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Introduction: Cellular senescence is a cellular response to stress, including the
activation of oncogenes, and is characterized by irreversible proliferation arrest.
Restricted studies have provided a relationship between cellular senescence and
immunotherapy for esophageal cancer.
Methods: In thepresent study,weobtainedclinical sampleofcoloncancer fromtheTCGA
database and cellular senescence-related genes from MSigDB and Genecard datasets.
Cellular senescence-related prognostic genes were identified by WGCNA, COX, and
lasso regression analysis, and a cellular senescence-related risk score (CSRS) was
calculated. We constructed a prognostic model based on CSRS. Validation was
performed with an independent cohort that GSE53625. Three scoring systems for
immuno-infiltration analysis were performed, namely ssGSEA analysis, ESTIMATE scores
and TIDE scores.
Result: Five cellular senescence-related genes, including H3C1, IGFBP1, MT1E, SOX5 and
CDHR4 and used to calculate risk score. Multivariate regression analysis using cox
regression model showed that cellular senescence-related risk scores (HR=2.440, 95%
CI=1.154-5.159, p=0.019) and pathological stage (HR=2.423, 95% CI=1.119-5.249,
p=0.025) were associated with overall survival (OS). The nomogram model predicts
better clinical benefit than the American Joint Committee on Cancer (AJCC) staging for
prognosis of patients with esophageal cancer with a five-year AUC of 0.946. Patients
with high CSRS had a poor prognosis (HR=2.93, 95%CI=1.74-4.94, p<0.001). We
observed differences in the distribution of CSRS in different pathological staging and
therefore performed a subgroup survival analysis finding that assessment of prognosis by
CSRS independent of pathological staging. Comprehensive immune infiltration analysis
and functional enrichment analysis suggested that patients with high CSRS may develop
immunotherapy resistance through mechanisms of deacetylation and methylation.
Discussion: In summary, our study suggested that CSRS is a prognostic risk factor for
esophageal cancer. Patients with high CSRSmay haveworse immunotherapy outcomes.
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EC, esophageal cancer; CS, Cellular senescence; SASP, senescence-associated secretory phenotype; TCGA, The Cancer
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and Genomes; GSEA, Gene set enrichment analysis; CSRS, Cellular senescence-related risk score; DEG,
Differentially expression gene; OS, Overall survival; AJCC, American Joint Committee on Cancer; DCA, decision
curve analysis; KM, Kaplan-Meier; ROC curve, Receiver operating characteristic curve; EAC, Esophageal
adenocarcinoma; ESCC, Esophageal squamous cell cancer; WGCNA, Weighted correlation network analysis;
HDCA, Histone deacetylase; IGF, Insulin-like growth factor; EMT, Epithelial-mesenchymal transition.
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Introduction

Esophageal cancer (EC) is the eighthmost common cancer-related

death worldwide disease (1–3). At present, clinical treatment of EC

mainly includes surgery, chemotherapy, radiotherapy, targeted

therapy and their combinations (4, 5). Approximately half of the

patients have distant metastases when EC is diagnosed, surgery is no

longer applicable (6). Unfortunately, radiotherapy, chemotherapy, and

targeted therapy have made only limited progress in recent years in

improving the generally disappointing outcome (6). Reaching the

efficacy benefit of immunotherapy for EC remains challenging.

Cellular senescence (CS) is a stable cell cycle arrest that occurs in

diploid cells and limits their proliferative life span, which induces a

proliferative arrest in cells at risk of malignant transformation and is

therefore widely considered as an anti-tumor mechanism (7, 8). The

physiological role of the immune checkpoints is to prevent excessive

immune response by termination immune system activation at

appropriate time, which can be utilized by tumor to catalyze the

auto-destruction of the immune responses (9, 10). Expression of the

immune checkpoint PD-L1 was confirmed to be required for

senescent cells to evade T-cell immunity, as well as for tumor cells (11).

