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Constructing intervertebral disc
degeneration animal model:
A review of current models
Tongzhou Liang1†, Bo Gao1†, Jinlang Zhou1†, Xianjian Qiu1†,
Jincheng Qiu1, Taiqiu Chen1, Yanfang Liang2, Wenjie Gao1,
Xuemei Qiu1* and Youxi Lin1*
1Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou,
China, 2Department of Operating Theater, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University,
Guangzhou, China

Low back pain is one of the top disorders that leads to disability and affects disability-
adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and
subsequent discogenic pain composed major causes of low back pain. Recent
studies have identified several important risk factors contributing to IDD’s
development, such as inflammation, mechanical imbalance, and aging. Based on
these etiology findings, three categories of animal models for inducing IDD are
developed: the damage-induced model, the mechanical model, and the
spontaneous model. These models are essential measures in studying the natural
history of IDD and finding the possible therapeutic target against IDD. In this review,
we will discuss the technical details of these models, the duration between model
establishment, the occurrence of observable degeneration, and the potential in
different study ranges. In promoting future research for IDD, each animal model
should examine its concordance with natural IDD pathogenesis in humans. We
hope this review can enhance the understanding and proper use of multiple animal
models, which may attract more attention to this disease and contribute to
translation research.

KEYWORDS

intervertebral disc degeneration, nucleus pulposus, intervertebral disc, animal model, surgery

technique, orthopedics surgery

1. Introduction

Low back pain (LBP) is one of the most common disorders affecting elder and middle-aged

persons. It has been estimated that low back pain is the fourth most prevalent disease that causes

disability worldwide (1). In the last 30 years, DALYs of low back pain has increased by

approximately 33% (2). In the US, the total cost of LBP is 7.4 billion US dollars in 2008 (3).

Given the high prevalence and high cost of LBP, it is urgent to search for the pathogenesis of

LBP and develop treatments for alleviating LBP (4).

Intervertebral disc degeneration (IDD) is one of the major causes of LBP (5–7).

Approximately 40% of LBP presented with the feature of IDD (8). The Intervertebral disc

consists of three major histological distinct components: annulus fibrosus (AF), nucleus

pulposus (NP), and cartilage endplate (EP). In undegenerated intervertebral disc, NP was

surrounded by AF with CEP covering the interface between AF and bony vertebrae. Known

risk factors for IDD include excessive mechanical loading, obesity, spine imbalance, diabetes

mellitus, and genetic predisposition (9–13). When the process of IDD commences, internal

and external stimuli triggers inflammation and oxidative stress. The overproduction of

inflammatory mediators, such as tumor tumor necrosis factor-alpha (TNF-α), interleukin

1-beta (IL-1β), and interleukin 6 (IL-6), led to increased expression of extracellular matrix
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(ECM) degradation enzymes (14, 15). The overproduction of ECM

degradation enzymes leads to loss of collagen type II and aggrecan

in NP and subsequently compromises the water-retaining ability

(16). Loss of water and ECM components leads to biomechanical

changes in the intervertebral disc and exacerbates IDD (17, 18).

It is of great significance to develop and utilize IDD animal

models to understand the pathogenesis mechanism and test novel

treatments. We elaborate on currently available animal models and

provide an overview of the utility of these models. In this review,

we tried to present the advantages and disadvantages of these

models, discuss the duration of constructing these models, and

include some necessary technical details of model construction

(Figure 1). Finally, we hope this review will contribute to the

appropriate selection of IDD models and promote the development

of new therapeutic strategies.
2. Methods for constructing IDD animal
model

2.1. Damage-induced model

2.1.1. Needle puncture model
The needle puncture model was established through puncture of

the intervertebral disc from either the posterior or anterior direction.

This model is most commonly used in small animals, including rats,

mice, and rabbits. However, needle puncture is also applicable in

establishing the IDD model on larger animals like dog (19), sheep

(20), bovine (21), and rhesus monkeys (22). The needle puncture

model is easy to install by inserting the needle into AF without

disrupting NP. The insertion depth can be determined by

radiography monitoring or the length of the needle emerged. After

insertion, the needles are usually placed in the disc for a period of

30 s to 1 min (23, 24). A proportion of studies rotated the needle

for 180°–360° before being placed in the disc (25, 26).

