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Hospitals are burdened with predicting, calculating, and managing various
cost-affecting parameters regarding patients and their treatments. Accuracy
in cost prediction is further affected when a patient suffers from other health
issues that hinder the traditional prognosis. This can lead to an unavoidable
deficit in the final revenue of medical centers. This study aims to determine
whether machine learning (ML) algorithms can predict cost factors based on
patients undergoing colon surgery. For the forecasting, multiple predictors
will be taken into the model to provide a tool that can be helpful for
hospitals to manage their costs, ultimately leading to operating more cost-
efficiently. This proof of principle will lay the groundwork for an efficient ML-
based prediction tool based on multicenter data from a range of
international centers in the subsequent phases of the study. With a mean
absolute percentage error result of 18%–25.6%, our model’s prediction
showed decent results in forecasting the costs regarding various diagnosed
factors and surgical approaches. There is an urgent need for further studies
on predicting cost factors, especially for cases with anastomotic leakage, to
minimize unnecessary hospital costs.

KEYWORDS

cost prediction, colon surgery, machine learning, colon surgery cost, anastomotic

insufficiency

Introduction

Background

Colorectal cancer (CRC) is one of the most prevalent cancers in the world today based

on diagnoses, with about 1.8 million cases being diagnosed and about 0.7 million related

deaths occurring annually. In addition, CRC accounts for 10% of all newly diagnosed

cancers, a considerable social and economic burden for many nations worldwide (1).

One of the treatment modalities for colorectal cancer is surgery. Surgery is aimed at
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obtaining an adequate oncologic resection while re-establishing

intestinal continuity. Over time, there have been improvements

in the way the disease is treated. However, existing patient

comorbidities can limit surgical procedures. The time required

to prepare patients for surgery and address their comorbidities

contribute to increased surgical costs. However, despite many

improvements, significant other complications still occur

during, and especially after, a surgical procedure. To avoid this,

the patient is placed in necessary postoperative care for 5 and 7

days after a surgical operation. Other postoperative risk factors

will further add to the surgical cost, but their prediction is very

vague due to the absence of sufficient datasets. These involve

performing a colorectal anastomosis, anastomotic leak (2),

delirium or prolonged ileus (3), other emergency surgeries;

longer intraoperative time; and peritoneal contamination.

The comorbidities and longer stays result in a cost burden for

patients and hospitals. This is why prediction models are now

being updated to determine the costs for anastomotic

insufficiency. Prediction models are normally used to estimate

the probability of achieving a particular outcome (4). Many

prediction models have been developed, but only a small

number are used because not all models accurately predict the

desired outcome (5). This study focuses on developing and

validating a multivariable prediction model to predict costs for

patients undergoing colon surgery while considering their stay

in the hospital. This will help determine the cost burden due to

variable hospital length of stay (LOS) and days spent in

intensive care units (ICUs). The medical context is prognostic in

that it is focused on predicting the cost of overall expenditure

involved in colon surgery for the clinical center and the patient.
Rationale

The rationale for developing and validating the

multivariable model is that it will help accurately predict the

costs associated with colon surgery. The accurate prediction

will help patients and practices employed by the hospital

make more informed decisions, as well as aid in policies

enacted by the government. The results that come with the

use of the model will also aid in surgical planning. In short,

developing and validating the multivariable model will

provide insight into the costs of colon surgery. In turn, it will

allow revisions in care and help develop strategies for

improved management. Similar studies for prediction

purposes have been conducted in the field of medicine. For

example, Musunuri et al. have used machine learning in the

form of artificial intelligence to predict 90-day liver disease

mortality. Focused on acute-on-chronic liver failure, they

achieved a model with an accuracy of 94.12% and an area

under the curve of 0.915 (6). Hameed et al. wrote about the

impact of artificial intelligence on urological diseases. In their

literature review, they have pointed to multiple publications
Frontiers in Surgery 02
using various models like support vector machine, nearest

neighbor, random forest, convolutional neural network, or

artificial neural networks to predict and classify diseases like

prostate cancer, urothelial cancer, renal cancer, or urolithiasis.

