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Objective: This study aims to assess the effectiveness of the Gradient Boosting (GB)
algorithm on glioma prognosis prediction and to explore new predictive models for
glioma patient survival after tumor resection.
Methods: A cohort of 776 glioma cases (WHO grades II–IV) between 2010 and 2017
was obtained. Clinical characteristics and biomarker information were reviewed.
Subsequently, we constructed the conventional Cox survival model and three
different supervised machine learning models, including support vector machine
(SVM), random survival forest (RSF), Tree GB, and Component GB. Then, the model
performance was compared with each other. At last, we also assessed the feature
importance of models.
Results: The concordance indexes of the conventional survival model, SVM, RSF, Tree
GB, and Component GB were 0.755, 0.787, 0.830, 0.837, and 0.840, respectively. All
areas under the cumulative receiver operating characteristic curve of both GB models
were above 0.800 at different survival times. Their calibration curves showed good
calibration of survival prediction. Meanwhile, the analysis of feature importance
revealed Karnofsky performance status, age, tumor subtype, extent of resection,
and so on as crucial predictive factors.
Conclusion: Gradient Boosting models performed better in predicting glioma patient
survival after tumor resection than other models.
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Introduction

Glioma is the most widely recognized primary tumor in the central nervous system (CNS)

(1). Accounting for around 80% of malignant CNS tumors (1), gliomas are composed of lower-

grade gliomas [LGGs; World Health Organization (WHO) grades II and III] and grade IV

gliomas (glioblastoma, GBM). The treatment of glioma is troublesome, and tumor resection is

the main approach to treatment. Due to the large heterogeneity between different kinds of

gliomas, the prognosis of glioma patients is diverse, and the survival always ranges from a

few months to 10 years (2, 3). Obviously, GBM was supposed to have a poorer prognosis

than diffuse low-grade and intermediate-grade gliomas for its characteristics of invading

growth and easy recurrence. However, along with the presence of certain molecular markers

and various clinical characteristics, including age, Karnofsky performance status (KPS),
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symptoms, and so on, the prognosis varies even in this most malignant

type of glioma, GBM. Predicting glioma patient survival after tumor

resection still remains a great challenge for clinical doctors.

Nowadays, there have been endeavors, mainly in three directions,

to explore useful predictive models for glioma prognosis. Some

researchers have focused on traditional multivariate Cox regression

models with several certain prognostic factors. For example,

Gittleman et al. (4) developed a survival nomogram for LGGs with

independent validation. Meanwhile, some turn to new biomarkers

for the construction of models. Not long ago, Zhang et al. (5)

constructed a novel model using immune-related gene signature,

which is also effective in predicting overall survival in primary

LGG. What is more, some researchers have concentrated on

radiomics feature prediction models and made some achievements

(6). Albeit the effort in putting forward these models, some

shortcomings limit their usefulness and availability of these

models. First, the traditional statistic approach has a huge

limitation: its analysis is based on the condition of a linear

relationship and might miss the nonlinear relationship between

input and outcome. In other words, this approach cannot fully use

medical information, which makes it unable to adjust to the era of

big data. Second, as Jakola et al. (7) claimed, a pure biomarker

approach for prediction, such as gene signature model, is of

limited value because tumor classes and tumor cells are neither

stable over time nor homogeneous throughout the lesion tissue.

Third, prediction models based on radiomics features are powerful

and promising, but we acknowledge that the techniques are at an

early stage and available only at a limited number of centers and

not readily validated in medical practice yet (7). Therefore, it is

still necessary to explore a new predictive model based on the

algorithm suited to the big-data era, with the combination of

common clinical features and reliable biomarkers as prognostic

factors.

Recently, supervised machine learning (ML) methods have

demonstrated precise predictive capacity, being progressively

utilized in the prognosis prediction of different diseases (8). The

supervised ML approach is a kind of data-driven analysis method,

including support vector machine (SVM) (9), decision tree (10),

and so on, which integrates multiple risk factors into a predictive

algorithm and performs well with complex information (11).