Different diameters of needles are used to induce the IDD animal

model. Chen et al. inserted a 21G needle into the AF of rats and IDD

was observed in the corresponding level 4 weeks post-operation (27).
FIGURE 1

Summary of the animal models demonstrated in this review, including the dam
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Our experiments also confirmed the successful induction of IDD

histologically and radiographically four weeks after 21G needle

insertion (28). Smaller and larger needles are also demonstrated

to induce IDD in rats post-surgery. Issy et al. showed that 30G

needles insertion can cause IDD 6 weeks post-operative (29).

Matta et al. performed the puncture model with 32G needles,

and the animals were euthanized ten weeks after modeling (30).

In rats inserted with larger needles (20G), the occurrence of

IDD is more rapid than minor needle insertion as the

histological IDD was observed one week after injury (31, 32).

Masuda et al. compared the histological damage of needle

puncture using 16G, 18G, and 21G needles in the rabbit model

of IDD. Generally, these studies suggested that the radiographic

and histologic damage is more severe in mice punctured with a

larger needle (33). In large animals, a larger size of needles is

needed to induce the IDD model. Tellegen et al. inserted 18G

needles on the AF of dogs under the monitoring of intra-

operative fluoroscopy. These studies suggested that the

development of IDD is closed related to the diameter of needles

and choosing the appropriate needle and sampling time are

crucial to the conclusion.

Punctures in both lumbar (L) discs and coccygeal (Co) discs can

induce IDD. In the lumbar disc puncture model, skin incisions are

needed to expose the lumbar disc. Kim et al. performed a right

hemilaminectomy to expose the L5/6 disc and inserted a needle.

Von Frey test, Basso-Beattie-Bresnahan scale, and the horizontal

ladder test found that the rats emerged behavior in response to

pain as early as 1-week post-surgery (34). Coccygeal disc puncture

can be performed with or without fluoroscopy (35, 36). Co5/6,

Co6/7, Co7/8, Co8/9, and Co9/10 levels are usually selected for the

IDD modeling (37, 38). Isa et al. established the IDD model by

puncturing Co4/5 and Co5/6 discs and then investigated the pain

response in the ventral base of the tail by Hargreaves test, von Frey

test, and tail-flick test (39). Interestingly, lumbar discs and

coccygeal discs puncture may represent the different modeling

scenarios. In evaluating the behavioral parameters of IDD, lumbar

disc puncture seems more resemble with IDD in patients since it

may induce both leg and back pain. The coccygeal discs puncture
age-induced, mechanical, and spontaneous models.
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models are easier to perform and may benefit the research for

alleviating the disc degeneration process.

Needle puncture combined with intradiscal injection of reagents

also represents a method for constructing the IDD model. Since pro-

inflammatory factors contribute to the onset of IDD (5), injection of

pro-inflammatory factors such as TNF-α and IL-1β into the

intervertebral disc can induce IDD in different animal models

(34, 40). Notably, the pain response to needle puncture is

associated with the expression level of pro-inflammatory cytokines

in the dorsal root ganglion (41). Norcross et al. compared injection

of chondroitinase ABS or phosphate-buffered saline into the

intervertebral disc of rats. Disc height and histological examination

showed that chondroitinase injection leads to the observable

degeneration on day 14 of experiment (42). Complete Freund’s

adjuvant (CFA), a tissue destruction reagent, was injected into to

intervertebral disc to induce IDD (43). The rats were subjected to

the behavioral test and found CFA injection successfully induced

back pain and inflammatory factors accumulation (44). Wei et al.

