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Identification of cuproptosis
related subtypes and
construction of prognostic
signature in gastric cancer
Hao Dong† ‡, Shutao Zhao†, Chao Zhang* and Xudong Wang*

Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University,
Changchun, China

Cuprotosis is a novel mechanism of cell death that differs from known
mechanisms, which depends on mitochondrial respiration and is closely
related to lipoylated components of the tricarboxylic acid (TCA) cycle.
However, it is unclear whether cuprotosis-related genes (CRGs) affect the
tumor microenvironment (TME) and prognosis of patients with gastric
cancer. In this study, the genetic and transcriptional characteristics of CRGs
in gastric cancer (GC) were analyzed, and five CRGs that were differentially
expressed and correlated with the survival of patients were obtained. Two
different molecular subtypes were identified according to the five CRGs.
Then, we constructed a CRG_score applied to patients of any age, gender,
and stage. Subsequently, we found that cluster B and a high CRG_score had
a worse prognosis, fewer immune checkpoints, and higher tumor immune
dysfunction and exclusion (TIDE) compared to cluster A and a low
CRG_score. In addition, two subtypes and the CRG_score were closely
associated with clinicopathological characteristics, human leukocyte antigens
(HLAs) and TME cell infiltration. A high CRG_score was featured with
decreased microsatellite instability-high (MSI-H) and mutational burden.
Meanwhile, the CRG_score was significantly related to the cancer stem cell
(CSC) index and chemotherapeutic response. Moreover, we developed a
nomogram to predict the survival probability of patients. Our study explained
the role of CRGs in GC, and the prognostic signature could potentially
provide an approach for personalized tumor therapy.
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Introduction

Gastric cancer (GC), a malignant tumor with high heterogeneity, is one of the global

malignant diseases. Although there are regional differences in morbidity and mortality,

more than 1 million people suffer from it each year worldwide (1, 2). GC is the fourth

primary cause of cancerous tumor death globally (3). The low survival rate of patients

with GC is due to the fact that they are primarily in the middle and late stages (1).

Common treatments for GC, such as surgery and chemotherapy, are based on

traditional diagnostic measures, including clinical symptoms, imaging, and
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pathological data (4). However, treatments of inoperable and

chemo-resistant GC patients remain many challenges needed

to be addressed. Precisely personalized treatments, including

immunotherapy and targeted therapy based on biomarkers

such as microsatellite instability (MSI), epidermal growth

factor receptor (EGFR), and programmed cell death ligand 1

(PD-L1), have been relatively novel and vital treatment

strategies in recent years for those challenges (5). The purpose

of them is to provide patients with more efficient and healthy

drug treatments (6). Therefore, finding prognosis-related

biomarkers with efficient treatment is a hot topic and an

essential direction.

The self-death of normal cells could prevent cancerization

to a certain extent. If damaged cells, such as DNA damage

that cannot be repaired, cannot die by themselves, their genes

may be mutated, which will promote the transformation to

tumor cells of the offspring (7). A variety of cell death

mechanisms, such as apoptosis, necroptosis, pyroptosis,

autophagy, and ferroptosis, have been verified to be closely

related to tumor progression (7, 8). Recently, cuproptosis is a

new cell death mechanism that differed from other means.

Copper is an indispensable cofactor to keep the body

functioning properly. Copper accumulation can promote

proteins lipidation in TCA mediated mainly by FDX1 and

directly bind them, which induces loss of Fe-S cluster–

containing proteins and elevation of HSP70 to activate acute

proteotoxic stress leading to cell death (9). Zhang et al.

revealed that ferredoxin reductase (FDXR) could regulate the

expression of iron-binding protein 2 (IRP2), which affects the

tumor suppressor p73, to mediate the development of tumor

(10). There is a complex regulatory relationship between the

tumor microenvironment (TME) and tumors. The growth of

tumor cells depends on various biological factors secreted by

TME. In addition to malignant cells, TME also includes

adipocytes, fibroblasts, immune cells, extracellular matrix

(ECM), and blood vessel-related cells (11). These components

interfere with tumor progression through individual or

interrelated pathways of action. For example, the vascular

system provides tumor nutrition and distant metastasis

channels, and tumor-associated macrophages (TAMs) protect

tumors from immunosuppression. Fibroblasts can drive

tumors away from their primary location (11, 12). However,

there are very few studies of cuproptosis in tumors. The

relationships between it and tumors, TME, and the prognosis

of patients are not clear.

