed at an 18 mm/min

extension rate.
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Using a digital caliper, the exposed tendons and ligaments were

marked in the thinner cross-section to measure thickness and

width with an initial load of 5 N. The initial length of the

tendons and ligaments was an average of 38.5 mm, measured

between cemented extremities for the patellar ligament and

between the cemented extremity and the suture for the

quadriceps tendon. The width was measured in this minor

position, and the two adjacent sections were spaced along one-

third of the tendon length. The thickness was measured at three

equidistant points on these reference positions. The cross-

sectional area was evaluated as the width multiplication and the

tissue’s average thickness. After testing the entire segment, lateral

portions were removed to have two remaining sequential samples

of two-thirds and one-third in width. On the central one-third,

measurements were taken until failure was reached, defined as

either separating the tendon complex from the metal housing or

separating the housing container from the arm of the machine.

Stress was determined by dividing the force by the

corresponding cross-sectional area measurement (see Figure 6).

In addition, the Modulus of the tissues was evaluated using

linear regression on the obtained measurements.
Finite element model for the Lachman test

The effective mechanical behavior of the graft and the

composition of both material characterization and tensioning are

evaluated in a computer-simulated model that best approximates

the knee biomechanics. This model was based on the Lachman

Test, the most widely used clinical test to determine if the ACL

has been torn (11). When building our model, we needed to

recreate the structural properties of these grafts by assigning

them different inputs for their intrinsic and extrinsic properties

according to preselected Young’s Modulus values and diameters.
FIGURE 2

Computer reconstruction of the ACL tunnel during implantation at 90 degrees
and functional conditions (B).

Frontiers in Surgery 03
Given the limitations of using cadavers, many labs report

various values for the biomechanical properties of the individual

grafts being tested (12). To balance these variations in the

literature, we chose to use a range of Young’s Modulus values for

both the patellar tendon and quadriceps tendon grafts to average

the results generated from our model to gain a more accurate

picture of the investigated effects. We chose to include Young’s

Modulus values from the literature for the patella tendon of

340.0 MPa (13), 507.4 MPa (14), 565.9 MPa (15), and 597.4 MPa

(16), and a value of 263.4 MPa (15) for the quadriceps tendon.

In choosing diameters to test in our experiment, we followed

guidelines in the literature, stating that appropriate graft sizes for

ACL reconstruction need to restore up to 85%–115% of the

native ACL total cross-sectional area (17). We chose our largest

diameter of 7 mm based on an experiment that looked at the

effect of diameter on the tensile strength of the patellar tendon at

diameters of 7, 10, and 15 mm (18). In line with this past study,

we further investigated by starting at the lowest data point used

in prior studies and expanding to even smaller diameters.

Additionally, this value matches the average diameter of the

native ACL mid-substance of 7 mm (1). The next smallest

diameter of 5.34 mm was chosen based on a value of 5.4 mm

diameter reported for the mid substance of the ACL, based on

an analysis of female and older age cadavers (average age of 74.8

years) (19). This would allow us to analyze a potential smaller

graft for patients with smaller knee geometry. Finally, we chose

our smallest diameter of 3.76 mm, which would still align with

the required reconstructed area of the native ACL, based on a

reconstruction of an ACL with a diameter of 5.4 mm (20).

The knee bone Geometry was reconstructed from CT scan data

using a BrightSpeed (GE Medical Systems) scanner with a slice

thickness of 0.625 mm and pixel size of 0.426 mm. The CT

images were then imported to Mimics (Materialise, Leuven,

Belgium). The tunnels (shown in Figure 2) for the ACL graft

were virtually created at 90° of Flexion using a Boolean
of flexion using the boolean operation of an 8 mm cylinder in diameter (A)
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subtraction with a cylinder 8 mm in diameter (21). Its femoral and

tibial positions were based on the studies proposed by Bedi et al.

and Gadikota et al. (20, 22). An expert surgeon evaluated the

axial slices.

Main ligaments were reconstructed following anatomical

landmarks on insertion footprints from the literature (23–28).

