AUTHOR=Liang Xiangdong , Wang Yanchao , Pei Long , Tan Xiaoliang , Dong Chunhui TITLE=Identification of Prostate Cancer Risk Genetics Biomarkers Based on Intergraded Bioinformatics Analysis JOURNAL=Frontiers in Surgery VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/surgery/articles/10.3389/fsurg.2022.856446 DOI=10.3389/fsurg.2022.856446 ISSN=2296-875X ABSTRACT=Background

Prostate cancer (PCa) is one of the most popular cancer types in men. Nevertheless, the pathogenic mechanisms of PCa are poorly understood. Hence, we aimed to identify the potential genetic biomarker of PCa in the present study.

Methods

High-throughput data set GSE46602 was obtained from the comprehensive gene expression database (GEO) for screening differentially expressed genes (DEGs). The common DEGs were further screened out using The Cancer Genome Atlas (TCGA) dataset. Functional enrichment analysis includes Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to study related mechanisms. The Cox and Lasso regression analyses were carried out to compress the target genes and construct the high-risk and low-risk gene model. Survival analyses were performed based on the gene risk signature model. The CIBERSORT algorithm was performed to clarify the correlation of the high- and low-risk gene model in risk and infiltration of immune cells in PCa.

Results

A total of 385 common DEGs were obtained. The results of functional enrichment analysis show that common DEGs play an important role in PCa. A three-gene signature model (KCNK3, AK5, and ARHGEF38) was established, and the model was significantly associated with cancer-related pathways, overall survival (OS), and tumor microenvironment (TME)-related immune cells in PCa.

Conclusion

This new risk model may contribute to further investigation in the immune-related pathogenesis in progression of PCa.