Due to cuprotosis as a newly discovered cell death mode, its

role in gastric cancer is little known. We conducted a

multifaceted analysis of cuprotosis-related genes (CRGs),

hoping to discover the possible mechanism of CRG in the

development of gastric cancer. This study explored CRGs’

expression profile and associated transcription factors, as well

as survival analysis. Then, two subtypes were identified based

on CRGs, and TME cell infiltration using CIBERSORT,
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ssGSEA and ESTIMATE algorithms, survival time, clinical

features, TIDE, immune checkpoints, and HLAs between them

were analyzed. Subsequently, 567 patients with GC were again

divided into two subtypes based on the differentially expressed

genes (DEGs) of the two subtypes. In addition, CRG_score was

constructed to predict prognosis, clinical characteristics, TME

cell infiltration, TIDE, immune checkpoints, HLAs, TMB, CSC,

MSI, and drug sensitivity of GC patients.
Materials and method

Data sets source and tissue samples

Gene expression (FPKM value), clinicopathological

information, copy number variation, and nucleotide mutation

data of GC were obtained from The Cancer Genome Atlas

(TCGA) in January 2022. GSE15459 was downed from the Gene

Expression Omnibus (GEO). FPKM values are converted to TPM

values. The two datasets were merged, quantile normalized, and

removed batch effects by the “Combat” algorithm.

Comprehensive information of patients in TCGA and GSE15459

was shown in Supplementary Table S1. CRGs were identified

from the literature (Supplementary Table S2) (9). Tumor-

associated transcription factors were downloaded from the

website (http://www.cistrome.org/). 10 GC cases of fresh frozen

tumors and adjacent tissues from the Second Hospital of Jilin

Universitywere selected for quantitative real-time PCR (qRT-PCR).
The analysis of subtypes for CRGs

The expression of twelve CRGs was compared between 32

normal and 375 tumor samples in TCGA. Nine CRGs were

differentially expressed (P-value <0.05). Then the Kaplan–Meier

(KM) survival analysis was performed to screen out five CRGs

with survival significance (P-value <0.05). We identified two

molecular subtypes with the package “ConsensusClusterPlus”

based on the five CRGs (FDX1, DLAT, PDHA1, SLC31A1,

ATP7B). Moreover, core transcription factors associated with

CRGs were obtained via the package dplyr and the Cytoscape

software, in which the filter condition was the correlation

coefficient >0.45 and false discovery rate (FDR) < 0.001. The

biological function differences using Gene Set Variation

Analysis (GSVA) and differential expression of CRGs between

the two subtypes were analyzed.
Evaluation of clinicopathological data and
TME between subtypes

To explore the clinical application, we analyzed differences in

age, sex, stage, survival time, and status between the two subtypes.
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The survival analysis was performed by survival and survminer

packages. The CIBERSORT and ssGSEA algorithms were used

to calculate infiltration scores of various immune cells. We

assessed the immune score, stromal score, and estimate score

in distinct subtypes via ESTIMATE algorithm. To further study

the differences in immune status between subtypes, TIDE

score, dysfunction score, and immune exclusion score were

checked, which have a negative correlation with patients’

prognosis and immune efficacy (http://tide.dfci.harvard.edu/).

To better evaluate the sensitivity of immunotherapy, we

compared scores for twenty common therapeutic targets such

as CTLA4, CD80, VTCN1, and LAG3 among others, between

subtypes. Meanwhile, the expression of HLAs was explored.
Identification and analysis of DEGs

We obtained DEGs between the two subtypes using the

limma package (|log Foldchange (FC) | > 0.585 and FDR <

0.05). To better define the cuproptosis subtypes, we retyped

all samples based on DEGs by utilizing the

ConsensusClusterPlus package and identified two clusters

again. Subsequently, the survival analysis, clinical information

and the expression of CRGs were performed between two

clusters. Furthermore, GO and KEGG were used to explore

the functional pathways of DEGs.
Construction and validation of the
prognostic CRG_score

Firstly, all samples were equally divided into train and test

groups. Then, samples from the train group were used to

construct the prognostic CRG_score. Univariate Cox

regression analysis was utilized to find prognostic-related

DEGs. Next, LASSO regression analysis for prognostic-related

DEGs using the glmnet package in R was conducted to

prevent overfitting. Subsequently, the seven genes and formula

of CRG_score (e(each gene’s expression × correlative coefficient)) were

obtained using the multifactorial Cox analysis. According to

this formula, each sample obtained a risk score. Samples of

the train group were divided into high- and low CRG_score

groups based on the median risk score. The test group and all

sets were divided into two groups via the same method. The

survival ROC package was used to construct the ROC curves

and obtain the area under the ROC curve (AUC) for 1, 3, 5,

and 7 year OS, which can check the accuracy of the model.