The meniscus was modeled with variable thickness to match the

femoral surface in the relaxed position of the CT scan.

Considering the aim of this study, the ACL graft was modeled in

the knee-flexed configuration as a cylinder and characterized

transversely as isotropic (29). The graft in the model is kept in

place by two Softsilk 1.5 fixation titanium screws (Smith &

Nephew, Andover, MA) 8 mm in Diameter (Figure 3A). All

other ligaments are modeled as membrane elements reinforced

by truss elements (30–32). The meniscus was modeled as

transverse isotropic with an orientation identical to the tibia axis

(33). The cartilages (Figure 3B) are created assuming a constant

thickness of 2.23 mm for the patella and 2.14 mm for the femur

with modulus E = 10 MPa and ν = 0.45 (34). The cortical bone

was modeled with Young’s modulus of 17 GPa (35), while the

material properties of the trabecular bone were assigned from the

CT data (36–38).

The model was simulated, imposing an A-P translation of

15.9 mm, equivalent to the average value reported at the anterior

tibial tubercle by Christel et al. (39) for Lachman tests performed

on cadaveric specimens (Figure 3C). In addition, six variations

in ACL cross-sections from the initial 38.5 mm2 were

implemented, considering cross-section areas of 22.4 mm2 and

11.10 mm2 (Figure 4). The boundary conditions were applied to

constrain the proximal end of the femur in all degrees of
FIGURE 3

Finite element model of the knee in the unloaded configuration: (A) ACL graft s
collateral ligaments, and (C) initial displacement imposed.
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freedom. Additionally, a posterior-anterior displacement was

applied to the distal end of the tibia along the projection of the

anatomical axis of the femur on the plane sectioning the tibia.
Results

Experimental tensile properties

During mechanical testing, no specimen slippage from the

fixation device occurred, and no slippage from the fixation device

was observed. Patellar ligaments were generally smaller than

quadriceps tendons (126.27 and 135.67 mm2, respectively). The

cross-sectional area of the patellar tendon was reduced by

10.64% of its initial cross-sectional area at L1 (first-third of the

length) and approximately 34.61% at L2 (second third of the

length). For the quadriceps tendon, the reduction in cross-

sectional area for L1 was 9.77%.

For the young Modulus evaluated for the entire segment, the

quadriceps tendon has shown a standard deviation of 76 MPa,

smaller than the 115 MPa estimated for the patellar tendon. Still,

as shown in Figure 5, the range between maximal and minimal

values recorded for every strain value was more significant for

the quadriceps tendon than for the patellar ligament. We have

found an increasing modulus with decreasing cross-section (see

Table 1). Specifically, the central one-third graft was a drastic

118% stiffer for the patellar ligament than the entire segment.

The quadriceps tendon further demonstrates this trend

(Figure 6B, Table 1).
imulated, (B) 3D external rotation view of cartilage and meniscus layers and
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FIGURE 4

Cross-section view of the reconstructed ACL grafts: the diameters range from 7 mm (A) to 3.76 mm (F).

FIGURE 5

Experimental results; average stress-strain curves and ranges for (A) patellar ligaments and (B) quadriceps tendon.

TABLE 1 Young moduli from experiments conducted in the current study.

Segment Patellar ligament Quadriceps tendon
Portion Entire segment Central two third Central One third Entire segment Central Two third Central portion

Cross Section [mm2] 126.3 83.1 48.5 135.7 105.8 64.3

Modulus [MPa] 409.5 564.6 893.4 176.7 330.5 461.8

Amirouche et al. 10.3389/fsurg.2023.1122379
The Patellar ligament was stiffer than the Quadriceps tendon

(Figure 6A). When comparing the central one-third portion of

the tissues, the proportion commonly used for grafts, the patellar

ligament was substantially stiffer, with a Modulus of 893.4 MPa,

compared to 461.8 MPa for the quadriceps tendon.
Frontiers in Surgery 05
Simulated Lachman test

The average force for the Lachman maneuver was 59.48 N ±

1.82 N for the patellar tendon graft with a width of 7.00 mm. For

graft sizes of 5.34 mm and 3.76 mm, the force was reduced by
frontiersin.org
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FIGURE 6

Specific results for harvested dimensions; experimental results for (A) entire segments and for (B) three harvested dimensions of the patellar ligament.
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21% and 33%, respectively (Figure 7). When used as a graft, the

7 mm patellar tendon graft was 10.7% stronger than the native

ACL. The force calculated using the central portion of the 7 mm

quadriceps tendon as a graft was 5.1% greater than the one

produced by the native ACL.

