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Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation
in a highly conformal manner, which allows for significant sparing of nearby
healthy tissues. It is typically delivered in 1–5 sessions and has demonstrated
safety and efficacy across multiple intracranial neoplasms and functional
disorders. In the setting of brain metastases, postoperative and definitive SRS
has demonstrated favorable rates of tumor control and improved cognitive
preservation compared to conventional whole brain radiation therapy.
However, the risk of local failure and treatment-related complications (e.g.
radiation necrosis) markedly increases with larger postoperative treatment
volumes. Additionally, the risk of leptomeningeal disease is significantly
higher in patients treated with postoperative SRS. In the setting of high grade
glioma, preclinical reports have suggested that preoperative SRS may
enhance anti-tumor immunity as compared to postoperative radiotherapy.
In addition to potentially permitting smaller target volumes, tissue
analysis may permit characterization of DNA repair pathways and tumor
microenvironment changes in response to SRS, which may be used to
further tailor therapy and identify novel therapeutic targets. Building on the
work from preoperative SRS for brain metastases and preclinical work for
high grade gliomas, further exploration of this treatment paradigm in the
latter is warranted. Presently, there are prospective early phase clinical trials
underway investigating the role of preoperative SRS in the management of
high grade gliomas. In the forthcoming sections, we review the biologic
rationale for preoperative SRS, as well as pertinent preclinical and clinical
data, including ongoing and planned prospective clinical trials.
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Introduction

Stereotactic radiosurgery (SRS) was first proposed by Dr.

Lars Leksell in 1951 (1). This technique delivers high doses of

ionizing radiation in 1–5 sessions in a highly conformal

manner that allows for significant sparing of nearby healthy

tissues due to the rapid dose gradient outside of the treatment

target (1–4). Today, SRS is utilized in a multitude of benign

and malignant intracranial indications (5–35).

One of the most common indications for SRS is in the

management of brain metastases (13, 16, 19, 36). Multiple

randomized trials have demonstrated that SRS is associated

with excellent rates of local tumor control and improved rates

of cognitive preservation without compromising overall

survival (OS) when compared to whole brain radiation

therapy (WBRT) (13–15). Historically, patients with a single

accessible brain metastasis often underwent surgical resection,

which demonstrated improved OS when compared to WBRT

alone (37). Additionally, postoperative WBRT has

demonstrated improved local and distant brain control, as

well as lower rates of neurologic death when compared to

surgery alone (38). However, given the cognitive sequelae

associated with WBRT, clinicians frequently withheld it in the

up-front setting (39). A recent randomized controlled trial

comparing adjuvant SRS to observation in the setting of a

resected brain metastasis demonstrated a 1 year local control

rate of 72% in the SRS arm vs. 43% in the observation arm;

however, the findings in the SRS arm were largely dependent

on the size of the metastasis, as larger lesions were associated

with worse local control (16).

Postoperative SRS is associated with several drawbacks,

despite the improvement in local control. First, the use of a

clinical target volume (CTV) expansion of 1 mm to 2 mm is

commonly utilized to address microscopic, invasive disease.

Second, postoperative SRS frequently requires that target

volumes that encompass the surgical tract, as well as margin

along the bone flap and venous sinuses (40). Taken together,

these factors result in an increase in irradiated volume of

normal brain, which is associated with an increased risk of

treatment-related complications (e.g., radionecrosis) (8, 41–

44). Third, the risk of leptomeningeal disease (LMD) is higher

in patients undergoing postoperative SRS, likely due to

surgical perturbation, compared to WBRT with rates as high

as 45% (16, 45–49). Fourth, adherence rates with

postoperative SRS are often suboptimal due to variable

postoperative clinical courses (49, 50). Fifth, prolonged

intervals between surgical resection and postoperative SRS are

associated with worse local control (51–53).

