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Construction and validation of a
prognosis signature based on the
immune microenvironment in
gastric cancer
Li-Hong Wu1†, Xiang-Xu Wang2†, Yan Wang1, Jing Wei1,
Zi-Rong Liang1, Xi Yan1* and Jun Wang1*
1Xijing 986 Hospital Department, Fourth Military Medical University, Xi’an, China, 2Xijing Hospital, Fourth
Military Medical University, Xi’an, China

Background: Gastric cancer (GC) is an aggressive malignant tumor with a high
degree of heterogeneity, and its immune microenvironment is closely associated
with tumor growth, development and drug resistance. Therefore, a classification
system of gastric cancer based explicitly on the immune microenvironment
context might enrich the strategy for gastric cancer prognosis and therapy.
Methods: A total of 668 GC patients were collected from TCGA-STAD (n= 350),
GSE15459 (n= 192), GSE57303 (n= 70) and GSE34942 (n= 56) datasets. Three
immune-related subtypes (immunity-H, -M, and -L) were identified by
hierarchical cluster analysis based on the ssGSEA score of 29 immune
microenvironment-related gene sets. The immune microenvironment-related
prognosis signature (IMPS) was constructed via univariate Cox regression, Lasso-
Cox regression and multivariate Cox regression, and nomogram model
combining IMPS and clinical variables was further constructed by the “rms”
package. RT-PCR was applied to validate the expression of 7 IMPS genes
between two human GC cell lines (AGS and MKN45) and one normal gastric
epithelial cell line (GES-1).
Results: The patients classified as immunity-H subtype exhibited highly expressed
immune checkpoint and HLA-related genes, with enriched naïve B cells, M1
macrophages and CD8 T cells. We further constructed and validated a 7-gene
(CTLA4, CLDN6, EMB, GPR15, ENTPD2, VWF and AKR1B1) prognosis signature,
termed as IMPS. The patients with higher IMPS expression were more likely to
be associated with higher pathology grade, more advanced TNM stages, higher
T and N stage, and higher ratio of death. In addition, the prediction values of
the combined nomogram in predicting 1-year (AUC = 0.750), 3-year (AUC=
0.764) and 5-year (AUC = 0.802) OS was higher than IMPS and individual clinical
characteristics.
Conclusions: The IMPS is a novel prognosis signature associated with the immune
microenvironment and clinical characteristics. The IMPS and the combined
nomogram model provide a relatively reliable predictive index for predicting the
survival outcomes of gastric cancer.
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1. Introduction

Gastric cancer (GC) is a disease with considerable

heterogeneity (1), and is the fourth most fatal cancer worldwide

(2). Patients with GC are rarely diagnosed at an early stage

owing to insidious symptoms, and 25%–50% of patients with

late-stage GC eventually emerge metastasis during the disease (3).

The heterogeneity of the tumor microenvironment has been

reported as a potential biomarker of various cancer prognoses (4,

5). It is worth noting that the tumor microenvironment (TME)

components play a crucial role in tumor development. Therefore,

the identification of tumor immunophenotypes might provide

new insights for understanding tumor biology and cancer

prognosis.

With the development of bioinformatics technology, the

immune microenvironment components can be quantitatively

analyzed (6). The single-sample gene set enrichment analysis

(ssGSEA) (7) has been used to calculate quantitative scores for

different types of immune genomics characteristics and to further

classify the different immunophenotypes. In the present study,

we identified three immunophenotypes (immunity-H, -M and

-L) based on the characteristics of 29 immune-related gene sets.

In addition, we constructed an immune microenvironment-

related prognosis signature (IMPS) via univariate Cox regression,

Lasso-Cox regression, and multivariate Cox regression, and

validated the model in testing and independent cohorts. The

patients with higher IMPS were associated with higher grade,

advanced TNM stages, higher T and N stage, and death. We

further constructed a nomogram model combining IMPS and

clinical variables. The IMPS and the combined nomogram model

have potential value in predicting survival outcomes of gastric

cancer.
2. Materials and methods

2.1. Data obtaining and processing

A total of 668 GC patients were collected from TCGA-STAD

(n = 350), GSE15459 (n = 192), GSE57303 (n = 70) and GSE34942

(n = 56) datasets. The transcriptome data (HTSeq-FPKM) and

clinical information were downloaded from https://www.ncbi.