Gradient Boosting (GB) is one of the supervised ML algorithms.

Although it was strange for medical workers, this ML algorithm

did have a good performance in medical scenes, such as predicting

the survival outcome of triple-negative breast cancer (12) and the

recurrence of colorectal cancer (13). So far, studies seldom used

Gradient Boosting to analyze and predict glioma prognosis. This

study was conducted to assess its effectiveness on glioma prognosis

prediction and to explore new predictive models for glioma patient

survival after tumor resection.
Patients and methods

Patients

Approved by the Institutional Review Board of Sun Yat-sen

University, this study was conducted in the Neurosurgery unit, the
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First Affiliated Hospital, Sun Yat-sen University, a high-volume

central center that performs approximately 100 glioma surgeries

yearly. In accordance with the guidelines for retrospective study in

our institution, the institutional review board waived the requirement

for patients’ informed consent. Our study only included cases of

astrocytoma, oligodendroglioma and oligoastrocytoma, anaplastic

astrocytoma, oligodendroglioma and oligoastrocytoma, and

glioblastoma. A cohort of 776 glioma cases (WHO grades II–IV)

between 2010 and 2017 was obtained. This consecutive malignant

series consisted of 74 cases of WHO grade III (anaplastic

astrocytoma, oligodendroglioma, and oligoastrocytoma), 268 cases of

WHO grade IV (glioblastoma), and 434 cases of WHO grade II

(astrocytoma, oligodendroglioma, and oligoastrocytoma).
Clinical characteristics

Most data were accessible through the hospital database. All data

were extracted into two copies of a standardized form by two

research assistants independently and integrated into the final file

version by a third. Discrepancies were discussed and resolved by

consensus. The extracted characteristics include age at surgery,

gender, symptoms (seizures, headaches/dizziness, nausea/vomiting,

limb dysfunction, blurred vision, or other cranial nerve deficit),

duration of the first presenting symptom, preoperative KPS, tumor

size and location, time of surgery, extent of resection (gross-total

resection and others), tumor subtype, treatment after surgery

(chemotherapy and/or radiotherapy), survival status (alive or dead),

and survival/follow-up time. The subtype of glioma was reviewed

by a pathologist according to the latest 2016 WHO criteria (14).

The deficit of motor, visual, or cranial never function was

confirmed by the proof of physical examination, diffusion tensor

imaging (DTI)-based tractography, and so on. The same as the

definition by Okamoto et al. (15), the extent of resection was

categorized, where gross-total resection was defined as residual

tumor less than 5%. The follow-up data were collected until

December 2019. Survival/follow-up time was calculated from the

date of tumor resection to death (any cause) or censor (still

survived) in December 2019. All patients were followed up at the

regular interval of 3 months for the initial 3 years and afterward

followed every 1 year until death. The last follow-up for every

single accessible patient was finished in December 2019.
Biomarkers

Biomarkers’ detection, including immunohistochemistry (IHC)

and molecular genetics, was performed on histological specimens

that were obtained at the time of resection surgery prior to

chemotherapy and/or radiotherapy treatment. The detection of

kit67, p53, vimentin, and glial fibrillary acidic protein (GFAP) was

performed using immunohistochemical stains in glioma by

standard techniques that were described previously (16). For the

specimen with p53 immunohistochemical stain, the presence of

strong positive tumor nuclei in more than 10% of cells was marked

as immunopositive, which indicated the mutational status of TP53

(17). The immunopositivity of vimentin was identified when more
frontiersin.org
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than 25% of tumor nuclei stained positive with vimentin IHC stain.

