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Development of prognostic
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Wanfu Xie1, Minxue Lian1, Maode Wang1,2†* and Jia Wang1,2†*
1Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2Center for
Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Background: Studies have shown that Nicotinamide adenine dinucleotide (NAD+)
metabolism can promote the occurrence and development of glioma. However,
the specific effects and mechanisms of NAD+ metabolism in glioma are unclear
and there were no systematic researches about NAD+ metabolism related genes to
predict the survival of patients with glioma.
Methods: The research was performed based on expression data of glioma cases in
the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA)
databases. Firstly, TCGA-glioma cases were classified into different subtypes based
on 49 NAD+ metabolism-related genes (NMRGs) by consensus clustering. NAD+
metabolism-related differentially expressed genes (NMR-DEGs) were gotten by
intersecting the 49 NMRGs and differentially expressed genes (DEGs) between
normal and glioma samples. Then a risk model was built by Cox analysis and the
least shrinkage and selection operator (LASSO) regression analysis. The validity of
the model was verified by survival curves and receiver operating characteristic
(ROC) curves. In addition, independent prognostic analysis of the risk model was
performed by Cox analysis. Then, we also identified different immune cells, HLA
family genes and immune checkpoints between high and low risk groups. Finally,
the functions of model genes at single-cell level were also explored.
Results: Consensus clustering classified glioma patients into two subtypes, and the
overall survival (OS) of the two subtypes differed. A total of 11 NAD+ metabolism-
related differentially expressed genes (NMR-DEGs) were screened by overlapping
5,995 differentially expressed genes (DEGs) and 49 NAD+ metabolism-related
genes (NMRGs). Next, four model genes, PARP9, BST1, NMNAT2, and CD38, were
obtained by Cox regression and least absolute shrinkage and selection operator
(Lasso) regression analyses and to construct a risk model. The OS of high-risk
group was lower. And the area under curves (AUCs) of Receiver operating
characteristic (ROC) curves were >0.7 at 1, 3, and 5 years. Cox analysis showed that
age, grade G3, grade G4, IDH status, ATRX status, BCR status, and risk Scores were
reliable independent prognostic factors. In addition, three different immune cells,
Mast cells activated, NK cells activated and B cells naive, 24 different HLA family
genes, such as HLA-DPA1 and HLA-H, and 8 different immune checkpoints, such
as ICOS, LAG3, and CD274, were found between the high and low risk groups. The
model genes were significantly relevant with proliferation, cell differentiation, and
apoptosis.
Conclusion: The four genes, PARP9, BST1, NMNAT2, and CD38, might be important
molecular biomarkers and therapeutic targets for glioma patients.
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Introduction

Glioma originates mainly from glial cells and is the most

common primary brain tumor. It involves a broad category of

central nervous system tumors, including astrocytoma,

oligodendroglioma, and glioblastoma. Currently, the standard

clinical strategy for glioma includes maximum surgical resection

followed by radiotherapy, and temozolomide (TMZ) chemotherapy

(1). However, the overall treatment effect was not ideal. Even with

standardized treatment, the median survival time of glioblastoma

multiforme (GBM) was only about 15 months, and the 5-year

survival rate was less than 10% (2). Thus, considering the limited

treatment strategies for glioma, there is an urgent need to develop

reliable prognostic biomarkers and therapeutic targets.