Historically, radiation was given following surgery for resected

brain metastases, but with the associated drawbacks of

postoperative SRS, investigators began to explore incorporation

of SRS in the preoperative setting. Preoperative therapy has
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become widely adopted in multiple malignancies, such as

cancers of the esophagus and rectum (54–57). While most

studies exploring the role of preoperative radiosurgery have

focused on brain metastases, there has been recent growing

interest in applying this treatment paradigm to high grade

glioma and glioblastoma (11). While the use of postoperative

SRS in the management of glioblastoma yielded disappointing

results (58–60); however, its use in the preoperative setting

shares many of the potential advantages observed with brain

metastases and further might also be used as a strategy to

enhance anti-tumor immunity (61, 62). Furthermore,

preoperative SRS allows for post-radiotherapy tissue analysis,

which can allow for characterization of DNA repair pathways

and tumor microenvironment changes in response to SRS.
Brain metastases

Brain metastases are the most common intracranial

neoplasm and are diagnosed in approximately 200,000

patients each year in the United States (63–66). These

estimates are likely conservative, as brain metastases are

commonly diagnosed during the disease course, while

national registries (e.g., The National Cancer Database and

Surveillance, Epidemiology, and End Results) are largely

focused on clinical characteristics present at the time of index

cancer diagnosis (67, 68). For many years the standard of care

treatment approach in these patients consisted of conventional

whole-brain radiation therapy (WBRT) with or without

resection and corticosteroids (69). In the absence of surgical

resection many patients did not live beyond 3–4 months (37).

With advances in systemic therapy (e.g., immune checkpoint

inhibitors) the prognosis of patients with brain metastases has

markedly improved (5–7, 70–72). Furthermore, greater

availability of magnetic resonance imaging has increased

detection of subclinical disease. Taken together, the incidence

of brain metastases is expected increase, as well as the need

for improved intracranial RT delivery.
Surgical management of brain metastases

In 1990, Patchell et al. published a landmark randomized

trial, where 48 patients with a single brain metastasis were

randomized to surgical resection followed by postoperative

WBRT or needle biopsy followed by WBRT (37). Whole

brain radiation therapy was delivered to a dose of 36 Gy in 12

fractions. Patients who received surgical resection experienced

improved lower rates of local recurrence (20% vs. 52%; p <

0.02), as well as improved median OS (40 weeks vs. 15 weeks;

p < 0.01), and longer period of functional independence

(median, 38 weeks vs. 8 weeks; p < 0.005).
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FIGURE 1

Radiation treatment plan of a 65 year old female patient with a
history of breast cancer. She underwent a surgical resection
followed by postoperative SRS to the resection cavity (outlined in
green) to a dose of 27 Gy in 3 fractions.

Lehrer et al. 10.3389/fsurg.2022.972727
Postoperative radiotherapy for brain
metastases

In 1998, Patchell et al. published the results of a randomized

study designed to determine if WBRT improved neurologic

outcomes and OS (38). Ninety-five patients with a single

brain metastasis who underwent surgical resection were

randomized to WBRT to a dose of 50.4 Gy in 28 fractions or

observation. Patients in the WBRT arm experienced improved

brain control (18% vs. 70%; p < 0.001), lower rates of local

recurrence (10% vs. 46%; p < 0.001), and lower rates of

neurologic death (14% vs. 44%; p = 0.003). No differences

were observed in OS and length of functional independence.

The results of the two Patchell studies established the role of

postoperative WBRT in the management of a resected brain

metastasis.

While WBRT is associated with excellent rates of local and

regional brain control, it is also associated with significant rates

of cognitive deterioration following treatment (13–15, 73–76).

Multiple studies have suggested that there is an association

between cognitive functioning and quality of life (77, 78). In

2017, Brown et al. published the results of N107C, which was

a phase 3 trial that randomized 194 patients to SRS or WBRT

following surgical resection of a brain metastasis (13). Overall

cognitive deterioration was 52% vs. 85% (p = 0.00031)

favoring the SRS arm and 12 month surgical bed control

favored the WBRT arm (60.5% vs. 80.6%; p = 0.00068). In

2018, Mahajan et al. published the results of a single

institution trial that randomized patients following resection

of a brain metastasis to postoperative SRS or observation (16).