Moreover, survival time, clinical information, TME cell

infiltration, TIDE, immune checkpoints, and HLA were

analyzed by the same methods as before between high- and

low CRG_score groups. The Gene set enrichment analysis

(GSEA) software was conducted to explore the functional

pathways in two groups. The filter criterion according to the
Frontiers in Surgery 03
c2.cp.kegg.v7.5.1symbols.gmt gene set was |normalized

enrichment score (NES)| > 1.5, nominal (NOM) p-value <0.05

and FDR q-value <0.05.
Mutation and cancer stem cell (CSC)
index analyses

The mutation data was downed from TCGA, which was

analyzed to observe the distinction in high- and low

CRG_score groups by the maftools package. Meanwhile, we

studied the relationships of TMB with survival, the two

CRG_score groups and risk score. At the same time, the

correlation of TMB with immune cells was explored. We also

performed a correlation analysis of CSC and risk score.
Microsatellite instability (MSI) and drug
susceptibility analyses

MSI could be used to guide clinical medication. Therefore,

the relation of MSI with risk score was studied. To guide the

clinical application of drugs, we screened out the common

chemotherapeutic drugs based on differential half inhibitory

concentration (IC50) values between the two CRG_score

groups using pRRophetic and limma packages.
Construction of a nomogram

A nomogram was constructed using the rms package to

predict the patients’ 1, 3, 5 and 7 -year survival probability,

while the calibration curve examined the nomogram’s

forecasting performance.
Quantitative real-time PCR

Total RNA was extracted from GC patient tissues using

Trizol reagent (Invitrogen, Carlsbad, CA, United States). A

reverse transcription kit (Takara, Tokyo, Japan) was used to

synthesize cDNA. The SYBR Premix Ex Taq™ kit (Takara,

Japan) was used to perform the RT-qPCR. The mRNA

expression level of SLC25A15, CTSV, RGS4, SYT13, ENTPD2,

CA8, and NPTX1 was normalized by GAPDH. The data were

determined by the −ΔΔCt means. The primers of the seven

genes were listed in Supplementary Table S3.
Statistical analyses

All statistical analyses were conducted by R version 4.1.1.

P < 0.05 was considered statistically significant.
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Results

Genetic and transcriptional
characteristics of CRGs in GC

The overall experimental design was presented in Figure 1.

First, the mutation status in 12 CRGs were explored

(Figure 2A). The overall mutation rate is 12% (53/433 samples).

ATP7B, DLAT, DLD, ATP7A, and LIPT1 were the top five

genes with relatively high levels of mutations. Then, the analyses

of the correlation between CRGs expression and mutations were

performed. Mutants tended to be accompanied by increased

expression of CRGs (DBT, LIAS, DLAT, DLD, PDHB, especially

LIAS) compared to wild-type (Supplementary Figure S1). 9

CRGs (75%, 9/12 CRGs) are differentially expressed between

normal and tumor tissues (Figure 2B). Almost all 12 CRGs had

the changes of somatic copy number variation (CNV). The CNV

increases happened in ATP7B, SLC31A1, and LIPT1;

nevertheless, DLAT, FDX1, DBT, and PDHB occurred the CNV

decreases (Figure 2C). Their chromosomal sites were described

in Figure 2D. We performed the survival analyses on 567

samples with GC based on the expression of CRGs. And we

observed that 8 CRGs were significant (P < 0.05). Among them,

seven highly expressed CRGs (87.5%) had a good prognosis,

which suggested CRGs may have inhibitory effects on gastric

cancer (Figure 2E).
Identification of cuproptosis subtypes
in GC

To study the classification of cuproptosis in GC, the 567

samples were classified via the consensus clustering analysis

according to the expression profiles of 5 CRGs. There were A

(n = 305) and B (n = 262) subtypes in terms of the best k

value (k = 2) (Figure 3A and Supplementary Figure S2A).

The rationality of the clusters was further verified by PCA

analysis (Figure 3B). The survival analysis demonstrated that

subtype A had a better prognosis than B (Figure 3C). For

clinicopathological features, stages of cluster A were lower

compared to B (Figure 3D). At the same time, we further

analyzed the expression of CRGs of clusters to explore the

reasons for differences between clusters. The results indicated

that 11 CRGs (91.6%) were more highly expressed in cluster

A than B (Figure 3E). Moreover, GSVA proved that cluster A

was enriched in N-glycan biosynthesis, citrate and TCA

cycles, the metabolisms of sphingolipid, glycerolipid,

propanoate, butanoate, pyruvate, fructose and mannose, and

cluster B was enriched in neuroactive ligand-receptor

interaction (Figure 3F and Supplementary Table S4). At the

same time, we evaluated the expression of 20 immune

checkpoints between cluster A and B, which showed that 11

checkpoints were differential, of which 9 checkpoints (CD80,
Frontiers in Surgery 04
HHLA2, ICOSLG, TNFRSF25, CD276, LGALS9, TNFRSF14,