Nicotinamide adenine dinucleotide (NAD+) is one of the most

important co-enzymes (or co-factors) in oxidation-redox reactions,

and NAD+ is also the core of energy metabolism (3, 4). Playing a key

role in energy transduction and cell signal transduction, NAD+ can

be transformed into NADP, NAADP and cADPR (4, 5). Moreover,

NAD+ degradation products, such as nicotinamide and N-methyl

nicotinamide, have also been considered as key regulators of energy

metabolism, epigenetics and disease status (6–8). NAD+ pathway

metabolites can also serve as substrates for a group of diverse

enzymes (9, 10), including SARM1, ARTs, PARPs, CD38, sirtuins,

and RNA polymerases, which were involved in several aspects of

cellular homeostasis. Previous studies mainly focused on sugar

metabolism, lipid metabolism, amino acid metabolism, nucleotide

metabolism and energy metabolism. Interestingly, an increasing

number of studies have revealed that NAD+ metabolism was closely

related to the pathogenesis of many tumors (11, 12). For example, in

GBM patients, the expression of NAMPT was associated with poor

prognosis (13). More than that, NAD+ metabolism was reported to

play an important role in tumor immunity (11, 14–16). But the

mechanisms of NAD+ metabolism in glioma were unclear and there

were no systematic researches about NAD+ metabolism related

genes to predict the survival of patients with glioma. Different from

previous researches, our study aimed to explore the prognostic value

ofNADmetabolism related genes in glioma by bioinformatics analysis.

Therefore, we used the data downloaded from the Cancer

Genome Atlas (TCGA) in this study to perform bioinformatics

analysis based on NAD+ metabolism related genes and then build

a new risk model to predict the prognosis of glioma patients. Then

we validate the model using Chinese Glioma Genome Atlas

(CGGA). This model could find prognostic molecular markers and

potential therapeutic targets for glioma patients, which provided an

important reference value on selection of treatment strategies for

clinicians, and also provided new ideas for the future basic

research of glioma.
Results

Classification of glioma subtypes

The consensus clustering results showed that the best clustering

was achieved when k = 2. All glioma samples were classified into
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cluster 1 (n = 477) and cluster 2 (n = 217) (Figures 1A,B). In

addition, the overall survival (OS) of cluster 1 patients was worse

(p < 0.05). From the above, it is clear that NAD+ metabolism-

related genes (NMRGs) can classify glioma patients into two

subtypes with statistical difference in OS, indicating that NMRGs

can affect the OS of glioma patients (Figure 1C).
Identification of NAD+ metabolism-related
differentially expressed genes (NMR-DEGs)

5,998 DEGs were obtained between glioma and normal samples

(Figure 2A and Supplementary Tables S1,S2). 11 NMR-DEGs

were obtained after crossover analysis (Figure 2B and Table 1),

and they were enriched in metabolic processes such as NAD+

metabolism, pyridine nucleotide metabolism, nucleotide

metabolism, nicotinate and nicotinamide metabolism, as well as

NAD+ biosynthesis process, pyridine nucleotide biosynthesis, and

nucleotide biosynthesis. And NMR-DEGs were associated with

NAD+ nucleotidase, circulating ADP-ribose-gluconeogenesis,

NAD(P)+ nucleosidase activity, NAD+-dependent protein

deacetylase activity, NAD+ binding transferase activity, NAD+

nucleosidase activity, NAD + ADP ribosyl transferase activity,

transferase activity-transferring pentanediyl group and other

pathways (Figures 2C,D).
Building and validating of risk model

11 NMRGs were obtained (Figure 3A). When lambda min =

0.0313, PARP9, BST1, NMNAT2, and CD38 were obtained

(Figure 3B and Table 2). Then the glioma cases were classified

into a high-risk group (n = 347) and a low-risk group (n = 347)

(Median Risk score = 0.8125), and cases in the high-risk group

had a lower OS (Figures 4A,B). The area under curves (AUCs)

of the ROC curves in the training cohort were all greater than

0.8 (Figure 4C). In the validation set, the OS was worse in the

high-risk group, and the AUCs of the 1, 3, 5 years in the ROC

curves were >0.7, consistent with the results of TCGA

(Figures 4D–F).
Correlation analysis of risk model and clinical
factors

In the TCGA-glioma dataset, risk Scores were significantly

correlated with age, Grade, survival status, IDH status, MGMT

status, ATRX status and BCR status. And risk Scores for age,

Grade, BCR status, IDH status, MGMT status, ATRX status, and

BCR status were significantly different (Table 3). In the CGGA-

glioma dataset, risk Scores for gender were significantly different

(Table 4). In addition, the risk Scores for age (>50 vs. ≤50), Grade
(G2/G3/G4), BCR status (NCH vs. IGC), IDH status (WT vs.