What differs between those publications and their work from

ours is that they use a classification model instead of a

regression model. The most important benefit of using a

regression model compared to a classification model is that it

helps predict continuous values, whereas classification models

try to predict discrete class labels. To predict the costs

associated with colon surgery in an accurate way, a machine

learning regression model is used. Using this approach, we

aim to contribute to an existing gap in this field (7).
Objectives

• To develop prediction models for the final costs in patients

based on multiple predictors.

• To test the models in terms of their ability to accurately predict

the final costs associated with colon surgery in patients.

Methods

Overview and data collection

Data were extracted from a registry of patients who underwent

colonic anastomosis for various reasons such as tumors,

diverticulitis, mesenteric ischemia, iatrogenic or traumatic

perforation, or inflammatory bowel disease (aggregated as

“nontumor”) at the Hospital of Wetzikon from January 1, 2013,

to December 31, 2019. No patients were excluded from the

initial data collection. Furthermore, this study was completed

based on the transparent reporting of a multivariable prediction

model for individual prognosis or diagnosis (TRIPOD)

statement checklist for prediction model development (8).

Utilizing these data, we developed a machine learning

model to predict the costs of colon surgery.
Ethical considerations

The registry data were approved by an institutional review

board, where the patients’ informed consent was waived. The

study was registered at [Req 2021–01107].
Predictors and outcome measures

Recorded variables include insurance (general/semiprivate/

private), age, surgical procedure (Hartmann/left-sided

hemicolectomy and extended left-sided hemicolectomy/right-
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sided hemicolectomy and extended right-sided hemicolectomy/

sigmoid resection), surgical approach (open/laparoscopic),

diagnosis (tumor/nontumor), final cost (the sum of all cost

factors), length of stay (in days), intensive care unit stay (in

days), operation time (in minutes), anesthesia time (in

minutes), ASA score (I, II, III, IV), gender (male/female), CCI

(Charlson comorbidity index), anastomotic insufficiency, and

emergent/nonemergent. The data on the final cost, which is the

sum of all the costs incurred during the stay in the hospital for

surgery, were collected in CHF (Swiss Francs). Other cost

factors are not incorporated since they add up to the final costs

including administrative costs, costs of hospitality, nurse costs,

costs of infrastructure, doctor costs, medical costs, operational

costs, anesthesia costs, and care costs.
Model development

Data were randomly split into two sets; 80% of the data was

put into a training set to build the models, and 20% was utilized

for a test set to validate the models and assess their performance

internally. The two sets had approximately the same class

distribution (Gaussian). The following 14 predictors were

chosen to predict the final costs based on regression and

clinical insights: age, gender, insurance, diagnosis, operation,

surgical approach, hospitalization, intensive care unit stay,

surgical procedure, anesthesia time, CCI, ASA score,

anastomotic insufficiency, and emergency surgery (9).

By including variables such as the CCI and the ASA score,

we can cover a large number of diseases that are included in the

comorbidity index.

A variety of machine learning models were developed,

including generalized boosted regression, random forest, and

decision trees. An interaction depth of 3 and a total number

of 500 trees were chosen, as were the type of random forest

and the regression model. The classification/predictive

performance was measured using the mean absolute

percentage error (MAPE), where a result of <10% was

classified as highly accurate, <20% denoted a good forecast,

20%–50% denoted a reasonable forecast, and everything >50%

denoted an inaccurate forecast (10). The MAPE factor, also

known as mean absolute percentage deviation, was used for

accuracy of a forecasting prediction. Continuous data were

reported as mean ± standard deviation (SD) or median

[interquartile range (IQR)] and categorical data were reported

as numbers (percentages). Hyperparameters were tuned, and

the final model was selected based on the MAPE. The final

model chosen was the random forest model based on its

superior performance.

The analysis was carried out using R version 4.0.4. The

random forest library was used for the random forest models,

the metrics library used was used for the calculation of the

performance measurements, the gbm library was used for the
Frontiers in Surgery 03
generalized boosted regression models, and the rpart library

was used for the other models.
Deployment

The best-performing model will be deployed as a web-

based, user-friendly application using RShiny to predict the

final cost that considers the different cost factors. (Accessed

at: https://colonsurgerycost.shinyapps.io/Final_Cost/).
Results

Cohort

A total of 347 patients were included in our study. This

number consists of all patients from the center who suffered

from the diagnosed factors in this section and had to undergo

the type of operations mentioned. The mean age was 67 ± 14

years (range 28–94). A total of 162 (47%) patients were men,

and 185 (53%) were women. Tables 1 and 2 provide all

baseline variables and their descriptive statistics. Continuous

variables were recorded as mean ± SD (range) in Table 1.