At 12 months, the local control rates were 43% vs. 72% (p =

0.015), favoring the SRS arm with no differences in OS

observed between the arms. Additionally, the local control

rates were highly dependent on tumor diameter. When

compared to a tumor diameter of ≤ 2.5 cm, tumors measuring

> 2.5–3.5 cm [hazard ratio (HR): 6.7; p = 0.0021] and > 3.5 cm

(HR: 6.6; p = 0.0032) had a markedly higher rate of local

recurrence. Thus, when managing larger lesions, fractionated

radiosurgery is a commonly utilized approach (8, 42, 43) and

is being studied in an ongoing prospective randomized trial

(79). Taken together, these studies have established the role of

postoperative SRS in the setting of a resected brain metastasis.

The development of LMD is a significant concern in

patients with brain metastases, particularly following surgical

resection. Mahajan et al. observed an approximately 25%

LMD rate in the postoperative SRS arm (16). In a 2017 study

by Foreman et al., a 35% LMD rate at 1 year following

postoperative SRS was observed (47). Additionally, they

observed trend towards an increased risk of developing LMD

in patients with breast cancer histology (HR: 2.37; p = 0.07). A

study by Atalar et al. that evaluated 175 brain metastasis

resection cavities that were treated with postoperative SRS
Frontiers in Surgery 03
observed an 11% cumulative incidence of LMD at 1 year (46).

They also noted a 24% LMD rate in breast cancer patients

compared to 9% in patients with other histologies (p = 0.004).

Furthermore, resection and postoperative SRS is associated

with a particular subtype of LMD, known as nodular LMD

(nLMD) (45, 80). A radiation treatment plan for a patient

who underwent resection and postoperative SRS is presented

in Figure 1.
Preoperative radiosurgery for brain
metastases

Preoperative SRS is a treatment strategy that may mitigate

the risk of treatment-related toxicities and local failure (34,

45, 46, 49, 80, 81). This treatment strategy allows for targeting

of the intact metastasis, which allows for more precise SRS

targeting compared to postoperative treatment. In the

postoperative setting, a CTV is generated, which is dependent

on resection cavity dynamics (82–84). Additionally, while

preoperative SRS volumes may often be smaller than what

would be expected in the postoperative setting, relaxation of

the resection cavity in the interval between surgery and SRS

may lead to smaller SRS volumes. A radiosurgical plan for a
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patient who underwent preoperative SRS is presented in

Figure 2.

Local tumor control
As noted in the preceding sections, while postoperative SRS

is associated with acceptable rates of local control, with the

highest control rates for smaller resection cavities (8, 13, 16).

In 2016, Patel et al. published a multicenter retrospective

study comparing patients who underwent preoperative and

postoperative SRS for a brain metastasis (81). The 1 year

cumulative incidence of local recurrence was 15.9% vs. 12.6%

in the preoperative and postoperative SRS groups, respectively

(p = 0.33). A follow-up multicenter study that evaluated 242

patients with 253 index lesions who were treated with

preoperative SRS observed 1 and 2 year local recurrence rates

of 15% and 17.9%, respectively (49). Taken together, these

findings suggest that preoperative SRS does not compromise

local control rates when compared to postoperative SRS.

Radionecrosis
Radionecrosis is a potential complication following SRS that

has been observed in 5%–25% of published reports (41, 85–89).

The variability in reported incidence is largely due to different

definitions in published studies, which incorporate pathologic

and/or radiographic characteristics. Approximately 50% of

radionecrosis cases are symptomatic and first-line

management involves the use of corticosteroids or other

systemic agents, such as bevacizumab and pentoxifylline (90).

Patients who are refractory to pharmacologic managements

often undergo surgical resection or laser interstitial thermal

ablation (34). The volume of healthy brain irradiated during

SRS is correlated with an increased risk of developing

radionecrosis (8, 41, 42). A commonly used dosimetric

parameter for single fraction SRS is to minimize this risk is

keeping the volume of brain receiving 12 Gy or more to
FIGURE 2

Patient with a history of metastatic non-small cell lung cancer who was
demonstrating a left frontal metastasis; (B) SRS treatment plan with dose
resection; (D) Cell culture microscopy of post-irradiation resected tissue.
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< 10 cm3 (V12 Gy < 10 cm3). A frequently employed

mitigation strategy in the setting of larger lesions, where the

brain V12 Gy would be exceeded with single fraction SRS is

fractionated radiosurgery (42). In 2013, Minniti et al.,

published a comparative study where 289 patients with brain

metastases > 2 cm in diameter were treated with single-

fraction SRS or fractionated SRS (27 Gy in 3 fractions) (42).