nlm.nih.gov/geo/ and https://portal.gdc.cancer.gov/. The “limma”

package was applied to perform deduplication and log2(x + 1)

normalization processing on gene expression data (8).
2.2. Identification of three immune subtypes
by hierarchical clustering analysis

The 29 immune microenvironment-related gene sets were

collected from published literature (9). The ssGSEA algorithm

via “GSVA” package was applied to evaluate the enrichment

score of immunological characteristics in each GC sample (10).
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2.3. Calculation of tumor purity and
immune cell subpopulations

The package “ESTIMATE” was used to evaluate the stromal

and immune cell components in the malignant tumor tissue to

further estimate the total immune matrix scores, namely the

Immune-, Stromal-, Estimate-scores, and to further evaluate the

tumor purity (11). The subpopulations of 22 human immune

cells were estimated by the relative subpopulations of RNA

transcripts for cell type identification (CIBERORT) (12).
2.4. Screen of differentially expressed genes
(DEGs) and function enrichment analysis

The DEGs between immunity-H and -L subtypes were

screened via “limma” package with the screening conditions: |log

FC| > 1, P < 0.05 (13). The heatmap and volcano map were

depicted to present the differentially expressed genes, and the

GO enrichment circle diagrams performed via the “GOplot” R

package were used to present the functional enrichment analysis

of DEGs (14).
2.5. Construction and validation of the
immune microenvironment-related
prognosis signature (IMPS)

The 350 GC samples in the TCGA-STAD cohort were

randomly divided into TCGA-training (n = 246) and TCGA-

testing cohorts (n = 104) via the “cart” package with a ratio of

7 : 3 (15). The GSE15459 (n = 193) and GSE57303 (n = 70)

cohorts were used as independent validations. In the TCGA-

training cohort, we first screened the prognostic-related genes by

univariate Cox regression (P < 0.05), and further eliminate the

collinearity among genes by Lasso-Cox regression analysis (16).

Finally, we constructed a 7-gene prognosis signature via

multivariate Cox analysis with the “stepwise regression method”

(17). The IMPS of GC prognosis was calculated by the following

formula: IMPS =−0.53 * CTLA4 + 0.12 * CLDN6 + 0.18 * EMB +

0.2 * GPR15 −0.14 * ENTPD2 + 0.22 * VWF + 0.25 * AKR1B1. The

prognosis value of these 7 hub genes and the IMPS were further

validated in both TCGA-testing and GSE15459 cohorts.
2.6. Prediction value of IMPS in
immunotherapy response

Due to the lack of clinical studies on gastric cancer

immunotherapy including mRNA sequencing data, we used the

IMvigor210 cohort (18) (metastatic urothelial carcinoma) and

Riaz-2017 cohort (19) (advanced melanoma) to verify the

potential predictive value of IMPS in the outcome of

immunotherapy response.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://doi.org/10.3389/fsurg.2023.1088292
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Wu et al. 10.3389/fsurg.2023.1088292
2.7. Quantitative real-time PCR

Two human GC cell lines (AGS and MKN45) and one normal

gastric epithelial cell line (GES-1) were cultured for testing the

expression of 7 IMPS genes. In addition, we further preformed the

qPCR verification of seven Hub genes in five benign and five GC

tissue samples. TRIzol (Servicebio, China) and PrimerScriptTM RT

Reagent kit (Takara, Tokyo, Japan) were used to extract total RNA

and to further create the cDNA. The Real-Time PCR was

performed by SYBR Green with the Real-Time PCR System (Roche,

USA). The primers of the 7 hub genes were listed in Table 1.

Finally, the RNA expression was normalized to GAPDH.
2.8. Construction and evaluation of the
combined nomogram considering IMPS and
clinical characteristics

The combined nomogram prognostic model was constructed

by the “rms” package based on clinical characteristics and the

IMPS (20). The clinical characteristics included age, gender,

pathology grade and TNM stage. The performance of the

combined nomogram was evaluated by calibration plot using

bootstrap method (21). And the time-ROC curve was performed

to compare the prediction value among the combined nomogram

model, IMPS, and clinical characteristics.
2.9. Statistical analyses

All statistical analyses were performed with the R software

(version 4.1.2). The Mann–Whitney U test was used to compare

the distribution difference of immune cells among different

immune subtypes (22). The Chi-Squared test was used to

evaluate the balance of clinical baseline between the training and

testing cohorts (23). The Log-Rank test was performed to assess

the differences in overall survival between different subtypes. The

two-sided test with P-value <0.05 was considered statistically

significant.
TABLE 1 Primer sequences of 7 hub genes.