Cellular senescence-based drugs are currently being explored and

developed in two categories, senolytics and senomophics, including

senescence-associated secretory phenotype (SASP) inhibitors (12, 13).

Immunotherapy involving CS-based drugs seems to be a new

therapeutic approach, but the role in the EC remains poorly defined.

Thus, we hypothesized that CS-related genes promote EC progression

by affecting immune regulation and constructed a prognostic model.
Materials and methods

Data acquisition

Transcriptomic data and clinical information of esophageal

cancer (EC) derived from the TCGA-ESCA cohort as a training set

(https://portal.gdc.cancer.gov/), involving 162 EC samples and 11

normal samples. Clinical information not available or ambiguous

was removed. Independent cohort GSE53625 as validation set

available from GEO database. Cellular senescence-related genes

(CSRGs) were selected by the Molecular Signatures Database

(MSigDB, http://www.gsea-msigdb.org/) and Genecards (https://

www.genecards.org/) tools (Supplementary Table S1). The

procedure detailed in this study is shown in Figure 1.
Identification of CS-related prognostic hub
genes

Statistical analyses based on the TCGA database were performed

with R. The differentially expressed genes (DEGs) in tumor and

normal tissues of TCGA-ESCA cohort were screened by differential

analysis. Combined with CS-related genes, CS-related DEGs in EC

were initially screened by Venn analysis. The WGCNA weighting

analysis of the distribution of correlation modules of these genes was

performed, and CS-related prognostic genes were further obtained

by univariate COX regression analysis. Finally, CS-related prognostic

hub genes were identified by LASSO regression.
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Construction and validation of CS-related
risk scores prognostic models

Based on the coefficients of CS-related prognostic hub genes

gained from Lasso regression analysis, the CS-related risk scores

(CSRS) were constructed as follows.

CS related risk scoresðCSRSÞ ¼
Xn

i¼1
expressiongene i

� lasso coeffieicentgene i

Independent prognostic factors were screened by univariate and

multivariate COX regression analysis. These factors and CSRS were

combined to construct a nomogram model for predicting survival

in patients with EC. A preliminary assessment was performed with

a calibration correction curve.

Data from the GSE53625 dataset was taken to validate the reliability

of the model. The effectiveness of the nomogram model was

demonstrated by the decision curve analysis (DCA) curve, Kaplan-

Meier (KM) curve and receiver operating characteristic (ROC) curve.
Correlation between CSRS with clinical
characteristics and survival

The Wilcoxon signed-rank sum test was used to compare the

differences in clinical characteristics of patients in high- and low-

CSRS groups. The prognostic value of CSRS for patients of

different age groups, pathological staging, and pathological stages

was performed by Kaplan-Meier.
Correlation between CSRS and immune cell
infiltration

In the present study, three scoring systems for immuno-infiltration

analysis were performed, namely ssGSEA analysis (14), ESTIMATE

scores (15) and TIDE scores (16). Levels of infiltration of different

immune cells in tumors were quantified by the ssGSEA algorithm

through the GSVA package (17). The purity of tumor immune

infiltration and abundance of stromal cells were calculated by

ESTIMATE algorithm through the estimate package. The dysfunction

score and exclusion scores from the TIDE scoring system were applied

to predict the efficacy of immunotherapy in different CTL-related

subgroups of patients.
Functional enrichment analysis

GO analysis and KEGG analysis for probing the potential

biological functions of gene networks in different modules of the

WGCNA with the clusterProfiler package and org.HS.eg.db

package (18). The biological mechanisms leading to differences in

high and low CSRS groups were explored via gene set enrichment

analysis (GSEA) by the clusterProfiler package (17, 18).
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FIGURE 1

Flow chart of the present study. DEG: Differentially expression gene; TCGA, The Cancer Genome Atlas; CS, Cellular senescence; MSigDB, Molecular signatures
database; DEGs, Differentially expressed genes; WGCNA, Weighted correlation network analysis; ESTIMATE, Estimation of STromal and Immune cells in
MAlignant Tumours using Expression data; ssGSEA, Single sample gene set enrichment analysis; TIDE, Tumor Immune Dysfunction and Exclusion.
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Result

Screening and identification of CS-related
prognostic genes

A total of 1,153 CS-related genes were derived by MSigDB and

Genecards tools (Supplementary Table S1), of which 241 genes
Frontiers in Surgery 03
(Figure 2A) were differentially expressed between EC and normal

tissues (Figure 2B, |log2FC|>1, p < 0.05).