Categorical variables were recorded as numbers (%) in

Table 2. No missing values were detected. Table 3 provides

the variables’ characteristics and descriptive statistics that are

not mentioned in Tables 1 and 2 and are based on their

impact on the final costs.
Model performance

During internal validation, the performance of all three

models was tested and stated with their mean values and 95%

confidence intervals (Table 3). The random forest classifier

provided the highest MAPE for predicting the final cost

(21.4). Thus, it was the model with the best internal

validation performance and was subsequently used for

predicting costs (11). In comparison, the decision tree and

general boosted regression model displayed results for MAPEs

of only 25.5 and 29.7, respectively. Therefore, the average

MAPE for the final cost is around 21.4, which means that, on

average, the forecast of this prediction model regarding the

final costs is off by 21.4%. Since a MAPE value of <20% is

considered as being “good,” our result shows decent results.

The percentage of the random forest classifier’s variance,

which was explained in the models, varied from 73.81% to

81.05%. Specific feature importance according to the random

forest classifier is displayed as Gini index in Figure 1, while

Figure 2 shows the prediction of the random forest classifier

compared to the actual observed values from the test data set

for the final cost factor.
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TABLE 2 Variable characteristics for categorical values.

Variable n (%)

Gender

Male 162 (47%)

Female 185 (53%)

Insurance

General 283 (82%)

Semiprivate 49 (14%)

Private 15 (4%)

Diagnosis

Tumor 162 (47%)

Nontumor 185 (53%)

Emergency surgery

No 331 (95%)

Yes 16 (5%)

Operation

Hartmann’s procedure 19 (5%)

Hemicolectomy left 16 (4%)

Extended hemicolectomy left 6 (2%)

Hemicolectomy right 82 (24%)

Extended hemicolectomy right 6 (2%)

Sigmoid resection 218 (63%)

Surgery approach

Open 153 (44%)

Laparoscopic 194 (56%)

Anastomotic insufficiency

No 331 (95%)

Yes 16 (5%)

ASA score

I 12 (4%)

II 184 (53%)

III 137 (39%)

IV 14 (4%)

TABLE 1 Variable characteristics for continuous values.

Variable Overall
(n)

Mean
(SD)

Min Max Range Median
(IQR)

Age 347 67 (14) 28 94 66 68

Hospital
days

347 9 (10) 1 84 83 5

ICU days 347 1 (5) 0 70 70 0

Operation
time

347 175 (102) 23 1.280 1.257 154

Anesthesia
time

347 119 (90) 45 1.020 997 95

Final cost 347 −32.502
(45.650)

−52.0591 −7.485 52.8076 −20.011

CCI 347 4 (3) 0 16 16 3

SD, standard deviation; IQR, interquartile range; ICU, intensive care unit; CCI,

Charlson comorbidity index.

Taha et al. 10.3389/fsurg.2022.939079

Frontiers in Surgery 04
In Figure 1, one can see that factors such as LOS,

anastomotic insufficiency, and intensive care unit stay are the

best predictors in our model, which could be explained as

being variables that are often correlated with postoperative

complications and thus being more costly. The hospitalization

factor can be explained as a good predictor of cost because

the overall costs for a hospital will increase if the patient is

not progressing after surgery. The same can be said about the

intensive care unit. For the anastomotic insufficiency cases, it

is evident that these complications bare a higher burden on

the final costs. The mean decrease in the Gini index is the

mean of a variable’s total decrease in node impurity, weighted

by the proportion of samples reaching that node in each

individual decision tree in the random forest. A higher mean

decrease in the Gini index indicates higher variable

importance. In other words, node impurity measures how

much the model error increases when a particular variable is

randomly permuted or shuffled.

Figure 2 indicates that the predicted values are not far off

the actual observed values based on our data set. For most of

the observations, our model was able to perform decently in

predicting the final costs.