In the fractionated SRS group, the V18 Gy was found to be

the most predictive parameter for radionecrosis with a risk of

5% and 14% for V18 Gy≤ 30.2 cm3 and >30.2 cm3, respectively.

When treating postoperative cavities, it is common to

incorporate a 1–2 mm CTV margin. Additionally, coverage of

the surgical tract, as well as incorporation of a CTV margin

along the dura and venous sinuses are recommended in

certain situations (40). When incorporating a CTV into the

SRS treatment volume, the amount of irradiated healthy brain

significantly increases, which therefore poses an increased risk

of radionecrosis. Patel et al. reported symptomatic

radionecrosis rates at 1 year of 14.6% vs. 1.5% for

postoperative and preoperative SRS, respectively (p = 0.01).

Therefore, these findings suggest that rates of symptomatic

radionecrosis are lower with preoperative than postoperative

SRS.

Leptomeningeal disease
As noted in the preceding sections, LMD is frequently seen

following resection and postoperative SRS; additionally, patients

with breast cancer carry a higher risk (45, 46, 80). Studies have

reported that the risk of developing LMD is higher following

postoperative SRS than postoperative WBRT (49). It has been

hypothesized that this is due to seeding of the CSF space

during surgical resection, which would normally be sterilized

with administration of WBRT (49, 80, 81, 91).

Patel et al. reported LMD rates at 1 year of 3.2% vs. 8.3%

and at 2 years of 3.2% vs. 16.6% for pre-operative vs. post-
treated with preoperative SRS. (A) T1 post contrast MRI axial image
color wash; (C) T1 post contrast MRI axial image following surgical
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operative SRS, respectively (p = 0.01) (81). Preoperative SRS

may provide field sterilization to reduce the risk of tumor

seeding and the subsequent development of LMD, which may

occur when postoperative SRS is given postoperatively. Patel

et al. conducted an additional study that compared

preoperative SRS to postoperative WBRT (92). They observed

LMD rates of 3.5% vs. 9.0% for the preoperative SRS and

WBRT groups, respectively (p = 0.66). Prabhu et al. noted that

the median OS following LMD diagnosis was 6.9 months vs.

1.2 months in patients with nLMD and cLMD, respectively

(p = 0.05) (49). Additionally, the median OS for patients

diagnosed with LMD who received salvage treatment was 11.3

months vs. 2.8 months in patients with nLMD and cLMD,

respectively (p = 0.38). These findings appear to suggest the

following: (1) the risk of LMD is significantly lower with

preoperative SRS compared to postoperative SRS; (2) rates of

LMD with preoperative SRS are not significantly different

than those with postoperative WBRT; (3) nLMD is a unique

failure pattern observed with postoperative SRS that is

associated with better outcomes when compared to cLMD.
Other considerations
Preclinical studies have suggested that ionizing radiation

(RT) has the ability to enhance anti-tumor immunity by

acting as an in-situ vaccine (93). Additionally, studies have

shown that ablative doses of RT (e.g., SRS) lead to increased

antigen presentation and CD8+ T cell activation (5, 6, 93–97).

In recent years, combining SRS with immune checkpoint

inhibitors (ICI) has been a widely studied. Multiple reports

have suggested that SRS and ICI are able to synergize to

further enhance anti-tumor immunity, particularly when these

therapies are administered within 4-weeks of one another (5–

7, 65, 98–101). Preoperative SRS would permit tissue analysis

following RT, which can allow for characterization of DNA

repair pathways and other changes in the tumor

microenvironment in response to SRS. These tissue analyses

can aid in our understanding of the role that SRS plays in

anti-tumor immunity, as well as identify novel therapeutic

targets. Resection cavity dynamics following surgery is an

important consideration in the postoperative setting (82, 102–

104). This has been shown to be particularly evident in larger

irregularly shaped cavities and lesions that were associated

with significant amounts of edema preoperatively.