Hub genes Primer sequences
CTLA4(human)-F GCCCTGCACTCTCCTGTTTTT

CTLA4(human)-R GGTTGCCGCACAGACTTCA

ENTPD2(human)-F AGACAAGGAGAACGACACAGG

ENTPD2(human)-R AGGCATCCAACAAGACTCTGG

CLDN6(human)-F TGTTCGGCTTGCTGGTCTAC

CLDN6(human)-R CGGGGATTAGCGTCAGGAC

EMB (human)-F CTGAGGGAGCAGTCTCCACG

EMB (human)-R TGTAAAAGGCGAATCTGGGGC

GPR15(human)-F TTACTATGCTACGAGCCCAAACT

GPR15(human)-R CTCCCATGAGAACAAGGTTCC

VWF (human)-F CCGATGCAGCCTTTTCGGA

VWF (human)-R TCCCCAAGATACACGGAGAGG

AKR1B1(human)-F CTGGTGGATGAAGGGCTGG

AKR1B1(human)-R GGGTGGCACTCAATCTGGTT
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3. Results

3.1. Identification of three immune subtypes
based on the ssGSEA score of 29 immune-
related gene sets

We first identified three immune subtypes [immunity-H (n =

53, 15.1%), immunity-M (n = 248, 70.9%) and immunity-L (n =

49, 14.0%)] based on the ssGSEA score of 29 immune-related

gene sets by the unsupervised clustering analysis. The heatmap

showed that the immunity-H subtype has the highest enrichment

score of immune-related genes ssGSEA than the immunity-L and

-M subtypes (Figure 1A). The stromal, immune, and total

stromal immune score in the immunity-H subtype were

significantly higher than the immunity-M and -L subtypes

(Figures 1B–D, all P < 0.001), while tumor purity showed an

opposite trend (Figure 1E, P < 0.001). This indicates that the

immunity-H GC subtype was associated with the highest

infiltration of immune and stromal cells.

We further evaluated the infiltration fraction of 22 immune

cells in GC samples by the “CIBERORT algorithm”. The results

showed that patients in the immunity-H subtype had the higher

fraction of memory B cells, resting dendritic cells, M1

macrophages, resting mast cells, plasma cells, activated CD4+

memory T cells, CD8+ T cells, and helper T cells than those

classified as immunity-L subtype, while lower fraction of M0

macrophages, M2 macrophages and CD4+ memory T cells

(Figure 1F, all P < 0.05). This indicates that the immunity-H GC

subtype is dominated by immune positive cells, while the

immunity-L subtype is dominated by immune negative cells.
3.2. The distribution of clinical
characteristics among three immune
subtypes

The immunity-H subtype had a relatively large proportion of

people over 80 years of age (Supplementary Figure S1A,

immunity-H, 8%; immunity-M, 6%; immunity-L, 2%), and

higher proportion of gastric corpus tumors (Supplementary

Figure S1D, immunity-H, 31%; immunity-L, 24%; immunity-L,

18%), higher proportions of pathological grade 3

(Supplementary Figure S1E, immunity-H, 88%; immunity-M,

56%; immunity-L, 43%). The immunity-H subtype also had

higher proportions of diffuse gastric adenocarcinoma

(Supplementary Figure S1F, immunity-H, 31%; immunity-M,

16%; immunity-L, 6%), but lower proportion of signet ring cell

carcinoma (Supplementary Figure S1F, immunity-H, 13%;

immunity-M, 17%; immunity-L, 33%). In addition, patients with

advanced TNM stage (stage III/IV) are more likely to present

high immunity status (Supplementary Figure S1G, immunity-H,

64%; immunity-M, 54%; immunity-H,41%). Similar results were

found in T stage3–4 (Supplementary Figure S1H, immunity-H,

81%; immunity-M, 73%; immunity-H, 67%) and N stage2–3

(Supplementary Figure S1I, immunity-H, 46%; immunity-M,
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FIGURE 1