WGCNA analysis of TCGA-ESCA transcriptome data was

performed to search for highly related gene modules. Based on

the relationship between the soft threshold with the scale-free fit

and the mean connectivity, a suitable soft threshold β was

finally determined as 12 (Figure 2C). The network classified the
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FIGURE 2

Identification of CS-related prognostic genes. (A,B) A total of 241 genes were differentially expressed between EC and normal tissues(|log2FC|>1, p < 0.05).
(C) Soft threshold β of WGCNA was determined as 12 based on the scale-free fit and the mean connectivity. (D–E) WGCNA network classified the CS-
related DEGs into three different modules, blue, brown and turquoise. GO/KEGG analysis was performed in module genes. (F) Blue module. (G) Brown
and turquoise modules. (H) Univariate COX regression analysis of modular genes.

Zheng et al. 10.3389/fsurg.2023.1090700
CS-related DEGs into three different modules, blue, brown and

turquoise (Figures 2D,E), by using a dynamic tree cutting and

clustering algorithm. The correlation between modules was

presented by a heat map, which showed that the

turquoise module was highly genetically correlated with the

brown module.

GO/KEGG analysis was performed to probe the biological

functions associated with each module gene. The genes of the blue

module were mainly enriched in cellular senescence and aging
Frontiers in Surgery 04
(Figure 2F). The genes of the brown and turquoise modules

(Figure 2G) might play a role in biological processes such as

cellular senescence, as well as, apoptosis-related signaling pathways.

The detailed GO/KEGG annotations are presented in Table 1.

Univariate COX regression analysis of the modular genes

identified seven genes that were strongly associated with overall

survival (OS), namely SLC30A10, IGFBP1, H3C1, FBXO5, SOX5,

CDHR4 and MT1E (Figure 2H). The above genes were identified

as CS-related prognostic genes.
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TABLE 1 GO/KEGG analysis annotations of module genes.

ONTOLOGY ID Description
BP GO:2000773 negative regulation of cellular senescence

BP GO:0090398 cellular senescence

BP GO:0007568 aging

BP GO:0007569 cell aging

BP GO:0007568 aging

BP GO:2001233 regulation of apoptotic signaling pathway

BP GO:1900739 regulation of protein insertion into
mitochondrial membrane involved in
apoptotic signaling pathway

BP GO:1900740 positive regulation of protein insertion into
mitochondrial membrane involved in
apoptotic signaling pathway

BP GO:0072332 intrinsic apoptotic signaling pathway by p53
class mediator

BP GO:0051402 neuron apoptotic process

BP GO:0008637 apoptotic mitochondrial changes

BP GO:0097191 extrinsic apoptotic signaling pathway

BP GO:0006323 DNA packaging

BP GO:0031497 chromatin assembly

BP GO:0006334 nucleosome assembly

BP GO:0090342 regulation of cell aging

BP GO:0090398 cellular senescence

CC GO:0005776 autophagosome

CC GO:0062023 collagen-containing extracellular matrix

CC GO:0005788 endoplasmic reticulum lumen

CC GO:0000786 nucleosome

MF GO:0005178 integrin binding

MF GO:0005201 extracellular matrix structural constituent

MF GO:0019838 growth factor binding

MF GO:0019887 protein kinase regulator activity

MF GO:0002039 p53 binding

MF GO:0001228 DNA-binding transcription activator activity,
RNA polymerase II-specific

MF GO:0016538 cyclin-dependent protein serine/threonine
kinase regulator activity