Mutant), MGMT status (Unmethylated vs. Methylated) and ATRX

status (WT vs. Mutant) were significantly different (Figure 5).

Moreover, the risk Score was higher in tumor tissue (Figure 6A).

The ROC curves demonstrated that the risk Score could
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FIGURE 1

NMRGs classify glioma patients into different two subtypes. (A1,A2) Cumulative Distribution Function (CDF) plot for consistent clustering (B) consistency
clustering heat map. The colours indicate the ease of clustering. (C) Survival curves for cluster1 and cluster2.

Chen et al. 10.3389/fsurg.2023.1071259
significantly distinguish between tumor and normal samples (AUC =

0.81, Figure 6B), and it had a strong ability to distinguish between

high-grade glioma (G3 + G4) and low-grade glioma (G2) (AUC =

0.802, Figure 6C). Besides, the risk Score could also distinguish

between GBM and non-GBM (AUC = 0.922, Figure 6D).
Independent prognostic analysis of risk
model

The results showed that age, Grade, IDH status, ATRX status,

BCR Status, and risk Score in Cox analysis were all p < 0.05

(Figures 7A,B). The nomogram in TCGA glioma samples was

shown in Figure 7C, and the C-index was 0.8617, which indicated

that the model had a better prediction effect. The correction curve

of nomogram was shown in Figure 7D, and the closer the slope

was to 1, the more accurate the prediction was. The accuracy of
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this risk model in predicting the OS of cases was high, indicating

that the constructed prediction model could be a valid model.
Correlation of risk score with KEGG pathway

309 pathways were significantly different, 40 pathways were

connected with risk Score, 12 of which were positively connected

with risk Score and 28 were negatively connected with risk score

(Supplementary Table S3). The heat map of risk score and KEGG

pathway was shown in Figure 8. As could be seen from the figure,

all the pathways were positively connected with risk Score except

for the Lysosome pathway, which was negatively connected with

risk Score. Moreover, neuroactive ligand-receptor interactions,

aldosterone synthesis and secretion, GnRH secretion, GABAergic

synapses, adrenergic signaling pathway in cardiac myocytes, insulin
frontiersin.org
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FIGURE 2

NAD+ metabolism-related differentially expressed genes were selected from glioma database. (A) Volcano map of differentially expressed gene analysis
(DEGs) between glioma and normal samples. The horizontal coordinate log2FC indicates the difference multiplicity and the vertical coordinate indicates
the confidence level - log10(adj. Pvalue). Each point in the graph represents a gene, with blue and red points representing significantly differentially
expressed genes. Red dots indicate that their gene expression was up-regulated in the glioma samples and blue dots indicate that the gene was down-
regulated in the glioma samples. (B) Venn diagram of differentially expressed genes with NMRGs. (C,D) Bar graphs of Gene ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for NMR-DEGs.

TABLE 1 Differentially expressed genes between glioma and normal
samples.

Symbol logFC AveExpr p-Value adj.P.Val type

CD38 1.705 7.157 0.013 0.043 up

BST1 1.455 5.049 0.013 0.043 up

PARP9 1.401 9.663 0.002 0.010 up

PARP4 1.302 9.898 <0.001 <0.001 up

PARP14 1.216 9.867 0.003 0.015 up

PNP 1.060 9.265 0.002 0.010 up

NT5C 0.844 8.505 0.001 0.006 up

SIRT6 0.586 8.568 0.006 0.026 up

SIRT5 −0.690 8.305 0.0002 0.001 down

SLC5A8 −1.077 0.221 <0.001 <0.001 down

NMNAT2 −2.381 9.746 0.003 0.013 down

Chen et al. 10.3389/fsurg.2023.1071259

Frontiers in Surgery 04
secretion, and glutamatergic synapses were significantly correlated

with risk Score.
Impact of risk model on immune
heterogeneity

Immune score, stromal score and ESTIMATE score were higher

in high-risk group (p < 0.05) (Figure 9A). The CIBERSORT

algorithm calculated the proportion of each immune cell and the

corresponding statistical values. After excluding samples with p >

0.05, 37 samples remained in the high-risk group and 3 samples

remained in the low-risk group. The box line plots and stacked

bar graphs plotted for the abundance of immune cells were

shown in Figures 9B,C. Mast cells activated, NK cells activated,

and B cells naive were less in the high-risk group (Figure 10A).