GFAP immunopositivity was marked when any tumor nuclei were

positive with GFAP IHC stain. The Ki-67 index was recorded as the

average percentage of the positive ones on the total number of nuclei

at 400× magnification, where “≥10%” represented high Ki-67

expression (18). As for molecular genetics, the biomarker we detected

was methylation of the O6-methylgaunine-DNA-methyltransferase

(MGMT) promoter. This test was done usingmethylation-specific PCR.
Supervised machine learning algorithm

SVM, as a machine learning algorithm, has been widely used in

the prognosis of diseases. Decision tree is a well-known ML approach

for statistical problems, which represents the mapping relationship

between properties and values. It consists of a root node, internal

nodes, and leaf nodes, where leaf nodes correspond to values

represented by the path from the root node to the leaf node.

Decision tree can be used for survival analysis (19). Here, we used

survival decision tree as the base learner of random forests (RFs).

RF is an ensemble tree method whose final prediction is the

average of all predictions from every tree in the forest. RF

performs better in prediction than a single tree because a

combination of predictions from separate methods could

substantially promote prediction performance (20). Random

survival forest (RSF) is an adaptation of random forest, which is

designed for the analysis of survival data (21).

GB is an ML technique that can be used for survival analysis.

Here, we used component-wise least squares and survival decision

tree as two types of base learners, respectively. The Gradient

Boosting algorithm produces different weak prediction models (for

instance, component-wise least squares) at each step and combines

them into a total model at different weights. The prediction of the

weak model that Gradient Boosting produced at each step

generates a unanimous gradient direction of the loss function. The

details have been described previously (22).
Model evaluation

Harrell’s concordance index (c-index), defined as the ratio of

correctly ordered (concordant) pairs to comparable pairs, is a

measure of the rank correlation between predicted risk scores and

observed time points. A value of 1 refers to perfect prediction,

while a value of 0.5 means that prediction does not perform better

than random guessing.

The area under the receiver operating characteristic curve (ROC

curve) is often used to assess the discrimination of the binary

classification model. When extending the ROC curve to survival

time, it gives rise to the time-dependent cumulative ROC curve at a

certain survival time t. The area under the cumulative ROC curve

(AUC) at time t indicates how well a model can distinguish subjects

who will experience an event by time t from those who will not.

The calibration curve is a graphical measure of the calibration of

the model, which is a linear plot with the predicted event on the

x-axis and the observed event on the y-axis. Good calibration

would be matched by a regression line with a 45° slope.
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To fully capture the true utility of a prediction model, the

sensitivity and specificity of models for predicting 6-, 12-, 36-, and

60-month survival were calculated after determining the optimal

threshold through the ROC curve.
Model construction

All clinical characteristics and biomarker information were

included in the model training set as variables. The missing values

of variables were filled with multiple imputations. Here, we

randomly split the data into a training set and a test set at an 8:2

ratio using the train_test_split function in the scikit-learning

module of Python (version 3.7). The scikit-survival module

(version 0.12.1) was used to construct ML models, SVM, RF, Tree

GB, and Component GB. ML algorithms involve many

hyperparameters that are significant for performance prediction.

The optimal combination of hyperparameters was determined

using the method of grid search. During every cross-validation, 1/3

of the data in the training set were randomly excluded as out-of-

bag (OOB) data for validation. For different combinations of

hyperparameters, the mean c-index on the validation data was

calculated after 50 times cross-validation. The hyperparameter

combination with the best c-index was selected as optimum. After

constructing the model, we usually assess the feature importance

by calculating its contribution to the c-index, namely, the decrease

of c-index after discombobulating the relationship of this feature

with survival.

To compare the performance difference between ML models and

conventional survival models, we also built the Cox proportional

hazards model. Three continuous variables, age at surgery,

preoperative KPS, and tumor size, were transformed into

categorical variables to obtain the best model prediction

performance. Cutoffs for these variables were 50 years, 70 cm, and

55 cm, respectively. All variables were entered into the model step

by step, and the final model only included variables with a

significant risk ratio.
Statistical analysis

Mean ± SD or median (IQR) was chosen to describe continuous

variables regarding their statistical distribution, while categorical

variables were expressed in the form of example numbers (%). P <

0.05 was set as the criteria of statistical significance in all analyses.