MF GO:0031492 nucleosomal DNA binding

MF GO:0031491 nucleosome binding

MF GO:0097472 cyclin-dependent protein kinase activity

KEGG hsa04115 p53 signaling pathway

KEGG hsa04935 growth hormone synthesis, secretion and
action

KEGG hsa04933 AGE-RAGE signaling pathway in diabetic
complications

KEGG hsa04115 p53 signaling pathway

KEGG hsa05034 Alcoholism

KEGG hsa05203 viral carcinogenesis
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Development of CS-related risk scoring
system and construction as well as validation
of CSRS nomogram model

The regression coefficients (Table 2) of the above 7 CS-related

prognostic genes were calculated by the Lasso algorithm

(Figures 3A,B) using OS as an outcome indicator, with the

CSRS ¼ 0:2901� H3C1þ 0:2158 � IGFBP1� 0:7121 � CDHR4
� 0:1390 �MT1E � 0:1184 � SOX5

The prognostic DCA chart (Figure 3C) confirmed the utility of the

CSRS scoring system in predicting survival outcomes in patients

with EC.

We performed a COX regression analysis of the TCGA-ESCA

cohort to uncover factors affecting the prognosis of esophageal

patients. In the independent cohort GSE53625, EC patients were

divided into high-risk and low-risk groups based on the median

CSRS in TCGA-ESCA as the cutoff value for further analysis to

verify the generalizability of the CSRS score. The results of the

univariate COX analysis in the TCGA cohort (Figure 3D)

suggested that N stage, M stage, pathological stage and CSRS

(HR = 2.903, 95%CI = 1.497–5.629, p = 0.002) were risk factors

affecting the prognosis of esophageal cancer, which was similarly

validated in the GSE53625 cohort (Figure 3E, risks score group:

HR = 1.742, 95%CI = 1.129–2.686, p = 0.012). Further multivariate

COX analysis at TCGA-ESCA (Figure 3F) and GSE53625

(Figure 3G) indicated the reliability of the prediction of prognosis

in patients with EC by CSRS. CSRS can accurately distinguish

esophageal cancer patients with different survival times, which

means that a higher CSRS represents a worse prognosis as reflected

by the results of the KM analysis (Figures 3H,I).

Integrating the above analysis, we constructed a nomogram

model to predict the 1-,2- and 3-year survival of EC patients based

on N stage, M stage, pathological stage and CSRS (Figure 3J). The

fit is around the diagonal and the C-index value is 0.744,

indicating good consistency of the model (Figure 3K). In addition,

we evaluated the efficacy of the nomogram model. The DCA curve

(Supplementary Figure S1A) results showed that the prediction of

survival outcome in patients with EC using the CSRS was superior

to that using American Joint Committee on Cancer (AJCC)
TABLE 2 The regression coefficients 7 CS-related prognostic genes.

Gene id Coefficients
H3C1 0.29014853

IGFBP1 0.21577076

SLC30A10 0

FBXO5 0

SOX5 −0.11840431

MT1E −0.1390272

CDHR4 −0.71213391
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FIGURE 3

Construction and validation of CSRS nomogram model. (A,B) Five genes were identified as CS-related prognostic hub genes by lasso algorithm, including
IGFBP1, H3C1, SOX5, CDHR4 and MT1E. (C) DCA chart confirmed the prognostic utility of CSRS. (D-G) Univariate and multivariate Cox regression analyses
of OS in TCGA-ESCA. Validation is performed by GSE53625. (H-I) KM curves of OS in TCGA-ESCA and GSE53625. (J) Nomogram model to predict the
1-,2- and 3-year survival of EC patients. (K) Calibration curves for evaluating. The fit is around the diagonal and the C-index value is 0.744, indicating
good consistency of the model.