VTCN1, TNFSG15) had higher expression of cluster A than B

(Figure 3G). Cross-metabolic reprogramming of cancer and

immune cells is seen as a determinant of the antitumor

immune response. More and more studies have shown that

cancer metabolism could regulate antitumor immune response

by releasing metabolites. Moreover, immune cells also

undergo metabolic reprogramming during proliferation,

differentiation, and effector function (13). Results of GSVA

and GO analysis mainly focus on cancer metabolism, which is

closely related to tumor immune response. In fact, tumor

immune response has long been recognized as an important

factor in the efficacy of immunotherapy and the prognosis of

cancer patients. Therefore, we mainly analyzed the results

related to tumor immune infiltration.
Characteristics of TME cell infiltration,
TIDE and checkpoints in the cuproptosis
subtypes

In order to comprehensively analyze the relationship between

CRGs and TME in GC, we observed that stromal, immune, and

estimate scores of cluster B were higher than cluster A using the

ESTIMATE algorithm (Figure 4A). The scores of dysfunction

and TIDE were lower in cluster A than B (Figure 4B). We used

CIBERSORT, ssGSEA, and ESTIMATE algorithms to evaluate.

The results of CIBERSORT algorithm demonstrated that the

differences between cluster A and B were concentrated in T

cells, NK cells, Macrophages, and Mast cells (Figure 4C and

Supplementary Table S5). The ssGSEA algorithm also verified

similar outcomes for these cells (Figures 4D,E and

Supplementary Table S6). In addition, For HLA, cluster A had

lower expression of DPA1 and DPB1 than B, and the opposite

for HLA C and G (Figure 4F). Prognosis-related and

differentially expressed 5 CRGs were selected to study their

transcription factors, which were demonstrated in Figures 4G,H.

Ten hub genes, especially HDAC1 and EZH2 were screened by

the Cytoscape software (Figure 4I). Moreover, the expression of

core transcription factors in subtype A was higher than that in

subtype B (Supplementary Figure S2B).
Identification and analysis of gene
subtypes based on DEGs

In order to identify the cuproptosis subtypes clearly, we

screened 1,233 DEGs between the two cuproptosis subtypes

through the limma package. GO and KEGG for these DEGs

were enriched mainly in cell cycle, fat digestion and

absorption, PPAR signaling pathway, IL-17 signaling pathway,

p53 signaling pathway and DNA replication, which were

closely related to cancer (Figures 5A,B and Supplementary
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FIGURE 1

Schematic diagram of the flow of the study.
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Table S7). Furtherly, we used the univariate COX method to

select 304 prognostic-related DEGs and classified all samples

according to them (Supplementary Table S8). The results

showed that there were still two gene subtypes, which was

consistent with the previous typing results (Figure 5C and

Supplementary Figure S2C). There were significant

differences in expression of CRGs, clinical traits and survival

time between A and B gene clusters (Figures 5D, E, F).
Construction of the prognostic
CRG_score

LASSO regression analysis was performed for 304

prognostic-related DEGs. We chose the lambda minimum to

select the appropriate genes (Supplementary Figure S2D,E).

Subsequently, seven genes (SLC25A15, CTSV, RGS4, SYT13,

ENTPD2, CA8, NPTX1) were screened to construct the

model by the multifactorial Cox analysis. The genes included

four high-risk genes (CTSV, RGS4, SYT13, NPTX1) and three

low-risk genes (SLC25A15, ENTPD2, CA8). The formula of

CRG_score was shown as follows:

Risk score = (−0.27565756734421* expression of SLC25A15) +

(−0.235708601387405* expression of ENTPD2) + (−0.124
Frontiers in Surgery 05
572834187939* expression of CA8) + (0.379774295825035*

expression of CTSV) + (0.212171866831215* expression of

RGS4) + (0.160140827663568* expression of SYT13) +

(0.128438559010339* expression of NPTX1).