The confidence interval (CI) of the AUC was computed by the

bootstrap method, while 95% CI was computed with 2,000 stratified

bootstrap replicates. The comparisons of the c-index between

different models were conducted using the R package Survcomp.
Results

Characteristic overview

The sociodemographic and characteristics of the study

population are presented in Table 1. The most frequent symptom
frontiersin.org
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TABLE 1 Clinical characteristics and biomarkers of patients.

Total (N = 776)

Demographics

Age at surgery, years, median (IQR) 38.00 (24.25–53.00)

Age > 50 years (%) 29.0% (225/776)

Sex (M, %) 58.1% (451/776)

Symptoms

Seizures (%) 34.7% (267/769)

Headaches/dizziness (%) 61.5% (473/769)

Nausea/vomiting (%) 25.0% (192/769)

Limb dysfunction (%) 18.7% (144/769)

Blurred vision (%) 9.5% (73/769)

Other cranial nerve deficit (%) 16.6% (128/769)

Duration of symptom, m, median (IQR) 1.90 (0.70–6.00)

Preoperative KPS

KPS, median (IQR)

60.00 (50.00–90.00)

KPS > 70 (%) 37.9% (275/726)

Tumor

Size, mm, median (IQR) 45.00 (32.00—60.00)

Size > 55 cm (%) 32.0% (239/747)

Tumor location

Frontal lobe (%) 42.4% (327/771)

Temporal lobe (%) 17.5% (135/771)

Parietal lobe (%) 32.9% (254/771)

Occipital lobe (%) 8.3% (64/771)

Infra-tentorial (%) 10.1% (78/771)

Others (%) 16.1% (124/771)

Extent of resection

Gross-total resection (%) 90.0% (691/768)

Others (%) 10.0% (77/768)

Tumor subtype

Diffuse astrocytoma, IDH mutant (%) 9.0% (70/776)

Diffuse astrocytoma, IDH wildtype (%) 0.5% (4/776)

Diffuse astrocytoma, NOS (%) 30.2% (234/776)

Oligodendroglioma, IDH mutant (%) 3.1% (24/776)

Oligodendroglioma, NOS (%) 11.3% (88/776)

Oligoastrocytoma, NOS (%) 1.8% (14/776)

Anaplastic astrocytoma, IDH mutant (%) 1.2% (9/776)

Anaplastic astrocytoma, IDH wildtype (%) 0.1% (1/776)

Anaplastic astrocytoma, NOS (%) 4.9% (38/776)

Anaplastic oligodendroglioma, IDH mutant (%) 0.4% (3/776)

(continued)

TABLE 1 Continued

Total (N = 776)

Anaplastic oligodendroglioma, NOS (%) 2.7% (21/776)

Anaplastic oligoastrocytoma, NOS (%) 0.3% (2/776)

Glioblastoma, IDH mutant (%) 1.2% (9/776)

Glioblastoma, IDH wildtype (%) 7.9% (61/776)

Glioblastoma, NOS (%) 25.5% (198/776)

Treatment strategy

Chemotherapy (%) 74.8% (564/754)

Radiotherapy (%) 46.6% (355/761)

Biomarkers

Ki-67, median (IQR) 0.12 (0.05—0.30)

GFAP immunopositivity (%) 79.7% (570/715)

Vimentin immunopositivity (%) 83.6% (532/636)

MGMT promoter methylation (%) 41.7% (301/722)

p53 immunopositivity (%) 57.6% (411/713)

Follow-up

Status of death (%) 71.5% (555/776)

Survival time, m, median (IQR) 32.65 (13.03–56.23)

KPS, Karnofsky performance status; GFAP, glial fibrillary acidic protein; MGMT, O6-

methylgaunine-DNA-methyltransferase.

Li et al. 10.3389/fsurg.2022.975022
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was headaches or dizziness, while the most frequent tumor location

and subtype were parietal lobe and diffuse astrocytoma, respectively.