All 24 HLA family genes were higher in the high-risk group
frontiersin.org
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FIGURE 3

Building of the risk model (A) forest plot for univariate cox regression analysis. (B1,B2) Plot of gene coefficients for Lasso regressions. Error plots for 10-fold
cross-validation.

TABLE 2 Coef of 4 model genes in lasso analysis.

Chen et al. 10.3389/fsurg.2023.1071259
(Figure 10B). Except for TIGIT, all the immune checkpoints were

higher in the high-risk group (Figure 10C).

gene symbol coef exp (coef) se (coef) z p

NMNAT2 −0.15 0.86 0.05 −3 0.006

PARP9 0.37 1.45 0.1 4 0.0001

CD38 −0.21 0.81 0.05 −4 0.0001

BST1 0.33 1.39 0.08 4 0.00002
Single-cell functional analysis of model
genes

CancerSEA can provide insight into the model genes in

individual glioma cell. NMNAT2 was positively connected with

stemness and proliferation, and negatively connected with hypoxia

(Figure 11A). PARP9 was significantly positively connected with

EMT, cell metastasis, cell differentiation and negatively connected

with DNA damage (Figure 11B). CD38 was negatively connected

with both cell invasion and apoptosis (Figure 11C). BST1 was

negatively connected with cell invasion (Figure 11D).
Frontiers in Surgery 05
Discussion

As the most common neuroepithelial tumor of the central

nervous system, gliomas are a heterogeneous group of central

nervous system tumors (17). A unique feature of glioma cells is the
frontiersin.org
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FIGURE 4

Building and validating of a risk model (A) the risk curve, scatter diagram, and model gene expression heat map of the training cohort (B) survival curves of the
high- and low- risk groups of the training cohort. (C) The ROC curves of glioma patients in training cohort for 1, 3, 5 years (D) the risk curve, scatter diagram
and model gene expression heat map of the CGGA 693 cohort. (E) Survival curves demonstrating that glioma cases in the high- and low- risk groups of the
CGGA 693 cohort. (F) The ROC curves of glioma patients in the CGGA 693 cohort. (G) The risk curve, scatter diagram, and model gene expression heat map of
the CGGA 325 cohort. (H) Survival curves for glioma cases of the CGGA 325 cohort in the two risk groups. (I) The ROC curves of glioma patients in CGGA 325
cohort.
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high demand for energetic molecules namely adenosine triphosphate

(ATP), to sustain their rapid growth rate and the biosynthesis of

DNA and proteins (18, 19). Products of NAD+ degradation, NAD

+ pathway metabolites and many molecules converted from NAD+

were closely associated with the development and progression of

gliomas (12, 14, 20–22). Nevertheless, there were no systematic

researches about NAD+ metabolism related genes to predict the
Frontiers in Surgery 06
survival of patients with glioma. Therefore, it was necessary to

establish a new glioma prognostic model based on NAD+

metabolism related genes to verify the prognostic molecular

markers and potential therapeutic targets for glioma patients.

Currently, numerous glioma prognostic models have been

reported. These glioma prognosis models can be divided into the

following types (23): RNA models, methylation models, other
frontiersin.org
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TABLE 3 Risk and clinical data in TCGA.

Variables Risk in TCGA p-value

Total high low

age (year)

Mean (SD) 47.3 (±15.3) 52.6 (±15.4) 41.9 (±13.2) <0.001

Gender

Female 254 (41.7%) 125 (40.3%) 129 (43.1%) 0.51

Male 355 (58.3%) 185 (59.7%) 170 (56.9%)

Vital

Alive 428 (61.7%) 146 (42.1%) 282 (81.3%) <0.001

Dead 266 (38.3%) 201 (57.9%) 65 (18.7%)

