To establish novel prediction models for predicting acute kidney injury (AKI) after cardiac surgery based on early postoperative biomarkers.
This study enrolled patients who underwent cardiac surgery in a Chinese tertiary cardiac center and consisted of a discovery cohort (
Five biomarkers were identified as independent predictors of AKI and were included in the nomogram: soluble ST2 (sST2), N terminal pro-brain natriuretic peptide (NT-proBNP), heart-type fatty acid binding protein (H-FABP), lactic dehydrogenase (LDH), and uric acid (UA). In the validation cohort, the nomogram achieved good discrimination, with AUC of 0.834. The machine learning models also exhibited adequate discrimination, with AUC of 0.856, 0.850, and 0.836 for DF, RF, and XGBoost, respectively. Both nomogram and machine learning models had well calibrated. The AUC of sST2, NT-proBNP, H-FABP, LDH, and UA to discriminate AKI were 0.670, 0.713, 0.725, 0.704, and 0.749, respectively. In addition, all of these biomarkers were significantly correlated with AKI after adjusting clinical confounders (odds ratio and 95% confidence interval of the third vs. the first tertile: sST2, 3.55 [2.34–5.49], NT-proBNP, 5.50 [3.54–8.71], H-FABP, 6.64 [4.11–11.06], LDH, 7.47 [4.54–12.64], and UA, 8.93 [5.46–15.06]).
Our study provides a series of novel predictive models and five biomarkers for enhancing the risk stratification of AKI after cardiac surgery.