Hierarchical cluster analysis of gastric cancer based on 29 immune-related gene sets (A) the heatmap of 29 immune-related gene sets ssGSEA score;
(B–D). The violin diagram of difference between immunity-H, -M and -L subtypes of gastric cancer in stroma score (A), immune score (B), total
ESTMATE score (C) and tumor purity.
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41%; immunity-H, 30%). There was no significant difference in the

distributions of gender and race among the three immune subtypes

(Supplementary Figure S1B,C).
3.3. Comparison of immune checkpoint and
HLA-related genes expression among three
immune subtypes

To explore the expression of immune-related genes among

different immune subtypes of gastric cancer, we analyzed the

expression of human leukocyte-associated antigen (HLA) genes

and immune checkpoint genes. The results showed that the levels

of all HLA genes were the highest expressed in the immunity-H

subtype and the lowest in the immunity-L subtype (P < 0.001)
FIGURE 2

Comparison of HLA and immune checkpoint-related gene expression among
among immunity-H, -M and -L subtypes in gastric cancer. (B) Violin diagram of

Frontiers in Surgery 05
(Figure 2A). Moreover, the expression of immune checkpoint

molecules, such as CTLA4, TIGIT, LAG3, TIM-3, PD-L2, and

PD-L1 are also the highest in the immunity-H subtype and the

lowest in the immunity-L subtype (Figure 2B). These results

indicate that the immune subtypes of GC are significantly

correlated with the expression of immune-related genes.
3.4. Function enrichment analysis of
differentially expressed genes and
identification of prognostic-related
core genes

A total of 1226 differentially expressed genes were identified

between immune-H and -L subtypes, and are presented with
three immune subtypes. (A) The bar plot of HLA-related genes expression
immune checkpoint genes expression in immunity-H, -M and -L subtypes.
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FIGURE 3

Gene expression heatmap, volcano map and function enrichment analysis of differentially expressed genes. (A) The heat map of differentially expressed
genes of high and low immune subtypes in gastric cancer (|log FC| > 1, P < 0.05). (B) Volcano map of differentially expressed genes. (C) Differentially
expressed genes Circle diagram of GO and KEGG pathway enrichment analysis.

Wu et al. 10.3389/fsurg.2023.1088292
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heatmap (Figure 3A) as well as volcano map (Figure 3B). The GO

enrichment analysis showed that immune-related pathways such as

T cell activation, lymphocyte differentiation, lymphocyte

proliferation, cytokine and cytokine receptor interaction and

chemokine signaling pathway were significantly enriched in the

immunity-H subtype. These results also support the higher

immune activity of immunity-H GC subtype.
3.5. Construction and validation of
prognosis signature based on immune
microenvironment for gastric cancer

We randomly divided the 350 GC patients into training (n =

246) and testing (n = 104) cohorts. The distribution of baseline

data was balanced in training and testing cohorts (Table 2). In

the TCGA training cohort, we first identified 1,266 differentially

expressed genes between immune-H and -L subtypes, and further
FIGURE 4

Screening of prognostic related hub genes for gastric cancer in TCGA training c
(A) and 10-fold cross-validation graph (B) of the Lasso-Cox regression coeffic
genes. (D) Multivariate COX analysis forest plot of 7 core prognostic genes.
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screened out 90 prognosis-related genes via univariate Cox

regression (P < 0.05). Next, we used lasso-Cox regression to

remove the collinearity among genes (Figures 4A,B), and

screened out 14 prognostic-related genes, including 3 protective

genes and 11 risk genes (Figure 4C). Finally, we identified 7

prognosis-related hub genes by multivariate Cox “stepwise

regression” method (Figure 4D).

Based on the expression level and regression coefficients of the

seven core genes, the formula of IMPS was shown in the Methods

section. Using the median IMPS of 1.07 as the cut-off value for the

prognostic risk of gastric cancer, the patients were divided into the

high- and low-IMPS groups (Figure 5A). Next, we observed that

the proportion of death gradually increased and the survival time

gradually decreased as IMPS score increased (Figure 5D), which

indicated that the IMPS was closely related to the prognostic risk

of GC in the real world. We further explored the association

between IMPS and the 7 prognostic hub gene expression. The

expression heatmap showed that the expression of VWF and
ohort. (A,B) As the penalty coefficient λ increases, the distribution diagram
ient of each variable. (C) Forest plot of Univariate COX analysis of 14 lasso
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TABLE 2 Distribution of clinical baseline data of gastric cancer patients in
training and testing cohorts.