Neoplasm Histologic Grade

G2 215 (35.3%) 43 (13.9%) 172 (57.5%) <0.001

G3 241 (39.6%) 119 (38.4%) 122 (40.8%)

G4 153 (25.1%) 148 (47.7%) 5 (1.7%)

IDH status

Mutant 427 (64.7%) 112 (34.7%) 315 (93.5%) <0.001

WT 233 (35.3%) 211 (65.3%) 22 (6.5%)

MGMT promoter status

Methylated 476 (74.8%) 170 (56.9%) 306 (90.8%) <0.001

Unmethylated 160 (25.2%) 129 (43.1%) 31 (9.2%)

ATRX status

Mutant 195 (29.7%) 71 (22.2%) 124 (36.8%) <0.001

WT 462 (70.3%) 249 (77.8%) 213 (63.2%)

DAXX status

Mutant 2 (0.3%) 2 (0.6%) 0 (0.0%) 0.24

WT 654 (99.7%) 318 (99.4%) 336 (100.0%)

BCR Status

IGC 504 (75.6%) 271 (82.9%) 233 (68.5%) <0.001

NCH 163 (24.4%) 56 (17.1%) 107 (31.5%)

TABLE 4 Risk and clinical data in CGGA.

Variable Risk p-value

Total high low

age (year)

Mean (SD) 43.5 (±12.4) 44.1 (±12.6) 42.8 (±12.2) 0.3

gender

Female 283 (43.1%) 139 (42.4%) 144 (42.2%) 0.02

Male 374 (56.9%) 189 (57.6%) 185 (54.7%)

Vital

Alive 263 (40.0%) 128 (39.0%) 135 (41.0%) 0.63

Dead 394 (60.0%) 200 (61.0%) 194 (59.0%)

Neoplasm Histologic Grade

WHO II 172 (26.2%) 85 (25.9%) 87 (26.4%) 0.98

WHO III 248 (37.7%) 125 (38.1%) 123 (37.4%)

WHO IV 237 (36.1%) 118 (36.0%) 119 (36.2%)

IDH status

Mutant 333 (54.7%) 153 (52.4%) 180 (56.8%) 0.29

Wildtype 276 (45.3%) 139 (47.6%) 137 (43.2%)

MGMT promoter status

methylated 304 (58.2%) 190 (59.2%) 114 (56.7%) 0.59

un-methylated 218 (41.8%) 131 (40.8%) 87 (43.3%)

1p19q_codeletion_status

Codel 137 (23.2%) 68 (23.1%) 69 (23.2%) 1

Non-codel 454 (76.8%) 226 (76.9%) 228 (76.8%)
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multimolecular models. However, due to limitations, such as the lack

of external validation, lack of gold markers, not providing

quantitative results or absolute risk stratification, difficulties of data

collection, the complexity of analysis, and low adherence to

complete and transparent reporting, these models are still not

recommended for clinical application (23, 24). The NAD+-related

model constructed in this study contained only four model genes,

it passed internal validation and external validation, was an

accurate glioma model.

In this study, based on consensus cluster analysis of 42 NAD

related genes (NMRGs), we first divided glioma patients into

cluster 1 and cluster 2, with significant survival difference between

the two clusters. Then, based on the differential expression analysis
Frontiers in Surgery 07
of genes between the two groups, Cox analysis and LASSO

regression analysis, we further screened out four genes significantly

related to the survival of glioma patients, and then established a

risk scoring model and nomogram to evaluate their prognostic

prediction and clinical application value. Through the correlation

analysis between risk score and immune invasion, immunotherapy,

KEGG pathway and single cell function enrichment analysis, we

further explored the potential functions and signal pathways of the

four model genes involved in glioma, with a view to providing

more candidate targets for the treatment of glioma patients.