The medians of the duration of the first presenting symptom,

preoperative KPS, and tumor size were 1.90 months, 60 mm, and

45.00 mm, respectively. Gross-total resection was adopted in 90.0%

of patients. The immunopositivity of GFAP, Vimentin, and p53

was observed in more than half of the patients. The median of

survival time was 32.65 months.

Figure 1 shows the correlation coefficient between each

independent variable. It demonstrated low correlation between

each variable.
Model performance

The flow chart of model construction is shown in

Supplementary Figure S1. Supplementary Table S1 shows the

detailed descriptions of the selected modules, classes, and

hyperparameters in Python for each model, including the Cox

survival model and supervised ML models.

The five models are compared in Table 2. The Cox proportional

hazards model had the worst performance, with a concordance index

of 0.755 for the test set. The SVM model was observed to have

relatively poor performance, with a c-index of 0.787 for the test set.

The Tree GB survival model ranked second, with a c-index of

0.837, while the RSF model ranked third, with a c-index of 0.830.

The Component GB survival model had the best prediction

performance, with a c-index of 0.840. In addition, we also

compared the c-index values of different models on the test set.
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FIGURE 1

Correlation coefficient matrix of each variable. Each coefficient is annotated. The closer it gets to 1, the more positively correlated it is. The closer it gets to −1,
the more negatively correlated it is.

TABLE 2 Concordance indexes of models for the training set and test set.

Training set Testing set

Cox proportional hazards model 0.819 0.755

Support vector machine model 0.838 0.787

Random survival forest model 0.875 0.830

Tree Gradient Boosting survival model 0.905 0.837

Component Gradient Boosting survival model 0.857 0.840

Li et al. 10.3389/fsurg.2022.975022
The c-index values of Tree GB and Component GB survival models

were significantly higher than those of the Cox proportional hazards

model (P < 0.05) and SVM model (P < 0.05). Although the

comparison results of the RF model were not significant (P values

were 0.332 and 0.112, respectively), relatively superior

performances of Tree GB and Component GB models were still

observed. The reason for no statistical significance could be

attributed to the little sample size of the test set to a certain extent.

Figure 2 shows the AUCs of both GB models. All AUCs at

different survival times were above 0.800, which indicated the

excellent discrimination of models. The prediction AUC and CI

values of both GB models’ for 6-, 12-, 36-, and 60-month survival

are specifically listed in Supplementary Tables S2 and S3, which

highlighted superior predictive performance. The calibration curves

of both GB models are shown in Supplementary Figures S2 and S3,

where good calibration was found in survival prediction. Based on the

optimal thresholds, the Tree GB model predicted 6-, 12-, 36-, and
Frontiers in Surgery 05
60-month survival with 94.4%, 90.6%, 99.3%, and 100% sensitivity

and 91.3%, 85.7%, 71.3%, and 73.8% specificity, while the Component

GB model predicted the survival results with 90.0%, 73.5%, 85.2%,

and 90.4% sensitivity and 84.1%, 92.9%, 87.5%, and 82.8% specificity,

respectively. The results are listed in Supplementary Tables S4 and S5.
Feature importance

From Table 3, we found that KPS, the tumor subtype of

glioblastoma not otherwise specified (NOS), age, tumor size, and

the tumor subtype of oligodendroglioma (NOS) ranked top five in

the Tree GB survival model in terms of the feature importance. As

for the Component GB survival model, it was KPS, the tumor

subtype of glioblastoma (NOS), age, extent of resection, and tumor

size that ranked the top five. As described in Supplementary

Figure S4, significant variables included in the final Cox

proportional hazards model were KPS, age, tumor size, tumor

subtype, extent of resection, chemotherapy, radiotherapy, p53

immunopositivity, and methylation of the MGMT promoter.
Sensitivity analysis

We also performed sensitivity analysis to detect the robustness of

ML model prediction performance. Training and testing with

variables without imputation, the c-indexes of ML survival models

are listed in Table 4. All c-indexes were at a high level (above
frontiersin.org
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FIGURE 2

Area under the cumulative ROC curves of both two Gradient Boosting models at different survival times. (A) AUC of the Component GB survival model at
different survival times. (B) AUC of the Tree GB survival model at different survival times. ROC curve, receiver operating characteristic curve; AUC, area
under the curve; GB, Gradient Boosting.