Intraoperative radiotherapy (IORT) in the setting of resected

metastases and glioblastoma is a novel technique that

continues to expand and is associated with less cavity

shrinkage compared to SRS following treatment (82–84). Both

preoperative SRS and IORT allow for elimination of time to

initiation of radiation, minimization of target uncertainty in a

resection cavity, and dose escalation (105).
Frontiers in Surgery 05
Disadvantages
While preoperative SRS has many advantages, it has

disadvantages as well. First, preoperative SRS does not permit

for pathologic tissue diagnosis prior to administering

treatment. However, patients with brain metastases frequently

have pathologic disease confirmation from biopsy of the

primary tumor or an extracranial metastatic site prior to SRS.

Second, in patients who have significant mass effect and

symptoms from a brain metastasis, preoperative SRS is likely

not appropriate, as the delay between preoperative SRS and

surgical resection could cause an unacceptable risk to the

patient. Therefore, these patients should be treated with

surgical resection expeditiously.
Ongoing and planned clinical trials
There are multiple phase 3 clinical trials that are underway

or planned that are comparing preoperative to postoperative

SRS for brain metastases. Trials are underway at both the

Mayo Clinic (NCT03750227) and the MD Anderson Cancer

Center (NCT03741673). Additionally, NRG Oncology has

recently opened the BN012 trial (NCT05438212) (106), which

is a phase 3 randomized cooperative group trial comparing

preoperative to postoperative SRS.
High grade glioma and glioblastoma

High grade glioma and glioblastoma are primary brain

tumors that arise from astrocytes, ependymal cells, and

oligodendrocytes. Glioblastoma the most common primary

brain tumor, accounting for approximately 50% of all primary

brain tumor diagnoses in the United States (107, 108).

Glioblastoma is highly resistant to treatment and is associated

with a dismal prognosis (109, 110). Despite maximal optimal

treatment, the median OS ranges from 15 to 21 months with

a 5 year OS of <5% (111–115) for favorable patients who are

able to undergo resection. Thus, given the poor prognosis

associated with glioblastoma, novel treatments to improve the

therapeutic ratio are sorely needed.
Postoperative radiosurgery

Studies have demonstrated that most glioblastoma

recurrences occur within 2 cm of the resection cavity, thus

there has been interest in radiation dose escalation (59, 60,

116). Radiation Therapy Oncology Group (RTOG) 9305 was a

randomized trial of 203 patients with supratentorial

glioblastoma who received 60 Gy in 30 fractions and BCNU

with or without the addition of an SRS boost (58). The SRS

dose was based on the maximum tumor diameter, as

recommended in RTOG 9005 (117). With a median follow-up
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of 61 months, the median OS was 13.5 months vs. 13.6 months,

in the SRS and no SRS groups, respectively. Thus, postoperative

SRS is not recommended in the setting of glioblastoma.
Preoperative radiosurgery

Due to patterns of failure on glioblastoma, there has long

been an interest in dose intensification; however, studies have

yielded disappointing results (11, 110). BN001 is a

randomized controlled trial that is comparing standard of care

chemoradiotherapy to dose-escalated RT in the management

of glioblastoma. Gondi et al. presented preliminary results at

the 2020 Annual Meeting of the American Society of

Radiation Oncology (118). No meaningful improvements in

OS or other patient outcomes were observed. Preoperative

SRS is therefore an attractive and novel approach to deliver

intensified doses of RT in these patients.

While there is a paucity of clinical data involving the use of

preoperative SRS in the management of glioblastoma, much of

the theoretical advantages can be extrapolated from what has

been observed in the preclinical setting and what has been

observed with brain metastases. First, intact glioblastoma may

have higher rates of oxygenation when compared to

postoperative tissues, which may result in more double-

stranded DNA breaks (109). However, this hypothesis needs

to be further validated. Second, post-SRS tissue analysis may

permit characterization of cellular pathways in response to RT

and can aid in the development of novel therapeutic agents.
FIGURE 3

Patient with a history of glioblastoma, where the volume encircled in blue rep
represents a postoperative radiotherapy volume. Each of these volumes are sh
T1 post contrast MRI.
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The risk of LMD in the setting of glioblastoma is

approximately 4% and carries a grim prognosis (119, 120).