Figure 3 displays the Bland–Altman plot. The following

information can be derived visually from the diagram: (1) an

estimate of the true value on the x-axis (mean), (2) standard

deviation, (3) whether and to what extent systematic

measurement errors (bias) lead to the deviations (variability

was eliminated by difference formation on the y-axis), (4)

whether the deviation of the methods or the dispersion of the

deviation depends on the level of the measured values, and

(5) whether outliers are present. Based on the plot, one can

imply that the values are mostly well distributed and not

many outliers occur.
Discussion

Cost and finance play an increasingly important role in

today’s healthcare system. It is imperative that hospitals

control their costs more accurately beforehand and estimate

the expenditure so that they do not get into financial difficulties.

Especially in surgery, and specifically colon surgery, this

predictive model allows us to manage better and optimize the

process in front of the surgeon and hospital.
Interpretation of results

As indicated, in this study, three models were developed and

tested. The results show that random forest has the lowest

percentage for all the costs examined on MAPE.

The lowest MAPE percentage for the random forest model

indicates that this model is the most accurate at predicting costs
frontiersin.org
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TABLE 3 Descriptive statistics based on final costs.

Variable Overall (n) Mean (SD) Min Max Median (Q1, Q3) P-value

Insurance 347 −32.502 (45.650) −520.591 −7.485 −20.011 (−28.828, −15.332) 0.643

General 283 −31.773 (47.490) −520.591 −7.485 −18.433 (−27.464, −14.823)

Semiprivate 49 −33.495 (27.892) −192.811 −10.919 −22.645 (−40.043, −19.795)

Private 15 −42.996 (57.232) −241.331 −13.915 −23.979 (−39.017, −18.426)

Diagnosis 347 −32.502 (45.650) −520.591 −7.485 −20.011 (−28.828, −15.332) 0.842

Tumor 162 −33.025 (40.120) −298.957 −7.485 −21.129 (−28.294, −15.790)

Nontumor 185 −32.043 (50.098) −52.059 −9.929 −19.155 (−29.688, −14.859)

Operation 347 −32.502 (45.650) −52.0591 −7.485 −20.011 (−28.828, −15.332) <0.001

Hartmann 19 −25.479 (20.230) −75.676 −7.485 −18.433 (−24.551, −14.053)

Hemicolectomy left 16 −65.777 (91.964) −38.419 −15.045 −32.297 (−70.713, −18.876)

Extended hemicolectomy left 6 −11.0698 (20,122) −520.591 −13.915 −28.751 (−46.173, −22.338)

Hemicolectomy right 82 −35,135 (39.474) −241.331 −10.665 −22.469 (−35.663, −16.468)

Extended hemicolectomy right 6 −65.768 (114.464) −298.957 −13.086 −17.726 (−29.401, −14.799)

Sigmoid resection 218 −26.613 (23.764) −192.811 −9.379 −18.684 (−25.538, −15.180)

Surgery approach 347 −32.502 (45.650) −520.591 −7.485 −20.011 (−28.828, −15.332) <0.001

Open 153 −46.531 (64.486) −520.591 −7.485 −25.989 (−45.758, −18.708)

Laparoscopic 194 −21.437 (13.486) −91.098 −9.379 −17.275 (−21.765, −14.685)

Anastomotic insufficiency 347 −32.502 (45.650) −520.591 −7.485 −20.011 (−28.828, −15.332) <0.001

No 331 −26.051 (20.763) −192.811 −7.485 −19.472 (−27.204, −15.121)

Yes 16 −165.941 (136.653) −520.591 −27.444 114.158 (225.666, −78.015)

ASA score 347 −32.502 (45.650) −520.591 −7.485 −20.011 (−28.828, −15.332) <0.001

I 12 −20.626 (5.177) −30.208 −14.035 −20.982 (−23.627, −16.212)

II 184 −23.129 (21.680) −241.331 −7.485 −17.938 (−22.591, −14.515)

III 137 −38.328 (44.857) −384.159 −10.665 −22.645 (−43.274, −16.997)

IV 14 −108.844 (140.598) −520.591 −20.280 −53.515 (−79.035, −33.144)

SD, standard deviation.

FIGURE 1

Total decrease in node impurities, measured by the Gini index from splitting on the variable, averaged over all trees.

Taha et al. 10.3389/fsurg.2022.939079
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FIGURE 2

Predicted vs. real observations of the model (ground truth).

FIGURE 3

Bland–Altman plot, measured by the difference of both measured values (S1–S2) plotted on the y-axis against the mean value (S1 + S2/2) on the x-
axis.