injected pingyangmycin or bleomycin into the subchondral bone

adjacent to the lumbar intervertebral disc of rhesus monkeys, and

degeneration was observed by MRI 3 months after injection (45, 46).
2.1.2. Discectomy and nucleotomy model
Discectomy is the standard surgical procedure for treating

intervertebral disc herniation caused by IDD (47). Discectomy can

relieve the nerve root compression by disc herniation, but the loss

of NP tissue may cause the subsequent collapse of the

intervertebral space (48). Therefore, discectomy model is suitable

for studying disc-healing therapy, especially implants or

biomaterials. The discectomy was performed on multiple animals,

including rats (49), rabbits (50), sheep (51), pigs (52), and bovine

(53). Since many studies suggested that goats and sheep possess

similar biomechanical properties that are similar and comparable

to the human spine, both animals are considered to be suitable for

investigating spine mechanical properties (54, 55). Sloan et al.

performed the discectomy in 3-4-year-old Finn sheep by

performing a 3 × 10 mm annulotomy and then removing 200 mg

of NP tissue (56). The intervertebral discs were subjected to

histological examination six weeks after surgery. NP heterogeneity,

AF lesions, and increased proteoglycan staining were observed in

AF (56). Oehme et al. investigated a mini-invasive approach in

sheep by making a 3 × 5 mm rectangular annular incision on AF

using an 11-blade scalpel (57). A mixture of NF and AF tissue

weighing 200 mg was removed.

Nucleuotomy refers to the partial excision of NP tissue with little

disturbance of AF structure (58). Schwan et al. introduced a novel

surgical approach to performing nucleotomy (59). A skin incision

was made, and the corresponding disc level was determined with

x-ray fluoroscopy. The discs were punctured with a straight awl

through the whole layer of AF, and surgical channels were created.

A 12 cm long rongeur was inserted through the tunnel, and

approximately 0.15 cm3 of NP tissue was removed (59, 60). Partial

nucleotomy resulted in the loss of disc height six weeks after

surgery. Takeoka et al. performed percutaneous nucleotomy in rats

according to the method by Nishimura et al., and loss of disc

height was observed as early as seven days post-surgery (61).
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2.2. Mechanical model

2.2.1. Spine instability model
In 1991, Miyamoto et al. proposed a model of constructing

cervical spondylosis by surgically induced spine instability (62).

The posterior paravertebral muscles were separated, and the

cervical, thoracic and lumbar spine was exposed. Then the spinous

processes and attached supraspinous and interspinous ligaments

were resected. The model was commonly used in constructing the

IDD model in the lumbar spine and is therefore referred to lumbar

spine instability (LSI) model. Zheng et al. applied the L3–L4 LSI to

investigate the contributory role of parathyroid hormone in

maintaining intervertebral disc homeostasis (63). Xue et al. further

exploited the model to examine the role of skeletal interoception in

causing EP degeneration and spinal-associated pain (64). Recently,

Liu et al. demonstrated that the LSI model leads to spinal

hypersensitivity in DRG, which explains the pain caused by IDD

(65).

As for constructing the caudal spine instability model, Bian et al.

stapped through the full depth of the Co7/8 AF, and then removed

the NP (66). The adjacent Co8/9 intervertebral disc was subjected

to histological analysis four weeks post-surgery and confirmed the

successful establishment of the IDD model. Another study by the

same group also made an incision into the whole layer of AF and

performed NP removal to induce IDD. The bony EP was then

analyzed and found that CSI leads to bony EP porosity of the

same level (67).
2.2.2. Tail-looping model
Clinical observations suggested spinal deformities such as

adolescent idiopathic scoliosis (AIS) and Scheuermann’s disease are

associated with IDD (68, 69). The spine deformity alters the

normal pattern of force distribution and undermines the

mechanical property. Tail-looping model is a novel method to

construct the IDD model by creating force imbalance within the

intervertebral disc. Saikai et al. looped the tail of mice and made

fixation between Co5 and Co13 vertebrae with 0.8-mm stainless

steel wire (70). The extra vertebrae were excised. The NP of Co7/8,

and Co8/9 discs were aspirated to generate more severe

degeneration. In this model, the Co2/3 and Co3/4 discs were

selected as control discs, while Co10/11 and Co11/12 discs were

chosen as mildly degeneration discs. The researchers demonstrated

that histological severity correlates with previous treatment, and

degeneration occurred as early as eight weeks after looping (70).