Variables Overall Training cohort Testing cohort P

350 246 104
Age (%) 0.111

<60 106 (30.3) 82 (33.3) 24 (23.1)

60–69 106 (30.3) 68 (27.6) 38 (36.5)

70–79 117 (33.4) 79 (32.1) 38 (36.5)

>80 21 (6.0) 17 (6.9) 4 (3.8)

Gender (%) 0.873

Male 226 (64.6) 160 (65.0) 66 (63.5)

Female 124 (35.4) 86 (35.0) 38 (36.5)

Origin (%) 0.218

Body 84 (24.0) 56 (22.8) 28 (26.9)

Cardia 86 (24.6) 66 (26.8) 20 (19.2)

Fundus 40 (11.4) 23 (9.3) 17 (16.3)

Gastric antrum 127 (36.3) 91 (37.0) 36 (34.6)

Other 13 (3.7) 10 (4.1) 3 (2.9)

Grade (%) 0.426

G1 9 (2.6) 7 (2.8) 2 (1.9)

G2 125 (35.7) 83 (33.7) 42 (40.4)

G3 207 (59.1) 148 (60.2) 59 (56.7)

GX 9 (2.6) 8 (3.3) 1 (1.0)

TNM_staage (%) 0.202

NA 14 (4.0) 10 (4.1) 4 (3.8)

stage I 46 (13.1) 29 (11.8) 17 (16.3)

stage II 110 (31.4) 76 (30.9) 34 (32.7)

stage III 143 (40.9) 99 (40.2) 44 (42.3)

stage IV 37 (10.6) 32 (13.0) 5 (4.8)

T_stage (%) 0.369

T1 16 (4.6) 9 (3.7) 7 (6.7)

T2 74 (21.1) 48 (19.5) 26 (25.0)

T3 161 (46.0) 118 (48.0) 43 (41.3)

T4 95 (27.1) 69 (28.0) 26 (25.0)

TX 4 (1.1) 2 (0.8) 2 (1.9)

N_stage (%) 0.139

N0 103 (29.4) 64 (26.0) 39 (37.5)

N1 93 (26.6) 73 (29.7) 20 (19.2)

N2 72 (20.6) 53 (21.5) 19 (18.3)

N3 71 (20.3) 49 (19.9) 22 (21.2)

NX 11 (3.1) 7 (2.8) 4 (3.8)

M_stage (%) 0.138

M0 312 (89.1) 214 (87.0) 98 (94.2)

M1 25 (7.1) 21 (8.5) 4 (3.8)

MX 13 (3.7) 11 (4.5) 2 (2.0)

NA, not available.
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AKR1B1 was positively correlated with IMPS (Figure 5G). Similar

phenomena were also observed in the test set and the GEO

independent validation set (testing cohort: Figures 5B,E,H;

GSE15459 cohort: Figures 5C,F,I). In addition, the GC patients

in the high-IMPS group had poorer survival in the training

cohort than the low-IMPS group (Figure 5J; P < 0.001), with

consistent conclusions in the testing cohort (Figures 5K,L; both

with P < 0.01). To reduce bias, we further validated our model in

GSE62254 (Supplementary Figure S2A), GSE57330

(Supplementary Figure S2B) and GSE34942 (Supplementary

Figure S2C) independent cohorts. We explored the predictive

value of IMPS in the outcome of immunotherapy response in
Frontiers in Surgery 08
IMvigor210 and Riaz-2017 cohorts. The patients in low-IMPS

subgroup have a better OS rate and higher response fraction than

the high-IMPS subgroup (Supplementary Figures S2C–F).

Finally, we evaluated the accuracy of the IMPS in predicting

1-year, 3-year and 5-year OS of GC by the survival ROC curve.