Therefore, while preoperative SRS would be expected to

decrease the risk of LMD, the extent at which it does so may

be minimal. Preoperative SRS and postoperative RT treatment

volumes in a patient with glioblastoma are presented in

Figure 3.
Immunogenic effects of preoperative SRS
One of the major potential advantages of utilizing preoperative

SRS in glioblastoma and high grade glioma is the ability to enhance

anti-tumor immunity. A study by Klein et al., which exposed

glioblastoma specimens to increasing doses of RT observed an

increase in the expression of major histocompatibility class I

antigen expression in response to treatment (62). This suggests

that RT may cause enhanced CD8+ T cell responses against the

tumor. A study by Newcomb et al. assessed the impact of WBRT

and vaccination on a murine GL261 glioma model (61). While

each of these treatments did not demonstrate a significant impact

on OS when administered alone, combining WBRT and

vaccination results in a long-term OS increase of 40%–80%.

However, GL261 glioma models are suboptimal for studying

immunotherapy in gliomas. A study by Zeng et al. in 2012

evaluated the impact of SRS and anti-PD-1 therapy on a murine

glioblastoma model (121). While the OS rates were

approximately 25 days in each the control, SRS, and anti-PD-1

groups, an OS of 53 days was observed in the combination

therapy group. These findings suggest that SRS and anti-PD-1
resents a preoperative SRS volume and the volume encircled in yellow
own on (A) preoperative T1 post contrast MRI and (B) T1 postoperative
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therapy may synergistically enhance anti-tumor immunity in

glioblastoma.

The timing of surgery following preoperative SRS is also an

important consideration from an immunologic standpoint. A

study by De La Maza et al. that utilized a murine

mesothelioma model demonstrated that performing surgery 7

days after completing RT resulted in lower tumor regrowth

rates and enhanced tumor rejection at 90 days following

treatment completion (122). These findings were not observed

when surgery occurred 1-day following completion of RT.

Additionally, these findings were felt to be immunologic in

nature, as mice depleted of CD4+ T cells had a markedly

diminished response. Surgery alone has demonstrated an

immunogenic effect on glioblastoma, Khalsa et al. showed that

surgery might improve antitumor responses by increasing the

presence of activated microglia, SiglecF + macrophages, T cells,

while decreasing resident macrophages (123).
Ongoing trials

The NeoGlioma study (NCT05030298) is a prospective

clinical trial at the Mayo Clinic that will be investigating the

role of preoperative SRS in high grade glioma. Patients will

undergo surgical resection within 14 days of SRS (124).

Patients in the preoperative SRS arm will undergo stereotactic

biopsy prior to radiosurgery. The gross tumor volume (GTV)

will be defined as residual contrast-enhancing tumor on thin

slice T1-postcontrast MRI; edema will not be included. A

3 mm volumetric expansion with then be generated on the

GTV to create a planning tumor volume (PTV). A clinical

target volume will not be utilized and an SRS dose of 10 Gy

will be prescribed to the PTV. Steroid use is at the discretion

of the treating physician. The risks and benefits of steroid

administration should be carefully weighed against one

another, as they can provide symptom relief but also are

immunosuppressive (125–127).
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Conclusion

Preoperative SRS is a treatment paradigm that has multiple

significant advantages when compared to postoperative SRS in

the management of brain metastases. Multiple retrospective

reports have demonstrated excellent rates of local control, as

well as lower rates of radionecrosis and LMD. Ongoing and

planned phase 3 trials may further validate these findings.

Preclinical data has suggested that preoperative SRS in the

setting of high grade glioma and glioblastoma may enhance

anti-tumor immune responses, which can potentially lead to

improved patient outcomes. We eagerly await the results of

the NeoGlioma study to better evaluate this hypothesis.
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