As one of the PARP family, PARP9 was highly expressed in

gliomas and high PARP9 expression was associated with poor

prognosis and clinicopathological features (15), which supported

our findings. In addition, it was shown that PARP9 played an

important role in the immune microenvironment of glioma and

that PARP9 may be a prepotential immunotherapeutic target for

glioma (15). CD38 mediated intracellular ATP levels and glioma

cell survival (25). Moreover, CD38 deficiency regulated microglia

activation through microglia-associated mechanisms to attenuate

glioma progression, and it could modulate tumor-associated

microglia/macrophage characteristics (16), which was also

consistent with our study. However, to the best of our knowledge,
frontiersin.org
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FIGURE 5

Correlation analysis of risk model and clinical factors (A–D) comparison of risk scores of different clinical subgroups of TCGA glioma patients.

Chen et al. 10.3389/fsurg.2023.1071259
BST1 and NMNAT2 were found to be closely associated with glioma

for the first time. BST1 regulated nicotinamide riboside metabolism

through glycohydrolase and base exchange activity, which has

beneficial effects on aging and aging-related diseases (26).

NMNAT2 was a target for the treatment of many malignancies.

For example, upregulation of NMNAT2 was associated with the

presence, depth and stage of colorectal cancer (27). Furthermore,

specific deletion of NMNAT2 in mouse oocytes interfered with

meiotic apparatus assembly and metabolic activity, where

supplementation with niacin or forced expression of NMNAT2 in

aging oocytes during in vitro culture reduced reactive oxygen

species (ROS) production and the incidence of spindle/

chromosome defects (28). Therefore, it is speculated that

NMNAT2 may also act on glioma through NAD+ metabolism.
Frontiers in Surgery 08
Some scholars reported that glioma patients with high

immune scores and stromal scores were correlated with

increased malignancy and reduced survival (29, 30). Our result,

which showed that immune scores, stromal scores and

ESTIMATE scores were higher in high-risk group than in low-

risk group, was consistent with these reports. The majority of

the non-neoplastic cells in gliomas are glioma-associated

microglia/macrophages (GAMs), comprised macrophages of

peripheral origin and brain-intrinsic microglia, which supported

tumor progression (31). GAMs are usually divided into two

categories, macrophages M1 and macrophages M2. Macrophages

M2 are the most abundant immune cells within the glioma

stroma (32, 33). Our study showed that Mast cells activated, NK

cells activated, and B cells naive were less in the high-risk
frontiersin.org
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FIGURE 6

Correlation analysis of risk model and clinical factors (A) comparison of differences in risk scores between tumor and normal samples. (B) The ROC curves for
risk score differentiation between Tumor and Normal samples. (C) The ROC curves for Grade4 and Grade2 +Grade3 samples with risk score differentiation.
(D) The ROC curves for GBM and non-GBM samples with risk score differentiation.
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group, which supported this view. In addition, Tanzhu et al.

obtained a similar result (34).

HLA family genes are essential for immunosurveillance and

cancer immunotherapy (35, 36). Many HLA molecules, for

example, HLA-E, HLA-F, HLA-G, HLA-H and HLA-DR were

reported to be overexpressed on cancer cells (35–38). In our

model, all 24 HLA family genes were higher in the high-risk

group. More data is needed to verify it in the future. In general,

most immune checkpoints (including PD-1, TIM-3, CD96,

PDCD1, IDO1, PDCD1LG2, and CTLA-4) were highly expressed

in glioma cells (39–42). Higher expressions of immune checkpoints

were observed in more severe grades of glioma, and this indicated

that it was linked to a worse prognosis (39–42). Our result showed

that all the immune checkpoints were high in the high-risk group

except for TIGIT, suggesting that they synergistically regulated the
Frontiers in Surgery 09
immune response in the tumor microenvironment. These findings

opened up new possibilities for the treatment of gliomas.

An enquiry into the functional status of biomarkers in glioma

showed that PARP9 was positively associated with EMT, cell

metastasis and cell differentiation and negatively associated with

DNA damage. It has been shown that PARP9 was essential for B

cell development (43). In addition, the PARP inhibitor veliparib

could act on DNA damage repair in prostate cancer cells (44),

which supported our study. CD38 showed a significant negative

correlation with both cell invasion and apoptosis. Previous studies

suggested that CD38 was involved in cell differentiation and

inflammatory processes and played a key role in the inflammatory

process of autoimmunity (45, 46). NMNAT2 was significantly and

positively associated with stemness and proliferation. Wu et al.

found that NAD+ deficiency due to reduced NMNAT2 expression
frontiersin.org
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FIGURE 7

Independent prognostic analysis of risk model (A,B) univariate Cox and multivariate Cox independent prognostic analysis (C) the nomogram in TCGA glioma
sample to predict 1, 3 and 5-year survival rate (the C-index was 0.8617) (D) the correction curve of nomogram.
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affected cell metabolism and meiosis (28), which provided evidence

for our study.