Nakamichi et al. established the tail-looping induced IDD model

by joining Co2 and Co9 vertebrae together (71). In this study,

outer AF was removed, and the role of Mohawk-induced AF

regeneration was explored. Further, Huang et al. modified the

looping method by tying the tail with thin wire instead of stitching

the vertebrae. The model was successfully constructed after two

months of fixation and continued with the adenovirus treatment

for one month before sample collection (72).
2.2.3. Axial-compressing external fixation devices
Under the condition of compression and angulation, the

intervertebral discs may become narrowed and stiffer (73).
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MacLean et al. annexed external rings to adjacent levels of

intervertebral discs by inserting 0.5 mm pins transfixing the

vertebral bodies percutaneously (74). Stokes et al. modified the

method by installing rings either parallel to each other or with an

angle of 15-degree (75). Their results showed that 15-degree

angulation plus compression yielded greater disc space loss. Hirata

et al. exerted temporary static compression using an Ilizarov-type

apparatus with springs between Co8 and Co10 (76). An axial force

of 1.3 MPa was exerted and subsequent analysis found that the

compression reproduced different stages of degeneration. The same

compression pressure was adopted by other studies (77, 78),

suggesting this pressure may be the appropriate pressure for

constructing model. In a recent study, Ji et al. developed a novel

device by inserting Kirschner wire into Co8 and Co10 vertebral

bodies (79). Then the tail was bent for 40° and springs are used to

exert 1.8N and 4.5N of force on Co8/9 and Co9/10 intervertebral

disc. Pfirrmann grades and histological examinations revealed the

occurrence of IDD two weeks after surgery. The severity of

degeneration correlates positively with the force exerted (79).

In addition to constructing the IDD model on a histological and

radiographic level, the axial-compressing external fixation devices

can simulate pain caused by IDD. Miyagi et al. used both the

compression model and needle puncture model to establish IDD in

rats and found that the pro-inflammatory factors were elevated

(80). Moreover, the positive labeling of calcitonin gene-related

peptide (CGRP) neurons increased, suggesting a potential

mechanism IDD leads to low back pain (80). Since many studies

have shown neurogenic factors like brain-derived neurotrophic

factor (BDNF), nerve growth factor (NGF), and CGRP and closely

related to discogenic pain of IDD (81, 82), the compression model

is applicable in pain-related phenomenon.
2.2.4. Vibration model
High-frequency, low-amplitude whole-body vibration (WBV) is

a common physical therapy in some disorders. Notably, WBV has

been used as an adjuvant treatment for osteoporosis, muscle

weakness, and low back pain (83, 84). However, it remains

controversial whether WBV retarded the progression of IDD.

Clinical observations found that workers exposed to occupational

vibration are susceptible to IDD (85). Studies have linked vibration

exposure with increased matrix metalloproteinase and decreased

ECM (86), suggesting vibration is a potential risk for IDD

progression. In a study by McCann et al., they applied clinically

used vibration frequency (45 Hz with peak acceleration at 0.3 g for

30 min per day and 5 days per week) on mice for four weeks (87).

The morphologic grade was analyzed and confirmed the IDD

occurrence, especially characterized by AF degeneration.

Furthermore, they found that 4-week WBV followed by 4-week

cessation did not reverse the IDD in mice, suggesting the damage

is permanent (88). Zeeman et al. demonstrated that 8 Hz and

15 Hz WBV is associated with long-lasting cervical and lumbar

pain in rats (89), indicating the WBV model may also be useful in

pain-related research. Although it is now known that WBV

contributes to the development of IDD and IDD-related pain, the

ideal vibration mode (time, frequency, orientation) to induce IDD

still needs more investigation (90).
Frontiers in Surgery 04
2.2.5. Bipedal animal model
The bipedal animal model was established by forelimb

amputation in rodents. After forelimb amputation, a forced bipedal

stance mimics the bipedal gait of human(91). Liang et al.

performed amputation surgery on 1-month-old male rats and the

rats were kept in custom-made cages to force them to stand in an

upright position (92). The rat was kept for 5 months and

7 months before histological analysis. Loss of cervical disc height

was observed in the amputation surgery group five months after

surgery, and the height loss was more severe seven months after

surgery. The down-regulation of Col2a1 and aggrecan was also

observed and may decrease anti-compression capacity (92). Using

the bipedal rat model, Liu et al. discovered ligustrazine attenuate

cartilage EP hypertrophy, a characteristic of IDD, within an

observation period of 9 months (93). Kong et al. Found the

myocardin-related transcription factor A (MRTF-A) inhibitor

CCG-1423 attenuated IDD progression over six months (94).