Zheng et al. 10.3389/fsurg.2023.1090700
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FIGURE 4

Clinicopathological characteristics and survival analysis of different CSRS groups. (A,B) CSRS distribution showed no significant differences in different gender
(A), age (B) and BMI (C), while CSRS was higher in patients with EAC than ESCC (D). Subgroup survival analysis of age (E), pathological staging (F), T stage (G),
N stage (H), M stage (I) and pathological stage (J) between high- and low-CSRS patients. EAC, Esophageal adenocarcinoma; ESCC, Esophageal squamous cell
cancer; ns: No significance; **p < 0.01.

Zheng et al. 10.3389/fsurg.2023.1090700
staging. The benefit of prediction using our constructed nomogram

model was greater than that of CSRS and AJCC. The KM curve

(Supplementary Figure S1B) results showed that patients

with high nomogram scores had a worse prognosis (HR = 5.35,

95% CI = 2.61–10.96, p < 0.001). The accuracy of the nomogram

model in predicting the 1-(AUC = 0.781),3-(AUC = 0.754) and 5

(AUC = 0.946) years’ prognosis of patients with EC was also

assessed by time-dependent ROC analysis (Supplementary

Figure S1C).
Frontiers in Surgery 07
Clinicopathological characteristics and
prognostic value in different CSRS groups

We observed no significant difference in the distribution of

CSRS among EC groups by gender (Figure 4A), age (Figure 4B),

and BMI (Figure 4C). However, in terms of pathological type

(Figure 4D), CSRS was higher in patients with esophageal

adenocarcinoma (EAC) than those with esophageal squamous cell

cancer (ESCC).
frontiersin.org
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FIGURE 5

Exploring the role of CSRS in the immunotherapy of esophageal cancer. (A) Correlation of CSRS with immune cell infiltration was performed by ssGSEA
analysis. High CSRS group were infiltrated by more neutrophil (B) and fewer Tc(C). Relationship between scores with CSRS, as well as comparison of
scores between high- and low-CSRS group in stromal (D) score, immune (E) score and ESTIMATE (F) score. Relationship between exclusion (G) and
dysfunction (H) scores with CSRS. (I) Comparison of checkpoint genes, including PDL1, LAG3, TIGIT and CTLA4, between high- and low-CSRS groups.
ns: no significance; *: p < 0.05; **: p < 0.01.

Zheng et al. 10.3389/fsurg.2023.1090700
For this reason, we investigated the prognostic value of CSRS in

different subgroups of patients with EC (Figure 4E–J). CSRS

accurately determined prognosis in patients with either EAC

(HR = 3.12, 95%CI = 1.59–6.13, p = 0.001) or ESCC (HR = 5.68,

95%CI = 2.10–15.39, p = 0.001), as well as in patients with EC aged
Frontiers in Surgery 08
more than 65 years (HR = 4.35, 95%CI = 1.67–11.31, p = 0.003) or

T3 stage (HR = 4.24, 95%CI = 1.77–10.14, p = 0.001) or

N1&N2&N3 stage (HR = 3.34, 95%CI = 1.69–6.98, p = 0.001) or M0

stage (HR = 2.20, 95%CI = 1.16–4.16, p = 0.016) or pathological

stage III & IV (HR = 2.50, 95%CI = 1.13–5.52, p = 0.023). However,
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FIGURE 6

GSEA analysis in high- and low-CSRS group. (A) Acetylation-related pathways, including HATs acetylate histones and HDACs deacetylate histones.
(B) Methylation-related pathways, including RMTs methylate histone arginine and DNA methylation. (C) Immunomodulatory-related pathways, including
immunoregulatory interactions between a lymphoid and a non-lymphoid cell and human complement system. (D) GPCR-related pathways, including
GPCRs class A rhodopsinlike and GαS signalling events.
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for patients aged less than 65 years, T1 & T2 stages, N0 stages, and

pathological stages I & II, CSRS scores were not good predictors of

prognostic outcome.
Multidimensional immune infiltration analysis
in different CSRS groups