There are several limitations in our study. First, the amount of

data used in the analysis is not large, so our results may have

certain deviation. More data is needed to validate this model in the

future. Second, it is the result of bioinformatics analysis without

experimental verification. More basic experiments are required to

verify the specific mechanism of these genes in glioma. Third,

more prospective studies are needed to prove the prognostic

function of the four genes. In the future, we will also collect more

clinical samples for in-depth in vitro and in vivo experimental

research to further verify the relevant mechanisms of the four

genes in glioma.
Conclusion

For the first time we built a NAD+ metabolism related risk

model, The model could predict the prognosis of glioma patients
Frontiers in Surgery 10
from another new perspective. Most importantly, it proved that

CD38, NMNAT2, PARP9, and BST1 might be important

prognostic molecular markers and potential therapeutic targets for

glioma patients.
Methods

Data source

We acquired the expression data and clinical data of glioma from

the TCGA and CGGA databases (Table 5). The TCGA database

contains 697 glioma and 5 normal samples, of which 694 glioma

samples had survival information. The CGGA 693 and CGGA 325

datasets contain 657 and 313 glioma samples with survival

information, respectively. In addition, NMRGs were acquired from

the Kyoto Encyclopedia of Genes and Genomes and the Reactome

databases (Table 5). Finally, 49 NMRGs were obtained by

combined genes obtained from the two databases (47).
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FIGURE 8

Correlation of risk scores with KEGG pathway.

FIGURE 9

Impact of risk model on immune heterogeneity (A) violin diagram of immune scores, stromal scores and ESTIMATE scores for high and low risk groups. The
horizontal coordinates represent the groupings (high-/low- risk groups) and the vertical coordinates represent the different scores, blue for the low risk group
and pink for the high risk group. (B,C) The box line plots and stacked bar graphs show the abundance of immune cells.
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FIGURE 10

Impact of risk model on immune heterogeneity (A) the box line plots comparing the difference of immune cells between high and low risk groups. (B) The box
line plots comparing the difference of HLA between high and low risk groups.
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Classification of glioma subtypes

Consensus clustering is a common method for classifying cancer

subtypes (48). This study used “ConsensusClusterPlus” package

(version 1.54.0) (49) to execute consensus clustering based on 42

NMRGs (Seven genes were not expressed in the Glioma samples)

in the TCGA-glioma dataset. Then the survival analysis of different

subtypes was performed by “survival” package (version 3.2–11).
Screening of NMR-DEGs

The differentially expressed genes (DEGs) between glioma and

normal samples were acquired by “limma” package in TCGA-

glioma database (version 3.46.0) (50). Next, the DEGs were

intersected with the NMRGs using the “VennDiagram” package
Frontiers in Surgery 12
(version 1.6.20) (51) to obtain NMR-DEGs. Then, functional

enrichment analysis of NMR-DEGs was performed based on gene

ontology (GO) and KEGG databases using the “clusterProfiler”

package (version 3.18.0) (52). The enrichment results were also

visualized by plotting bar graphs using the “enrichplot” package

(version 1.10.2).
Building and validating of a risk model

In this study, the 694 glioma cases from the TCGA database were

used as the training cohort and the 657 cases from the CGGA

database were used as the validation cohort to construct and

validate the risk model. First, we extracted the expression data of

NMR-DEGs in the training cohort for univariate Cox analysis.

Then the factors with p < 0.05 were subjected to the least shrinkage
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FIGURE 11

Single-cell functional analysis of model genes (A–D) functional status of (A) NMNAT2, (B) PARP9, (C) CD38, (D) BST1.