In the cases where the quadricep graft sizes were reduced to

5.34 mm and 3.76 mm, the forces were reduced by 27% and

13%. The ANOVA single factor revealed a significant difference

between the three graft sizes (p < 0.05). In the graft size of

3.76 mm, the patellar tendon graft (893.4 MPa) was 234% stiffer

than the quadriceps graft (263.4 MPa), and the force increment

was limited to 5.1% (R2 = 0.946). For graft sizes of 5.34 mm and
FIGURE 7

Results of the simulated Lachman test; values of force needed for the
A-P displacement according to the young modulus for each of the
three considered graft dimensions.

Frontiers in Surgery 06
7.00 mm, the force increment was evaluated at 8.1% (R2 = 0.928)

and 9.8% (R2 = 0.909), respectively.

We also performed additional tests to investigate the

quadriceps tendon (461.8 MPa) as an alternative to the patellar

tendon. The maximum stress for the quadriceps tendon with a

graft size of 3.76 mm was 43.8 MPa (Figure 8). Increasing the

graft dimensions, the maximal stress was significantly reduced to

28.4 MPa and 27.5 MPa for the 5.34 mm and 7.00 mm graft sizes

(Figure 8). Following the intercondylar eminence, the stress

10.88 MPa was found for the 7.0 mm graft, whereas the 3.76 mm

graft resulted in 8.5 MPa maximal stress. A much more

pronounced reduction in stress is seen when comparing the

stress risers at the femoral condyle bonding part, where

we measured 21.1 MPa and 8.8 MPa for the 7.00 mm and the

3.76 mm grafts. Similar trends in maximum stress were observed

for the native ACL and the patellar tendon grafts. However,

when comparing values for the maximum stress of the

quadriceps tendon to those experienced by the patellar tendon at

similar diameters, the patellar tendon grafts in our model showed

an average of two times greater maximum stress across relative

points of interest on the grafts.
Discussion

We found that within our model, the patellar tendon

outperformed the quadriceps at all graft diameters. When

averaging the values for graft diameter and Young’s Modulus of

the respective graft sources, the patellar tendon required a 10.7%

greater force relative to the native ACL to induce tibial

displacement compared to 5.1% for the quadriceps. This suggests

that the patellar tendon yields more robust grafts for ACL

reconstruction at smaller graft diameters. Additionally, the

maximum stress for the patellar tendon is at least double that of
frontiersin.org
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FIGURE 8

Stress distribution during the simulated Lachman test for the configuration with young modulus of 461 MPa, (A) resultant displacement with graft
dimension of 7 mm, von mises stress distribution, including the screws, in (B) 7 mm, (C) 5.34 mm and (D) 3.76 mm graft sizes.

Amirouche et al. 10.3389/fsurg.2023.1122379
the quadriceps tendon and about 3–4 times that of the native ACL.

This is visualized in Figure 8 by using our modeling results and

extracting the maximum stress from the stress response heat map

on the tendon. This shows that the patellar tendon better

distributes force across the graft and can tolerate more significant

stress before deformation.

On the other hand, the patellar tendon has its inherent flaws.

The patellar tendon was 234% stiffer than the quadriceps tendon.
TABLE 2 Young moduli reported in the literature compared to the current st

Author Stäubli
et al. (10)

Flahiff
et al. (13)

Current
study

H
et

Segment Quadriceps tendon Patellar ligament Quadriceps tendon Patel

Portion Central portion
(CSS 64.6 mm2)

Central portion
(Width 13.2 mm)

Central portion
(CSS 64.3 mm2)

Cent
(CSS

Ultimate tensile
stress [MPa]

38.0 78.4 “800 to
3,000”N

62.2 58.7

Modulus [MPa] 263.4 (at 200 N)
462.8 (at 800 N)

340.0 461.8 507.4

Frontiers in Surgery 07
Additionally, past research found that the Young Modulus

evaluated for the patellar tendon is approximately two times

greater than that of the quadriceps tendon (see Table 2) (15).