Li et al. 10.3389/fsurg.2022.975022
0.800), which indicated the robustness of ML model prediction

performance. Considering the large heterogeneity of different types

of gliomas, we deliberately tested the prediction performance of

ML models on three most common gliomas, namely, diffuse

astrocytoma, oligodendroglioma, and glioblastoma. As can be seen

from Supplementary Table S6, the c-indexes were almost at the

level of about 0.8, which proves that the model is compatible with

different types of gliomas.
Frontiers in Surgery 06
Discussion

This study was designed to assess the effectiveness of the

supervised ML algorithm, especially Gradient Boosting, in the

prediction of glioma patient survival after tumor resection and to

explore new predictive models useful for medical workers. Judging

by Harrell’s concordance index of the training set and test set, the

Gradient Boosting algorithm ranked first on prediction
frontiersin.org
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TABLE 3 Top 15 feature importance of two Gradient Boosting models.

Feature
importance
rank

Tree Gradient
Boosting model

Component
Gradient Boosting
model

1 KPS KPS

2 Glioblastoma, NOS Glioblastoma, NOS

3 Age Age

4 Tumor size Extent of resection, others

5 Oligodendroglioma, NOS Tumor size

6 Extent of resection, others Glioblastoma, IDH
wildtype

7 MGMT promoter
methylation negative

MGMT promoter
methylation positive

8 Glioblastoma, IDH
wildtype

Oligodendroglioma, NOS

9 Extent of resection, gross-
total resection

With radiotherapy

10 Oligoastrocytoma, NOS p53 negative

11 MGMT promoter
methylation positive

With chemotherapy

12 With radiotherapy Oligoastrocytoma, NOS

13 p53 positive Diffuse astrocytoma, NOS

14 With chemotherapy MGMT promoter
methylation negative

15 p53 negative Glioblastoma, IDH mutant

KPS, Karnofsky performance status; MGMT, O6-methylgaunine-DNA-

methyltransferase.

TABLE 4 Concordance indexes of models for variables without imputation.

Variable without
imputation

Tree Gradient
Boosting model

Component
Gradient
Boosting
model

Symptoms 0.851 0.857

Duration of symptom 0.831 0.837

Preoperative KPS 0.810 0.821

Tumor size 0.834 0.844

Tumor location 0.829 0.857

Extent of resection 0.803 0.826

Chemotherapy 0.835 0.836

Radiotherapy 0.842 0.852

Ki-67 0.820 0.835

GFAP immunopositivity 0.829 0.840

Vimentin immunopositivity 0.823 0.846

MGMT promoter
methylation

0.845 0.859

p53 immunopositivity 0.835 0.837

KPS, Karnofsky performance status; GFAP, glial fibrillary acidic protein; MGMT, O6-

methylgaunine-DNA-methyltransferase.

Li et al. 10.3389/fsurg.2022.975022

Frontiers in Surgery 07
performance. There were differences in prediction performance

between Tree GB and Component GB algorithms. Tree GB showed

better performance on the training set (c-index: 0.905) but worst

performance on the test set (c-index: 0.837) than Component GB,

which implied a trend of overfitting. By the way, considering the

discrimination and calibration through time-dependent cumulative

ROC curves and sensitivity, specificity, and calibration curves, Tree

and Component GB were both good at predicting 6-, 12-, 36-, and

60-month survival after surgery. The results of the sensitive

analysis revealed that both GB models were stable at the prediction

outcome.

At the same time, the feature importance of ML models was also

assessed. The top 15 important features in Tree or Component GB

models could be reduced to nine variables, namely, KPS, age,

tumor size, tumor subtype, extent of resection, chemotherapy,

radiotherapy, p53 immunopositivity, and methylation of the

MGMT promoter. It was in line with the significant variables

included in the Cox proportional hazards model.