The prediction accuracy AUCs in the training cohort were 0.711,

0.728 and 0.760, respectively; in the testing cohort 0.590, 0.661

and 0.632, respectively; and in the GSE15459 cohort 0.607, 0.655

and 0.670, respectively. Furthermore, the multivariate Cox

analysis showed that the IMPS was an independent risk factor

for GC prognostic after adjustment by age, gender, grade and

TNM stage (Table 3, P < 0.001). These findings suggest that the

IMPS we identified has moderate predictive value in GC

prognostic risk assessment.

To further explore the prognosis value of 7 hub genes, we

performed Kaplan-Meier curve survival analysis in the TCGA-

STAD, GSE15459 and GSE57303 cohorts. The results showed

that patients in the TCGA-STAD cohort with high expression of

CTLA4 and ENTPD2 had a better OS (Figures 6A–C, both P <

0.05), whereas patients with high expression of EMB, GPR15,

CLDN6, VWF and AKR1B1 had a poorer OS (Figures 6D–I, all

P < 0.05). These findings were further confirmed in GSE15459

and GSE57303 cohorts (Supplementary Figures S3A–N). In

addition, we performed RT-PCR to explore the differential

expressions between human GC (MKN45 and AGS) and normal

gastric mucosal epithelial cell lines (GES-1). The RT-PCR results

showed that the CTLA4 and ENTPD2 were highly expressed in

normal gastric mucosal epithelial cell lines (GES-1), while the

EMB, CLDN6, VWF and AKR1B1 were highly expressed in

human GC cell lines (MKN45 and AGS), and the expression of

GPR15 had no significant difference between normal and tumor

cell lines (Supplementary Figure S4A). We further preformed

the PCR verification of seven Hub genes in five paired benign

and tumor gastric tissue samples. Compared with benign tissues,

the CTLA4 and ENTPD2 were highly expressed in gastric tumor

tissues, while the AKR1B1, CLDN6, EMB, GPR15 and VWF

were highly expressed (Supplementary Figures S4B,C).
3.7. Correlation analysis of IMPS with
clinical characteristics and somatic
mutations

The alluvial diagram of the immunity subtypes with different

pathological grades, TNM stages and IMPS subgroups

(Figure 7A) indicated that the immunity-H subtype was more

likely linked to the higher grade, more advanced TNM stages

and higher IMPS; while the immunity-L subtype exhibited a

lower grade, earlier TNM stages and lower IMPS. The GC

patients in immunity-M subtype showed higher IMPS than those

in immunity-L and immunity-H subtypes (Figure 7B, P = 0.016

and P = 0.063). GC patients with higher IMPS were also more

likely to be associated with higher grade, more advanced TNM

stages, higher T and N stage, and death (Figures 7C–F, all P <

0.001). The mutation landscape showed that the patients in the

IMPS-H subtype had a higher mutation alter ratio (81.25%) than
frontiersin.org
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FIGURE 5

Construction and validation of immune microenvironment-related prognosis signature (IMPS) for gastric cancer gastric. (A–F) Distribution scatter plots of
patient survival status increasing with IMPS in TCGA training (A,D), TCGA testing (B,E) and GSE15459 (C,F) independent validation cohorts. (G–I). The
expression heatmap of 7 hub genes in TCGA training (G), TCGA testing (H) and GSE15459 (I) cohorts. (J–L) Kaplan-Meier analysis of patients between
high- and low-IMPS in TCGA training (J), TCGA testing (K) and GSE15459 (L) cohorts. (M–O). Time-ROC curves of 1-, 3- and 5-year overall survival in
TCGA training (M), TCGA testing (N) and GSE15459 (O) cohorts.
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the IMPS-L subtype (93.96%) with higher tumor mutation burden

(Figure 7H).
3.8. Construction and evaluation of the
combined nomogram considering IMPS and
clinical characteristics

In order to enhance the prediction performance, we further

constructed a combined nomogram considering IMPS and
Frontiers in Surgery 09
clinical characteristics (Figure 8). The nomogram showed that

patient with higher TNM stage, older age and higher IMPS was

significantly correlated with poorer prognosis. We further

performed the calibration curve and time-ROC curve to present

the consistency and prediction value of the combined nomogram

with the actual observed OS of 1, 3, and 5 years. The calibration

curve exhibited high consistency of OS prediction with the actual

observation (Figure 9A).