We adopted three scoring systems to analyze tumor immune

infiltration in EC patients with different CSRS groups, namely

ssGSEA analysis (Figures 5A–C), ESTIMATE score (Figures 5D–F)

and TIDE score (Figures 5G,H). EC patients in the high CSRS

group were infiltrated by fewer Tc and Tgd cells, while there was a

positive correlation with the infiltration of neutrophil cells. Stromal

scores (r =−0.178, p = 0.024) and ESTIMATE scores (r =−0.189,
p = 0.016) were observed to be negatively correlated with CSRS,

whereas not immune scores. There were differences in all three

scores between the high- and low-CSRS groups of esophageal

cancer. The TIDE scoring system is commonly used to evaluate the

efficacy of immunotherapy in oncology patients, including the

exclusion score and dysfunction score of T cells. CSRS was

negatively correlated with dysfunction scores (r =−0.214, p = 0.011),

and no significant correlation was observed with exclusion scores.

We subsequently compared the expression of immune checkpoint-

related genes in different CSRS groups (Figure 5I). High expression
Frontiers in Surgery 09
of PDL1, LAG3 and TIGIT were observed in low-CSRS group (p <

0.05) than high-CSRS group.
Potential biological mechanisms in different
CSRS groups

In order to explore the biological mechanisms leading to

differences between high- and low- CSRS groups, GSEA analysis

was performed. The results showed that the high-CSRS group was

positively enriched in acetylation- (Figure 6A) and methylation-

related (Figure 6B) pathways, and negatively enriched in

immunomodulatory (Figure 6C) and GPCR-related pathways

(Figure 6D).
Discussion

Cellular senescence (CS) is a cellular response to stress, including

the activation of oncogenes, characterized by irreversible proliferation

arrest (8). Cellular senescence was first discovered and described by

Hayflick and Moorhead (19). They found that human cell cultured

in vitro lost their ability to proliferate and entered a state of

growth arrest after 50 to 70 generations of continuous culture. In

recent years, as cellular senescence has been studied more
frontiersin.org
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intensively, DNA damage response, endoplasmic reticulum stress

and induction of antiapoptotic genes have been defined as the

phenotypes of cellular senescence (20–24).

Some reports have suggested that the microenvironment of CS is

associated with cancer progression, such as the SASP (25–27). SASP

mediates chronic inflammation and stimulates the growth of cancer,

while SASP also enhances cell cycle arrest, prompting immune cells

to defend cancer (28, 29). There were limited studies on CS and

esophageal cancer(EC), whereas identification of CS-related genes

with clinical significance is crucial for immunotherapy studies of

EC. Thus, we hypothesized that CS-related genes promote EC

progression by affecting immune regulation.

In the present study, 241 CS-related DEGs were initially

screened from TCGA-ESCA. The WGCNA network classified

the CS-related DEGs into three different modules which were

associated with the CS and apoptosis pathways. We finally

identified five CS-associated prognostic genes in EC by COX

analysis and the Lasso regression algorithm, including H3C1,

IGFBP1, MT1E, SOX5 and CDHR4.

H3C1 is a member of histone family (30). Missense mutations in

histone related genes promote tumor progression, a process known as

oncohistones, which is a major challenge for tumor treatment

(31, 32). Yi.H et al. revealed for the first time that high expression

of histone deacetylase 7 (HDAC7) was closely associated with poor

in EC, suggesting that HDAC7 is a potential cancer-promoting

agent (33). IGFBP1 binds to insulin-like growth factors (IGFs) I

and II in plasma, prolonging their half-life period (34). Elevated

levels of IGF-1 and IGF-2 are related to various cancers (35–37),

including EC (38, 39). The insulin-like growth factor (IGF)