Then, both the train group and the test groupwere divided into

high- and low- CRG_score groups. The survival curve

demonstrated that the survival of low- CRG_score group was

better than high-CRG_score group in the train group (P <

0.001). The AUC values of 1-, 3-, 5-, and 7- year were 0.650,

0.810, 0.798, and 0.739, respectively (Figure 6A). For the test

group, the result of survival analysis was the same of the train

group. The AUC values of 1-, 3-, 5-, and 7- year were 0.596,

0.613, 0.677, and 0.682, respectively (Figure 6B). The

relationships between cuproptosis subtypes, gene subtypes,

CRG_score groups, and patients’ survival status were shown in

Figure 6C. Meanwhile, cluster A was associated with a low

score, which was consistent with previous survival analyses of

both subtypes and CRG_score groups (Figure 6D). Gene cluster

A was associated with a high score and low survival time

(Figure 6E). For gastric cancer patients of any age, gender, and

stage, a high CRG_score was accompanied by low survival time

(Figure 6F). There was a significant correlation between the age

of the patient and the score (Figure 6G). Stage I patients had a

lower score than stage II, III, and IV (Figure 6H).
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https://doi.org/10.3389/fsurg.2022.991624
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 2

(A) mutation characteristic of 12 CRGs from TCGA. (B) The expression of CRGs between Normal and tumor. (C,D) The changes of somatic copy
number variation in CRGs. (E) The survival analysis of CRGs. CRGs, cuprotosis-related genes. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).
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FIGURE 3

(A) consensus clustering matrix defining two clusters (k= 2). (B) The PCA analysis of the two clusters describing an obvious difference. (C) The KM
curve between A and B subtypes. (D) The heatmap showing the correlation of the two subtypes with age, stage, gender, and CRGs. (E) The mRNA
expression of CRGs between A and B subtypes. PPI, Protein-protein interaction; KM, Kaplan–Meier. (F) GSVA of analysis between two distinct
subtypes, in which red represents positively correlated pathways and blue negatively correlated pathways. (G) Differential expression of immune
checkpoints in the two subtypes.
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FIGURE 4

(A) The stromal, immune, ESTMATE scores of A and B subtypes using ESTMATE algorithm. (B) Associations of the TIDE score and the two subtypes.
(C) TME cells infiltration in A and B subtypes by CIBERSORT algorithm. (D,E) ssGSEA algorithm calculating the scores of immune cells infiltration in the
two clusters. (F) The plot showing the expression of HLAs in the two clusters. (G) Sankey diagram of CRGs and transcription factors. (H) PPI network of
the CRGs based on the STRING database. (I) The plot of hub transcription factors visualized by Cytoscape. GSVA, gene set variation analysis; TIDE,
Tumour Immune Dysfunction and Exclusion; HLAs, human leukocyte antigens; TME, tumor microenvironment. (*P < 0.05; **P < 0.01; ***P < 0.001;
ns, not significant).
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FIGURE 5

(A) The GO analysis based on the differentially expressed genes (DEGs). (B) The KEGG analysis of DEGs. (C) Consensus clustering matrix defining two
clusters (k= 2) accroding to DEGs. (D) The expression of CRGs between A and B geneclusters. (E) The heatmap showing the correlation of the
subtypes and geneclusters with clinicopathological data and CRGs. (F) The survival curve between A and B geneclusters. GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 6

survival analysis, heatmap, survival status accompanied with the CRG_score and ROC analysis in the train cohort (A) and the test cohort (B). (C)
Sankey picture showing the relationship of subtypes, geneclusters, risk groups and patients survival status. (D,E) Correlation of two subtypes and
genecluster and CRG_score, respectively. (F) Applicability of CRG_score to GC patients of any age, gender and stage. (G,H) Relationship of age
and stage with CRG_score, respectively.
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Correlation of TME cell infiltration, TIDE
and checkpoints with high- and low-
CRG_score groups

Similarly, we used three algorithms to assess TME cell

infiltration between high- and low-CRG_score groups. By

CIBERSORT, we found that low CRG_score was accompanied

by high B cells memory, Tregs, T cells CD4 memory

activated, plasma cells, NK cells resting, neutrophils, mast

cells activated, dendritic cells activated, and Macrophages M0,

and low T cells gamma delta, monocytes, mast cells resting,

Macrophages M2 (Figures 7A,B). Meanwhile, the outcomes

of the correlation of TME cell infiltration with risk genes were

described in Figure 7C. The relationships of TME cell

infiltration with survival time were shown in Supplementary

Figures S2F,G. The analysis of ssGSEA also suggested a

significant correlation between TME and two CRG_score

groups (Figures 7D,E). Expressions of 20 immune

checkpoints were assessed between high- and low-CRG_score

groups, which showed that 6 checkpoints were differential, of

which 4 checkpoints (TNFRSF25, LGALS9, TNFRSF14,

VTCN1) had higher expression of low- than high-CRG_score

group (Figure 7F). For HLA, the low-CRG_score had lower

expression of DPA1, DPB2, DMB, DQB2, DOA, DQA1,

DPB1 and DRA than the high-CRG_score (Figure 7G). At

the same time, we found that stromal, immune, and estimate

scores of the high-CRG_score group were higher than the

low-CRG_score group through the ESTIMATE algorithm

(Figure 7H). The high CRG_score had the high scores for

dysfunction, exclusion and TIDE (Figure 8A). The correlation

analysis of risk scores and CRGs was described in Figure 8B.
Mutation and CSC index analysis