The combined nomogram (AUC = 0.750) showed the highest

value of the 1-year OS prediction (Figure 9B), followed by IMPS
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TABLE 3 Multivariate Cox analysis of IMPS and clinical features for gastric
cancer prognosis.

Variables HR HR (95% CI) P-value
IMPS (Low) Ref.

High 2.88 4.14–2.00 <0.001

Age (<60) Ref.

60–69 1.65 1.03–2.62 0.037

70–79 2.25 1.45–3.50 <0.001

>80 2.34 0.96–5.69 0.061

Gender (Female) Ref.

Male 1.33 0.92–1.91 0.128

Grade (G1) Ref.

G2 2.96 0.40–21.73 0.286

G3 4.01 0.56–29.85 0.164

TNM (Stage I) Ref.

Stage II 1.26 0.64–2.46 0.502

Stage III 1.94 1.03–3.64 0.039

Stage IV 3.09 1.49–6.39 0.003

HR, hazard rate; CI, confidence interval.

FIGURE 6

Kaplan-Meier survival analysis of IMPS and 7 prognostic hub genes in the e
prognostic hub genes. (B–G) Kaplan–Meier curve survival analysis of IMPS a
line means low expression group. (B) IMPS, (C) CTLA4, (D) ENTPD2, (E) EMB,

Wu et al. 10.3389/fsurg.2023.1088292
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(AUC = 0.669), TNM stage (AUC = 0.607), age (AUC = 0.580),

grade (AUC = 0.567) and gender (AUC = 0.529). The AUC values

of the combined nomogram in predicting 3-year (AUC = 0.764)

and 5-year (AUC = 0.802) OS were also higher than those with

IMPS and individual clinical characteristics (Figures 9C,D).

These results indicate that the combined nomogram model is

more accurate than IMPS and the individual clinical

characteristics of TNM stage, age, grade and gender in predicting

the OS of GC patients.
4. Discussion

In recent years, the GC classification based on multi-omics

analysis has been extensively studied, and these efforts may lay

the foundation for the development of novel GC biomarkers and

drug targets (24–26). It has also been demonstrated that the
ntire TCGA-STAD cohort. (A) Univariate Cox forest-plot of IMPS and 7
nd 7 core prognostic gene, red line means high expression group, blue
(F)GPR15, (G) CLDN6, (H) VWF and (I) AKR1B1.
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FIGURE 7

Correlation analysis of IMPS with clinical characteristics and somatic mutations. (A) Alluvial diagram of immunity-subtypes with different pathological
grades, TNM stages and IMPS subgroups. (B–G) Comparison of IMPS among different immune subtypes, pathological grades, T stages, N stages and
vital status. (H) mutation landscape of gastric cancer between high-IMPS (left) and low-IMPS (right) subtypes.

Wu et al. 10.3389/fsurg.2023.1088292
TME components play a crucial role in tumor development.

However, the tumor-immune interactions have not been fully

understood. In the present study, we identified three

immunophenotypes (immunity-H, -M and -L) based on the

characteristics of 29 immune-related gene sets. In addition, we

constructed an immune microenvironment-related prognosis

signature (IMPS) via univariate Cox regression, Lasso-Cox

regression, and multivariate Cox regression, and validated in the

testing and independent cohorts. The patients with higher IMPS
Frontiers in Surgery 11
were associated with higher grade, advanced TNM stages, higher

T and N stage, and death. We further constructed a nomogram

model combining IMPS and clinical variables. The IMPS and the

combined nomogram model have potential value in predicting

survival outcomes of gastric cancer.

We further constructed a 7-gene (CTLA4, CLDN6, EMB,

GPR15, ENTPD2, VWF and AKR1B1) prognosis signature,

IMPS, based on the immune microenvironment and screened by

univariate Cox regression, Lasso-Cox regression, and multivariate
frontiersin.org
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FIGURE 8

Construction of the combined nomogram based on IMPS and clinical characteristics. Nomogram combined IMPS and clinical characteristics for
predicting 1-year, 2-year, and 3-year OS. The red dot presented a sample with each variable of the combined nomogram. The total point of the
nomogram was calculated as the sum of each univariable risk points (Uni-points).
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Cox regression. In this study, the gastric cancer patients with high

expression of CTLA4 and ENTPD2 had a better survival prognosis,

with high expression of CLDN6, EMB, GPR15, VWF and AKR1B1

suggesting poor prognosis, which was consistent with previous

studies. CTLA4 is an immune checkpoint gene, and drugs of

CTLA4 inhibitors have been used in clinical practice (27, 28). In

addition, CTLA4 is mainly expressed in the T cells’ cytoplasm,

and its membrane levels are changing dynamically during T cell

activation (29). By inhibiting the expression of CTLA4 in

tumors, it can increase the antigen presentation of CD4+ T cells,

and improve the killing effect of CD8+ T cells on tumors.