Taha et al. 10.3389/fsurg.2022.939079
associated with surgeries compared to the other two models

examined. Typically, MAPE is a measure of error. It is used

to measure the accuracy of a forecast (12). In calculating

MAPE, the difference between the actual value and the

forecast value is determined and expressed as a percentage.
Frontiers in Surgery 06
This means that if the difference between the actual value and

the forecast value is small, the percentage is small (13). On

the other hand, if the difference between the actual value and

the forecast value is large, the MAPE percentage is large. This

implies that a small MAPE percent indicates that the forecast
frontiersin.org
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value is near the actual value. In other words, the forecast value

is more accurate (14). In the case of the three models, since the

random forest model had the lowest MAPE percent value for all

the costs compared to the other models considered, it is the

most effective model in predicting the cost.

Why is random forest the most effective predictive model

compared to the decision tree and generalized boosted

regression models? This question can be answered by

examining the model. The random forest model is a machine

learning technique that is used to solve classification and

regression problems (15). This model uses ensemble learning,

a technique that combines many classifiers to obtain solutions

to complex problems. A random forest algorithm comprises

multiple decision trees. The forest that is generated by the

algorithm is trained through bootstrap aggregating or bagging

(16). Bagging is a meta-algorithm that improves the machine

learning algorithms’ accuracy.

The random forest algorithm establishes the result from the

predictions of decision trees. It predicts by taking the mean of

the prediction output of the various trees (17). This implies

that the predicted outcome by the algorithm becomes more

accurate when the number of decision trees is increased.

One of the features of the random forest model that makes

it more accurate in predicting cost outcomes is it reduces the

overfitting problem normally experienced when using the

decision tree model. As indicated, the model uses an

ensemble learning method based on bagging (15, 18). In other

words, the model creates many decision trees and then

considers the outcomes of all the trees in its final prediction,

enhancing the prediction accuracy by the model.

However, despite the higher accuracy of the random forest

model when compared to the decision tree and generalized

boosted regression models, the model does not have the

highest possible accuracy when considered alone. Normally,

when examining the accuracy of a prediction using MAPE, a

result of less than 10% is considered highly accurate.

A MAPE score of less than 20% denotes a good forecast,

while that between 20% and 50% is considered a reasonable

forecast (12). The results show that the random forest model

gives mostly reasonable forecasts rather than accurate

forecasts. The model gave an outcome of over 20% when

analyzed using the MAPE. This means that while it is the

most accurate model compared to the other models, when

considered alone, it has only considerable accuracy and does

not accurately predict the cost incurred.

A number of similar studies have been carried out on the

random forest model in terms of its accuracy in predicting

outcomes. For example, Mei et al. examined the prediction

accuracy of the random forest model when applying real-time

forecasting of the New York electricity market (18). In

reviewing the model’s prediction accuracy, its results were

compared to that of the auto-regressive-moving-average

model and an artificial neural network model. It was
Frontiers in Surgery 07
established that the random forest model exhibited a lower

MAPE value. The results of the study by Mei et al. are similar

to those of this study, which also show that the random forest

model has a higher level of making fewer mistakes by

predicting when compared to other studies (18). However, a

shortcoming of the study by Mei et al. is that it compared the

random forest model to only two other models. This does not

provide adequate insight into the model’s prediction accuracy

(18). A comparison with additional models would have

helped determine whether the random forest model was the

most accurate prediction model or if others were more accurate.

Another similar approach to comparing algorithms was

made by Xu et al., who developed and tested an accurate

prediction model based on the random forest classification

algorithm (19). They evaluated the prediction for inland water

quality. To evaluate the performance of the model, the

researchers compared it to other models, namely, multilayer

perceptron, SVR (support vector regression), KNN (K-nearest

neighbor), ridge regression, gradient boosting regression,

bagging, and decision tree. It was established that the random

forest-based prediction model had the highest level of

accuracy when compared to all the other prediction models

examined. This implies that random forest provides the most

accurate outcomes when used for prediction. The results in

the study by Wang et al. align with those of this study since it

was also established that the random forest model is the most

accurate compared to other models. The study by Wang et al.

provides better insight into the accuracy of the random forest

model because it compared it to multiple models (19). It

indicates that the random forest model is one of the most

accurate prediction models that can be used to predict costs

for surgery.