signaling pathway plays a key role in cell growth, differentiation,

and apoptosis (38). IGFBP1 was identified as a promising

biomarker for the diagnosis of early-stage esophageal cancer in a

clinical study involving 2028 patients with esophageal cancer at

three medical centers (40). However, there have been few biological

studies on IGFBP-1 in esophageal cancer. CDHR4, which has been

less studied, is a member of the cadherin related family. While

cadherin, a key molecule for tumor entry into blood vessels and

lymph, is associated with tumor infiltration and metastasis by

mediating EMT (41, 42).Our study suggested that high expression

of H3C1 and IGFBP1 predicted poor prognosis, while CDHR4 was

a prognostic protective factor (Figure 1H), consistent with the

results of the currently published studies. SOX5, a member of the

SOX (SRY-related HMG-box) family involved in the determination

of the cell fate. In a mouse model, SOX5 inhibits glioma formation

by inducing acute cellular senescence (43). MT1E is an isoform of

MT1, and it has been reported that MT1E expression is positively

correlated with esophageal cancer malignancy (44).

We constructed a prognostic model based on CSRS by

combining N stage, M stage, and pathological stage, which was

validated well in an independent cohort (Figure 3). The DCA

curve, KM curve and ROC curve demonstrated the validity of

the nomogram model (Supplementary Figure S1). The

nomogram model predicts better clinical benefit than AJCC

staging for the prognosis of patients with esophageal cancer with

a five-year AUC of 0.946. We observed differences in the

distribution of CSRS in ESCC and EAC (Figure 4D). Therefore,

further subgroup survival analysis was performed (Figures 4E–
Frontiers in Surgery 10
J). ESCC caused by smoking and alcohol consumption varies

from the pathogenesis of EAC by Barrett’s esophagus

progression (45, 46). According to our analysis, the CSRS score

to determine prognosis was not limited by pathological staging.

However, CSRS was less effective in judging early-stage EC

groups, as well as in younger subgroups. Regarding this

observation, we believed that more clinical samples needed to be

included for subsequent evaluation.

Immunotherapy has made brilliant achievements in the field of

advanced EC treatment, rewriting the treatment paradigm of EC

(47, 48). KEYNOTE-590 is the first global multicenter phase III

clinical trial exploring the efficacy of immune combination

chemotherapy in advanced EC (49). CheckMate −577 provides

new high-level evidence for immunotherapy of locally advanced

EC (50). We conducted an analysis between CSRS and tumor

immune infiltration in EC to investigate whether CSRS contributes

to the immunotherapy of EC (Figure 5). Results revealed that the

high CSRS group had poor immunotherapy efficacy, while the low

CSRS group may have better immunotherapy efficacy based on

assessment of immune cell infiltration status, tumor

microenvironment, T cell dysfunction and immune checkpoint-

related genes.

To further validate the above findings, a GSEA analysis of

DEGs in the high- and low- CSRS groups was performed

(Figure 6A). The results showed that genes in the high CSRS

group were positively enriched in acetylation and methylation

related pathways. Negative enrichment was observed on

immunomodulatory-related pathways. HDAC promotes

tumorigenesis through biological mechanisms such as induction

of cell proliferation and inhibition of apoptosis (51–53).

Combining HDCA inhibitors with immunotherapy drugs for

tumors significantly reverses immunotherapy resistance (54).

Abnormal DNA methylation allows highly mutated tumors to

evade immune responses through a rapid division

mechanism, which is an important factor in tumor resistance to

immune responses (55). The above analysis provides direction

for higher immunotherapy benefit in patients with high CSRS,

and further biological experimental validation will be needed

further.

There are still some limitations to our study. Although CSRS was

applied to different pathological types of esophageal cancer, it is

generally effective in determining the prognosis of patients with

early-stage esophageal cancer based on the current data. We

believed that this may be due to the bias caused by the small

number of cases of TCGA-ESCA, for example, there were only 16

patients with pathological stage I. Subsequently, we will expand the

sample size or combine the data from our center to verify the

generalizability of CSRS.
Conclusion

In the present study, we constructed a CS-related prognostic

model for EC. Comprehensive analysis, combined with preliminary

validation of independent cohort, suggested that CSRS is a

prognostic risk factor for EC. Patients with high CSRS may have

worse immunotherapy outcomes.
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