This is problematic given an association of excessive stiffness and

high Young’s Modulus with over-constraining of the knee. A

study by O’Brien et al. found that the knee experiences more

significant constriction with increasing Young’s Modulus. In

contrast, Suggs et al. found a correlation between graft stiffness
udy.

ashemi
al. (14)

Stäubli et al.
(10)

O’Brien
et al. (16)

Current
study

lar ligament Patellar ligament Patellar ligament Patellar ligament

ral portion
20.7 mm2)

Central portion
(CSS 34.5 mm2)

Entire Patellar Ligament
(vivo) (CSS 114.8 mm2)

Central portion
(CSS 48.5 mm2)

69.6 – 68.17

565.9 (at 200 N)
811.7 (at 800 N)

597.4 893.4
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and knee constraining at various flexion angles (16, 40).

Additionally, it has been shown that an over-constraining effect

is a common postoperative outcome of ACL reconstruction. A

study by Robertson et al. that investigated postoperative knee

stiffness in 100 patients undergoing primary ACL reconstruction

with hamstring autografts found an incidence of postoperative

knee stiffness of 12% at six months follow-up (40, 41). Even

more, one study found that athletes who have undergone ACL

reconstruction with quadriceps tendons experience less stiffness

when compared to those who received patellar tendon autografts

and performed better in specific compound movements such as

squatting (42).

Westermann et al. conducted a similar study using a simulated

Lachman model to test graft diameters between 5 and 9 mm (43).

However, they designed a graft that restored the joint to ideal

proportions in all areas of the knee joint, and that reconstructed

the ACL with a graft demonstrating over 150% the strength of

the native ACL. In addition, their study showed that

anatomically ideal grafts of all sizes could tolerate over 75 N of

force before induced tibial displacement. Based on this, we could

compare the strength of the grafts within our model relative to

the “gold standard” for ACL reconstruction. We found that the

7 mm diameter grafts were the only grafts in our study that

showed strength comparable to these ideal grafts, with forces of

over 55 N and upwards of -60 N required to induce tibial

displacement. Additionally, the grafts below 7 mm failed to reach

a strength of even 50 N before tibial displacement. Even more,

grafts of these diameters underperformed compared to the native

ACL within our model. Given our goal of restoring the native

strength of the ACL, grafts below 7 mm diameters do not

approximate the strength of an ideal ACL graft and should not

be considered for ACL reconstruction.

Regarding the graft size of 3.76 mm, we were not surprised by

the results collected. We anticipated this graft dimension would not

be suitable for ACL reconstruction but chose to include it in our

model to validate the diameter at which the grafts fail. Although

this graft size is unsuitable for ACL reconstruction, we aimed to

understand how small the graft’s diameter can be before it is

incompatible with ACL reconstruction, making this data point

extremely valuable.

Furthermore, using smaller graft diameters within the

experimental design allows the model to better estimate how the

total area of the grafts affect their biomechanical properties,

while maintaining core constants such as width and length. This

allowed us to model smaller graft sizes in the context of

understating if smaller grafts are suitable for patients with

smaller body frames, while only changing a single dimensional

variable, namely diameter, which was already the variable under

investigation within our study. A more favorable approach to

investigating total area would be to adjust the width and

diameters of the grafts while keep these variables within ranges

that are commonly employed in surgical practice, however this

was out of the scope of the research question. We were able to

still gauge the importance of area on the strength of smaller

grafts by using graft diameters smaller than those commonly

used within clinical practice while also using these graft
Frontiers in Surgery 08
diameters to formally investigate the extent of which diameter

affects ACL graft selection.

Within our study, a few limitations can be identified. Foremost,

the cadavers utilized were of a significant age, between 70 and 90.