At last, the results are in line with those of Toqué et al., who

also established that the random forest model has higher

accuracy than other models (20). In the study, Toqué et al. built

and tested machine learning models for forecasting the Montreal

subway smart card entry logs using event data to find an optimal

model that accurately predicts the number of incoming

passengers at each station of a transportation network (20). The

prediction models were random forest, gradient boosting

decision trees, artificial neural networks, and kernel-based

models, including a support vector regressor and a Gaussian

process (20). The results showed that all random forest models

performed best using root mean squared error for the evaluation

and did decent using MAPE and mean absolute error.

The results in this study show that all models have

reasonable accuracy as the MAPE for each cost highlighted is

below 50%. This means that all models can be used to predict

the costs to some level of accuracy. However, when compared,

it can be seen that the random forest model is a more

accurate predictor. These results are evident in similar studies

showing that the random forest model is a more accurate

prediction model.
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TABLE 4 Internal validation performance for the three developed
models.

Classifier MAPE (%) final costs

Random forest 21.4 (17.2–26.8)

Decision tree 25.2 (21.4–26.3)

Generalized boosted regression 29.7 (25.2–34.2)

MAPE, mean absolute percentage error.

Scores are reported as means (95% confidence intervals).

Taha et al. 10.3389/fsurg.2022.939079
Implications

One of the implications of the results is that hospitals and

other concerned parties can employ the random forest model to

forecast costs not only for colon surgery but also the costs of

other risks and conditions mentioned previously. This work lays

the foundation for further work and research in this area. This

will allow for better financial calculations for hospitals. Through

such a predictive model, it is possible to better estimate medical

costs, which is especially important when factors such as LOS in

the hospital and ICU, as well as complications such as

anastomotic insufficiency, can have a large financial impact on

the high cost. The results show that the random forest model

provides more accurate predictions compared to other models

like generalized boosted regression and decision tree models. For

concerned parties to achieve more accurate results when

predicting the costs of conditions or any other outcome, the

random forest model should be employed.

Another implication is that there is a need for further research

about the model in terms of enhancing the accuracy of the random

forest model. The results show that for the final costs examined,

the accuracy is more than 20%. This is only reasonable accuracy.

However, it is way before the desired value. As indicated, the

MAPE value of less than 20% indicates a good forecast, while

that of less than 10% shows that the forecast is highly accurate.

While achieving a highly accurate forecast is unlikely, any good

prediction model should give a good forecast. With the random

forest model being the most accurate model, this implies that it

should be developed further to improve accuracy so as to give

more credible results when used to predict outcomes, meaning

further research is needed on the model.

Despite the good implications and the wide range of

applications, the ethical aspect should not be ignored. Naik

et al. have shown in their work that there are currently no

well-defined guidelines when treating people with an

application such as this. They mention that transparency must

be created when working with such algorithms. Furthermore,

weaknesses such as cyber attacks and privacy invasions should

not be ignored if you want to advance this field and research (21).
Limitations of the study

The main limitation of the study is a lack of a representative

sample. In this case, the focus was on patients undergoing colon

surgery. However, in the sample dataset, only 347 individuals

met this criterion. This implies that the sample was not selected

in a manner that made it representative of patients undergoing

colon surgery. The larger the dataset, the more accurate the

results are. However, the limited number of individuals with

common reasons for higher costs implies that it was impossible

to effectively test the developed models in terms of their ability
Frontiers in Surgery 08
to predict costs associated with the disease. For such models,

there is a need for adequate and detailed data to ensure they are

tested thoroughly. Additionally, an overall increase in the sample

size could result in more precise models by looking at the values

in Table 4. Especially, the events per predictor should be bigger.
Conclusion

Postoperative complications such as anastomotic insufficiency

and ICU or hospital LOS increase the cost burden for patients and

hospitals. Also, preoperative conditions like CCI increase the cost.

However, there is no way of predicting these costs so that a patient

or healthcare system can prepare adequately to handle the

condition. This study thereby aimed to develop and validate a

prediction model to accurately predict costs and develop strategies

to eliminate or cover them. Out of the three tested models, the

results obtained based on MAPE analysis showed that the random

forest model is the most accurate. Therefore, the results imply this

model should be adopted for prediction. However, the fact that

MAPE results were mostly above 20% means that further research

should be undertaken to improve its accuracy.
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