Accumulation of mutations in somatic cells can cause their

transformation into cancer cells (14). Meanwhile, a study

showed a positive correlation between high TMB and better

survival in many cancers (15). Therefore, we downloaded and

analyzed the data of mutation from TCGA. The top 10

mutated genes in the low-CRG_score group were TTN (55%),

TP53 (43%), MUC16 (38%), ARID1A (27%), LRP1B (28%),

SYNE1 (28%), FLG (22%), FAT4 (21%), CSMD3 (22%),

PCLO (24%) (Figure 8C). The top 10 genes mutated in the

high-CRG_score group were the same as those genes, but the

rates of mutation were low than low-CRG_score group (38%,

40%, 21%, 19%, 20%, 14%, 16%, 15%, 10%, 12%,

correspondingly) (Figure 8D). TMB might have associations

with endothelial cells, neutrophils, cytotoxic lymphocytes and

B lineage (Figure 8E). Similarly, the low CRG_score had a

high TMB (Figure 8F). The relationship between TMB and

CRG_score was plotted in Figure 8G. Moreover, our results
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also testified that high TMB had a good prognosis than low

TMB (Figure 8H). A combined analysis of risk score and

TMB demonstrated that H-TMB + low risk had the best

prognosis, but L-TMB + high risk had the worst prognosis

(Figure 8I). There was a negative association between CSC

index and risk score (DNAss: R =−0.19, P < 0.001; RNAss:

R =−0.36, P < 0.001) (Figures 8J,K).
MSI, GSEA and drug susceptibility analysis

MSI may predict the efficacy of chemotherapy and

immunotherapy and survival of patients (16). Our study

suggested that the risk score of MSI-H was higher than MSS and

MSI-L (Figures 8L,M). The survival analysis of MSI-H and

MSS/MSI-L was not meaningful (Figure 8N). A combined

analysis of risk score and MSI proved that MSI-H + low risk had

the best prognosis, but MSS/MSI-L + high risk had the worst

prognosis (Figure 8O). The GSEA analysis manifested that the

high-CRG_score group was fastened on base excision repair,

calcium signaling pathway, citrate and TCA cycle, ECM receptor

interaction, and focal adhesion. The low-CRG_score group was

concentrated on fructose and mannose metabolism, glyoxylate

and dicarboxylate metabolism, peroxisome, regulation of actin

cytoskeleton, and vascular smooth muscle contraction

(Figure 8P). To evaluate the difference of drugs between the two

risk groups, we screened 67 drugs using the pRRophetic

package, of which 13 drugs had higher IC50 values in the

high-risk group than in the low-risk group. And the

remaining 54 drugs were the opposite (Figure 9A and

Supplementary Figures S3, S4). Furthermore, we screened

eight types of drugs which were commonly used in GC

according to the results of all drugs, including multitarget

tyrosine kinase inhibitor, anti-VEGFR monoclonal antibody,

HER-2 tyrosine kinase inhibitor, Hedgehog(Hh) signaling

pathway inhibitor, anti-HGFMET monoclonal antibody, anti-

mTOR monoclonal antibody, Akt inhibitor, Insulin-like

growth factor receptor (IGF-IR) inhibitor. The results showed

that sensitivities of sunitinib, AMG.706, GDC.0449,

PF.02341066, BMS.754807 for GC patients in the high-risk

group were higher than the low-risk group; sorafenib,

BIBW2992 and NVP.BEZ235 were opposite (Figure 9A). At

the same time, we also analyzed a variety of chemotherapeutic

drugs that could be sensitive to risk genes (Figure 9B).
Construction and validation of a
nomogram

Using univariate and multifactor COX regression analysis,

we discovered that CRG_score and stage were independent

prognostic factors in gastric cancer patients (Figure 10A and

Supplementary Figures S2H,I). Therefore, CRG_score and
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FIGURE 7

(A) correlative analysis between risk score of immune cells. (B) TME cells infiltration in low- and high-CRG_score groups by CIBERSORT algorithm. (C)
Associative analysis between 22 immune cells and risk genes. (D,E) ssGSEA algorithm calculating the scores of immune cells infiltration in the risk
groups. (F) Differential expression of immune checkpoints in the two CRG_score groups. (G) The diagram showing the expression of HLAs in the
two risk groups. (H) The stromal, immune, ESTMATE scores of low- and high-CRG_score groups using ESTMATE algorithm.
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FIGURE 8