Consistent with the results of previous studies (23, 24), our result

revealed that KPS influenced glioma patient survival after resection

surgery. KPS or similar crude scales are commonly seen methods

to evaluate gross functional status and have been repeatedly

described as prognostic factors in the management of glioma

patients (23, 24). Also, age is one of the most established

prognostic factors in patients with malignant gliomas, regardless of

lower-grade (24, 25) or higher-grade gliomas (26). As claimed by

Paugh et al. (27), the substantial differences in the molecular

features underlying age-stratified gliomas might lead to different

treatment responses, accounting for different survival outcomes. A

cutoff value of 55 years has been reported repeatedly to stratify

glioma patients, while significantly impaired survival is always

observed in those 55 years and above. Here, our study confirmed

advanced age as an unfavorable prognostic factor once more.

Previous studies (28, 29) have shown a strong association between

preoperative tumor size and glioma survival, which is in line with

the finding of our research. Regarding the extent of resection,

complete curative resection is thought impossible due to the lack of

clear tumor borders and the invasive behavior of the tumor.

Although a number of studies (30, 31) have demonstrated that

maximal resection substantially improves progression-free and

overall survival, it has also been reported that aggressive glioma

resection might increase the risk of postoperative complications

and lead to worse survival prognosis. Therefore, the relationship

between the extent of surgical resection and patient outcome still

remains controversial. Even so, our results showed a positive

correlation between gross-total resection and prognosis

improvement for patients compared to partial resection or biopsy.

In view of chemotherapy and radiotherapy, they are crucial

elements in the treatment plan of glioma patients. Postoperative

adjuvant radiotherapy and chemotherapy have always been

recommended to start within 2–4 weeks after surgical resection

and have proven to be significant prognostic factors by previous

studies (32, 33) and this study. Tumor subtype is one the most

commonly recognized prognostic factors, and the subtype based on

the latest 2016 WHO criteria helps to predict patient prognosis

more accurately. Here, our research also served as evidence of the

critical role of tumor subtype in glioma management.
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Then, it comes to biomarker information. MGMT is a DNA

repair protein that removes alkyl groups and adducts at the O6

position of guanine, protecting the cell against mutagenic effects.

Promoter methylation of MGMT causes silencing of the MGMT

gene and loss of protein expression, accounting for the

accumulation of DNA damage and increased sensitivity to

temozolomide-based chemoradiotherapy. A prognostic effect of

MGMT promoter methylation in patients with lower-grade (34) or

higher-grade (35) glioma has already been observed. Located on

human chromosome 17p13, the p53 gene is a tumor suppressor

and has been detected to regulate apoptosis, inhibit DNA

replication, and control cell motility and invasion. As a

consequence of p53 gene mutation, the mutant p53 protein escapes

from degradation and accumulates in the cells, leading to positive

staining by IHC. A meta-analysis concluded that p53

immunopositivity has effective usefulness in analyzing the

prognosis of glioma patients (36). As for GFAP, Vimentin, and

Ki-67, there exist a number of research studies (37–39)

concentrating on their prognostic value. However, our analysis

only validated the essential prognostic value of MGMT promoter

methylation and p53 immunopositivity, and the other biomarkers

need to be further evaluated.

There were several limitations. First, this was a single-center study,

which might make the analysis potentially prone to bias and limit the

generalization of supervised ML models. Second, the study included

cases that occurred before 2016, where the glioma subtype

classification at that time was different from the recent 2016 WHO

criteria, causing half of those cases to lack evidence of subdivision

(for instance, isocitrate dehydrogenase (IDH)) for the latter

classification criteria. This might influence the calibration and

discrimination of prediction models. Nevertheless, we believed our

research has merit, given it is the first study to apply Gradient

Boosting algorithms to glioma prognosis prediction. We had

constructed predictive models successfully and also found that

Gradient Boosting models were more likely to improve the

performance of predicting glioma patient survival after tumor resection.
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