Patients with high CTLA4 expression potentially benefit from

treatment with CTLA4 inhibitors (30). Overexpression of

nucleoside triphosphate diphosphate hydrolase 2 (ENTPD2) is an

indicator of poor prognosis in HCC, Chiu DK et al. found that

in HCC, ENTPD2 converts extracellular ATP into 5′-AMP,

prevents myeloid-derived suppressor cells (MDSC)

differentiation, promotes MDSC maintenance (31), and allows

HCC cells to escape immune surveillance (32), but it has not

been reported in gastric cancer. In this study, we found that

elevated ENTPD2 expression suggests better overall survival,

which may be related to cancer type differences and internal

heterogeneity of tumors.

Claudin6 (CLDN6) is a member of the tight junction family

and is involved in intercellular adhesion (33). Yu S et al. found

that CLDN6 can affect EMT process by affecting YAP1 and

YAP1-snail1 axis, and promote gastric cancer proliferation and

invasion (34). Embigin (EMB), a transmembrane glycoprotein of
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the immunoglobulin superfamily (35), is involved in the

occurrence and development of prostate cancer, pancreatic

cancer and breast cancer, and is associated with poor prognosis

in cancer patients (36–38), but not in reports of gastric cancer. G

protein-coupled receptor 15 (GPR15) is an unconventional

chemokine receptor that mediates Treg homing and

immunosuppression (39) by directing Treg into the colon, thereby

altering the tumor microenvironment and promoting occurrence

of intestinal tumors (40). Von Willebrand factor (VWF) is a

potent regulator of angiogenesis, tumor growth, and metastasis,

and gastric cancer-related plasma VWF activity levels are

significantly elevated in advanced disease stages (41). Aldehyde-

ketoreductase family 1 member B1 (AKR1B1) is overexpressed in

a variety of tumors and is involved in inflammation, cell cycle,

epithelial-to-mesenchymal transition, cell survival, and apoptosis

(42). In GC, the expression of AKR1B1 is significantly correlated

with the clinicopathological characteristics, and the patients with

low AKR1B1 have a better OS than that in patients with high

AKR1B1 (43).

We constructed an immune microenvironment-related

prognosis signature (IMPS) in the training cohort, and further

validated it in the testing and independent cohorts. The GC

patients with higher IMPS were associated with higher TNM

stages and had a bad prognosis. And the reliability of IMPS was

validated in the TCGA testing and three independent GEO

cohorts. We further a nomogram combined with age, gender,

pathology grade and TNM stage. The combined nomogram

showed best performance in OS time prediction outperforms
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FIGURE 9

Calibration curves and time-ROC curve of the combined nomogram. (A) The combined nomogram calibration curves for 1-year, 2-year, and 3-year
consistency between the predicted and observed OS. The actual performance of our combined nomogram is shown as the blue line. (B–D) The
time-ROC curves of the combined nomogram risk, IMPS, TNM stage, grade, age, and gender in predicting OS at 1 (B), 3 (C), and 5 (D) years.

Wu et al. 10.3389/fsurg.2023.1088292
IMPS and the individual clinical parameters. The IMPS and the

combined nomogram model have potential value in predicting

survival outcomes of gastric cancer. Although we collected

multiple datasets and conducted comprehensive analyses, this

study still needs to be validated by prospective clinical studies

with large samples.
5. Conclusions

In summary, our study constructed a prognostic signature

(IMPS) based on the immune microenvironment, and further

constructed a combined nomogram based on IMPS and clinical

characteristics. The IMPS and the combined nomogram were

well-performed in predicting the 1-, 2- and 5-year overall
Frontiers in Surgery 13
survival prognosis, and might provide important value for the

diagnosis and treatment of gastric cancer.
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