(A) associations of the TIDE score and the two risk groups. (B) Correlative analysis between risk score and expression of CRGs. Waterfall chart showing
the top 20 mutated genes and their frequencies in the low-risk group (C) and the high-risk group (D). (E) Circle graph showing the relationship
between TMB, immune cells and risk score. (F) The diagram showing the levels of TMB in the two risk groups. (G) Correlative analysis between
risk score and expression of TMB. (H) The survival analysis of the low- and high-TMB groups. (I) The survival analyses of combined TMB and risk
groups. (J,K) Cancer stem cell (CSC) index analyses of riskscore. (L,M) Associative analysis between MSI and riskscore. (H) The survival curve of
the MSS/MSI-L and MSI-H groups. (O) The survival analyses of combined MSI and risk groups. (P) The GSEA analysis of low- and high-
CRG_score groups.
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FIGURE 9

(A) the sensitivity of eight types of drugs between high- and low-CRG_score groups. (B) The sensitivity of chemotherapeutic drugs to risk genes.
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stage were used to develop a nomogram to predict the survival

times of 1, 3, 5, and 7 years (Figure 10B). The calibration graph

displayed that the predictive ability of the nomogram was

relatively accurate (Figure 10C).
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Discussion

Copper, one of the most vitally basic trace metals in the

human body, involves in various biological functions,
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including the regulation of enzyme function, cofactor for

growth and development, redox processes, energy metabolism,

iron absorption and cell proliferation (17). Like iron, copper

is also closely related to the development of cancers. On the

one hand, copper can promote tumorigenesis by activating

the MAPK pathway (18). Copper-binding enzymes mediate

HIF1-α and Snail to promote the Epithelial to Mesenchymal

Transition (EMT) progression of tumors (19). The copper-

enzymes LOX (Lysyl Oxidase) promotes adhesion and

metastasis of colorectal cancer by affecting the turnover of the

Extracellular Matrix (ECM) (20). On the other hand, copper

can indirectly suppress tumors by promoting alterations in the

recruitment of myeloid precursors or affecting tumor-

associated macrophages (TAMs) (17). Accumulation of copper

can activate oxidative stress leading to tumor cell death, which

may be a potential treatment for cancer (21). Therefore, the

role of copper in cancer is complex. In this study, we

observed that the expression of CRGs in GC was higher than

in normal samples, which was the same as the previous report

that copper was elevated in many tumor tissues (22, 23).

However, the survival analysis of 567 GC patients indicated

that high expression of most CRGs had a better prognosis

than low expression. This suggested that the high expression

of CRGs may inhibit tumor cells in some way. Recently, Peter

Tsvetkov et al. found that the accumulation of copper can

induce cell death in a novel mechanism, namely cuproptosis

(9). This finding enlightened us that CRGs may induce gastric

cancer cell death through cuproptosis, thereby improving the

prognosis of patients. Therefore, based on CRGs, we identified

two subtypes and developed a CRG_score to explore the role

of CRGs in gastric cancer comprehensively.

In our study, we testified that subtype A had a lower

CRG_score than B, which suggested subtype A seemly was

accossicated with the low-CRG_score group. Meanwhile, we

discovered that the survival times and clinical stages of subtype

A and the low CRG_score group were lower than subtype B

and the high-risk group. Our findings also demonstrated that

subtype A and the low CRG_score group had high expression

of CRGs. These results again confirmed that high expression of

CRGs was related to a better prognosis. Subsequently, ssGSEA

and CIBERSORT algorithms showed that the differences of

TME in two subtypes and CRG_score groups were

Macrophages, NK cells, mast cells and T cells CD4. It is well

known that macrophages can be polarized into M1 and M2

types (24). M1 type is mainly involved in the activation of the

inflammatory response, while M2 is mainly involved in tissue

repair and inhibition of inflammation (25, 26). Initially,

macrophages are polarized to the M1 type, and cooperate with

other immune cells to eliminate tumor cells. When tumor cells

are in low oxygen and low pH, they will release Neuropilin-1

(Nrp-1), TGF-β, IL6, IL4, Tim-3 to promote the transformation

of macrophages into M2 type, which can help tumor cells to

escape immune and secrete growth factors to enhance tumor
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growth (27–30). Interestingly, M2 infiltrated highly in the high

CRG_score group and subtype B. In the TME, inflammatory

and cytotoxic effector functions of NK cells are weakened by a

number of cytokines such as IL-23 and IL-1β, where NK cells

are called tumor-infiltrating natural killer cells (TINKs). In

addition to decreasing the ability of cytotoxicity, TINKs can

also inhibit the growth and spread of T cells to reduce their

damage to tumors (31, 32). Mast cells are one of the important

innate immune cells in the immune system (33). Many studies

have shown that low levels of mast cells were associated with

poor survival and advanced tumors (34–36). Fortunately, we

discovered that the activity of NK cells remained low in

subtype A and low CRG_score group; however, the activity of

mast cells was high. CD4+ memory T cells are important

modulatory elements of the immune system (37). A study has

proved that the more CD4+ memory T cells infiltrated in

gastric cancer, the longer the patients’ survival time (38).