This may have impacted the mechanical properties of experimental

characterization. Additionally, the Young’s Modulus values found

in our study were more significant than those reported in the

literature compared to younger cadavers. This finding runs

contrary to what has been established in the literature, as it has

been well described that the quadriceps undergoes degeneration

as the individual ages and should have yielded a weaker response

to stress as compared to the quadriceps of younger cadavers

tested by other laboratories (44). The different testing conditions

employed, namely concerning the load ranges adopted could

have impacted the preparation of the grafts, thus explaining why

our tissues behaved differentially than those of other researchers.

We compensated for this variance by creating a range of Young’s

Modulus values that would provide us with an average of values

to estimate better the actual effect of Young’s Modulus on the

grafts. Values from the literature were chosen based on studies

that followed similar methods to ours. Although we chose to

include four Young’s Modulus values for the patellar tendon, it is

essential to note that only one literature value was used for the

quadriceps, given that fewer data exists for this graft source

compared to the patellar tendon in the literature.

Next, we used a finite element model to conduct our

experiment. We chose to use a model for several key reasons.

First, using a model rules out any errors regarding preparing the

grafts at their proper diameters. Additionally, variables such as

diameter can be easily manipulated within a model, and various

results, such as maximum stress and strain across different

elements of the reconstructed knee, can be obtained from a

single test. This is not attainable when using cadavers. The

limitations faced with cadavers are both a lack of accessibility to

adequate quantities of cadavers and many inherent flaws that can

affect the data collected. These include variables such as how the

cadavers were stored, how old the cadavers are, and how the test

is designed and carried out. Finally, using a model of the knee in

its working environment allowed us to test how diameter affects

the mechanics of the joint, something that has yet to be done in

prior studies investigating the effects of diameter on ACL grafts.

Currently, no established experimental methodologies exist to

validate such interactions between grafts and condyles.

Consequently, the conclusions regarding the experimental testing

of the tissues have been appropriately separated from the results

obtained from the computer model, which overlooks the ACL-

bone interaction (45, 46) entirely. The model used within the study

primarily serves to investigate the interaction between graft

diameter and joint stability but also functions independently to

indicate the interaction between the graft and the condyles.

Considering this, the measurements taken from the model focused

on quantifying the forces distributed across the reconstructed joint

at all the anatomical landmarks of the reconstructed joint, with

particular consideration of the epicondylar eminence and femoral

condyles. Although the validity of this element is limited, the

model does quantify the relationship between graft dimensions and
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the graft-to-condyle interface. This can be used as a preface to further

research to investigate this relationship better.

While finite element modeling has its benefits, it is limited in

its application and accuracy when compared to research with

cadaveric models. Further testing with cadaveric models is highly

recommended to conclude what has been found in this study. It

would be beneficial to test the functionality of these grafts within

cadavers at various diameters with 1 mm increments, starting at

7 mm and going up to 10 mm, to generate finite data to guide

surgeons when considering matching functional graft sizes to

their patients.
Conclusion

When designing ACL grafts of a smaller area for use with

patients that require smaller than traditional grafts, we found

that the patellar tendon provided a stronger graft for knee

reconstruction at all diameters. This makes the patellar tendon

favorable for use as a graft source in patients requiring smaller

grafts. This is further corroborated by the point that the

quadriceps tendon undergoes a significantly greater degree of

degeneration over time as compared the patellar tendon. For

traditional graft sizes, this would not be a factor causing

surgeons to favor the patellar tendon over the quadriceps tendon,

however when maximally confining graft dimensions in the

context of our research question, this element becomes

increasingly important to consider.

Assuming that a greater emphasis is placed on the utilization of

smaller grafts in target populations, it will be increasingly

important to choose a graft source that is stronger and retains a

greater functional area as the graft ages. Even more, we conclude

based on our model that grafts below 7 mm diameter are

unsuitable for reconstruction of the knee. Finally, the interaction

we discovered between the condyles and the graft paves the way

for future investigations into how graft dimensions can be

tailored to the morphometric characteristics of the knee.
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