TABLE 5 Data source.

Database Website Name

TCGA https://portal.gdc.cancer.gov/

CGGA http://www.cgga.org.cn/

KEGG https://www.kegg.jp/ Pathway: hsa00760

Reactome https://reactome.org/ R-HSA-196807
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and selection operator (Lasso) regression analysis. The risk Scores of

glioma cases were counted using the following formula.

risk score ¼
Xn

n¼1

coe f i � xið Þ

The median value of risk Score was used as the boundary to

classify the glioma cases into high and low risk groups. Then risk

curves were plotted, and survival curves and receiver operating

characteristic (ROC) curves were drawn by “survminer” (version

0.4.8) and “survivalROC” package (version 1.0.3) respectively. Also,
Frontiers in Surgery 13
we plotted risk curves, survival curves, and ROC curves in the

validation set.
Correlation analysis of risk model and clinical
factors

To further investigate the relationship between clinicopathological

characteristics and risk model, age, gender, survival status, Grade,

IDH status, MGMT status, ATRX status, DAXX status, and BCR

status were correlated with risk Scores in the training and validation

cohorts. First, the number of patients with different clinical subtypes

was compared between the high and low risk groups, and then the

risk Scores were compared in the training set with different clinical

information using rank sum tests. In addition, according to the

abundance of model genes and their risk coefficient, the risk Score of

normal samples was calculated, and the risk Score between tumor and

normal samples was compared by the rank-sum test. Finally, the

ROC curves were used to investigate the ability of the risk score to

distinguish tumor tissue from normal tissue, and to distinguish

between different Grades.
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Independent prognostic analysis of risk
model

To discovery the independent prognosis of clinicopathological

characteristics, risk scores and clinicopathological factors such as

age, gender, Grade, IDH status, MGMT status, ATRX status,

DAXX status, and BCR status were included in the risk model for

Cox analyses in the training set. Next, a nomogram plot predicting

survival of glioma patients was constructed. Finally, a calibration

curve was plotted.
Correlation of risk scores with KEGG pathway

We performed GSVA enrichment analysis based on KEGG

pathway for all genes using “GSVA” package to find the functional

difference between high and low risk groups (53). First, we

obtained the enrichment scores in each pathway for the samples,

and then performed a differential analysis of the pathways by the

“limma” package with the screening condition of adjust p < 0.05.

Next, we executed a correlation analysis of the differential

pathways with the risk scores by setting the screening condition of

|cor| > 0.6 and p < 0.01.
Impact of risk model on immune
heterogeneity

The immune status difference between high and low risk groups

were executed by ESTIMATE analysis. The Immune Score, Stromal

Score, and the combined ESTIMATE score of TCGA glioma

samples were obtained by “ESTIMATE” package (version 1.0.13).

This study compared the three scores between the two groups by

rank sum test. Then the proportion of 22 immune cells was

calculated using the Cell type Identification By Estimating Relative

Subsets Of RNA Transcripts (CIBERSORT) algorithm (version 1.03)

in the TCGA-glioma dataset. The proportion of each immune cell in

each sample were gotten by CIBERSORT algorithm. The samples

with p > 0.05 were excluded, and the proportions of immune cells in

the remaining samples were displayed in box plots and bar charts.

In addition, the immune cells between high and low risk groups

were compared by the rank sum test and visualized by plotting box

line plots using the “ggplot2” and “ggpubr” packages. Finally, the

expression of 24 HLA related genes and nine immune checkpoints

(LAG3, ICOS, TIGIT, CD274, PDCD1, IDO1, CD27, PDCD1LG2,

and HAVCR2) were compared by rank sum test respectively.
Single-cell functional analysis of model
genes

In this study, 14 functions (angiogenesis, cell cycle, apoptosis, DNA

damage, cell differentiation, DNA repair, EMT, cellular hypoxia, cancer

cell invasion, metastasis, inflammation onset, proliferation, cell resting,

and stem cell properties) of model genes were predicted using

CancerSEA. Then the functional status of the model genes in glioma

were queried and the significantly relevant functions were displayed.
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