Tumor specific antibodies are generated by Plasma cells to

damage tumor cells (39). Coincidentally, Plasma cells and CD4

+ memory T cells activated were higher in the low-CRG_score

than the high- CRG_score group. In summary, TME cell

infiltration in subtype A and the low-risk group was more

tumor suppression, which may also be one of the reasons for

the better prognosis of patients in these two groups.

In this paper, GSEA enrichment analysis showed that high

CRG_score was mainly enriched in base excision repair,

calcium signaling pathway, citrate, and TCA cycle, ECM

receptor interaction, and focal adhesion. Low CRG_score was

mainly enriched in pathways related to metabolism. In

conclusion, the pathways described above may be the

potential mechanism by which CRG_score affects immune

infiltration in gastric cancer. Immune checkpoint blockade is

considered as a promising approach to immunotherapy of

cancer (40). Many immune checkpoints such as CD200,

VTCN1, PD-1, CTLA-4 and LAG-3, and so on, were found

(41–44). Therefore, we evaluated twenty immune checkpoints

and found that subtype A and the low-CRG_score group had

higher expression of these checkpoints. TIDE as a

computational method is used to predict immune checkpoint

blockade (ICB) response. A score based on TIDE is negatively

correlated with the effects of immunotherapy (45). The score

of TIDE for subtype A and the low-CRG_score group was

low. TMB and MSI have emerged as major predictors of

immunotherapy efficacy. High TMB and H-MSI often

represent favorable immune infiltration and prognosis (46,

47). Interestingly, low CRG_score and subtype A were

accompanied by high TMB and H-MSI. In addition, we also

assessed the sensitivity of chemotherapeutic drugs between

high- and low-CRG_score groups using the pRRophetic

package. At the same time, we also analyzed a variety of

chemotherapeutic drugs that could be sensitive to risk genes.

Moreover, the results of q-RT PCR showed that CTSV, RGS4,

SYT13 and NPTX1 were highly expressed in tumor tissues
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FIGURE 10

(A) the forest illustrations displaying univariate and multifactor COX regression analysis. (B) The nomogram to predict the survival times of 1, 3, 5, and 7
years. (C) The calibration graphs of 1, 3, 5, and 7 years.
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compared with adjacent tumor tissues, while SLC25A15,

ENTPD2 and CA8 were low expressed. This is consistent with

the fact that CTSV, RGS4, SYT13 and NPTX1 were high-risk

genes, and SLC25A15, ENTPD2 and CA8 were low-risk genes

(Supplementary Figure S5).

Transcription factors can recognize specific DNA sequences

to control chromatin and transcription for directing gene

expression, which constitutes a complex regulatory system

(48). Many studies have shown that the changes of biological

functions of transcription factors were closely related to the

occurrence and development of tumors. In this paper, we

found that there were significant differences in the survival

time and clinical stage of patients with cuprotosis-related A

and B subtypes. Therefore, we assumed whether transcription

factors were one of the influencing factors, so we used Cor

function to screen out transcription factors that were strongly

correlated with the genes of the constructed subtypes, which
Frontiers in Surgery 16
the screening conditions were: Cor >0.45 and FDR <0.001.

Then, six analysis methods (Betweenness, Closeness, Degree,

Eigenvector, LAC) were integrated to screen out the core

transcription factors using Cytoscape software. Finally, the

expression of core transcription factors in subtype A was

higher than that in subtype B. This suggests that transcription

factors may play a role in the differences between A and B

subtypes. This will help us to study the potential mechanism

of CRGs in gastric cancer and explore the therapeutic

strategies based on targeting transcription factors.

Our study also had several limitations. First, the data of our

research was mainly based on the public database. Therefore,

more basic experimental validation may be required. Second,

our data was derived from TCGA and GEO databases. Thus,

we still need to collect more samples to reduce statistical

errors. At the same time, the mechanism of action between

cuproptosis and immune cells needs to be further explored.
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Conclusion

Based on subtypes and prognostic signature of CRGs, the

relationships between CRGs and the prognosis of patients,

TME cell infiltration, immunotherapy, and drug sensitivities

were comprehensively explored. Our study uncovered the

roles of cuproptosis in gastric cancer, which could provide a

new idea for cancer treatment.
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