Although the bipedal animal model mimics the upright posture

similar to human beings, this model may take as long as six

months to gain a histologically observable degeneration. Another

concern that hampers the application of this model is animal

welfare since amputation surgery causes trauma and alters the

feeding habits of animals (91).

In addition to forelimb amputation, bipedal models are modified

to yield better potency. Liang et al. performed both brachial plexus

rhizotomy and tail amputation on 4-weeks-old female rats (95).

The rats were euthanized six weeks post-surgery and lumbar discs

were dissected (L1–S1) and subjected to qPCR analysis. Data

showed the loss of ECM matrix in six weeks post-surgery,

suggesting the efficacy of this model (95). Recently, Ao et al.

developed a novel bipedal model utilizing the water-escape nature

of rodents without amputation surgery (96). The mice were kept in

a chamber with a 5 mm depth of water on the bottom of the

chamber. The mice were kept in the chamber for 6 h each day and

were allowed to access water and food freely for 2 h. Because of

the water-escape nature, the mice are more likely to keep an

upright position in the chamber. Degeneration of the facet joint

and the intervertebral disc was observed 6-week after treatment

(96). Lao et al. developed a hot plate cage to exert accumulated

spinal axial force on mice’s spine (97). The mice were placed on

the 50 °C hot plate for 15 min per day and were forced to jump

before returning to the regular cage. IDD was observed one-month

post-modeling and progressed more severely in 3-months of

observation (97).
2.3. Spontaneous model

2.3.1. Genetically modified mice model
Certain gene deficiency impairs intervertebral disc metabolic

homeostasis and structural integrity. Secreted protein acidic and

rich in cysteine (SPARC) is a matricellular protein involved in the

pathogenesis of IDD (98). The expression level of SPARC

decreased with aging and intervertebral disc degeneration.

Moreover, it has been demonstrated that SPARC deletion

accelerates IDD in mice (98, 99). Histological analysis revealed that
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herniations of lower lumbar discs in SPARC-null mice occur as early

as 14-month-old. Millecamps et al. discovered that in addition to

typical IDD pathologic features, the SPARC-null mice also

developed the feature of chronic back pain (100). The chronic back

pain was characterized by hind paw sensitivity to mechanical and

cold stimuli, intolerance to axial stretching, and motor impairment,

which all implied nerve root impairment. More studies confirmed

the association between low back pain and IDD in the SPARC-null

mice (101). In a study by Lee et al., the SPARC-null mice

developed IDD and low back pain at 14 months (98). Krock et al.

found that the SPARC-null mice presented with low back pain at a

relatively young age of 7–9 months (102).

SM/J mice is a strain characterized by lacking cartilage

regeneration ability (103). It is reasonable to propose the

hypothesis that intervertebral disc homeostasis in SM/J mice may

be disrupted. Choi et al. found that the cellularity and matrix

components of SM/J mice are altered at a young age (104). Severe

IDD was observed in 17-week-old SM/J mice, marked by increased

apoptosis and collagen degradation. Moreover, the intervertebral

disc of SM/J mice showed increased stiffness and the vertebral

bone showed decreased bone quality (104). Zhang et al. compared

LG/J mice, a mice strain characterized by a remarkable ability to

heal after cartilage injury, with SM/J mice in spontaneous IDD

(105). Their result suggested the potential use of combining LG/J

mice and SM/J mice in the genetic and biological study of IDD.

Study by Novais et al., demonstrated that SM/J mice have

increased susceptibility to IDD. However, the same study found

that the LG/J mice showed increased disc calcification and

degeneration compared with the BL6 strain, which is inconsistent

with research mentioned above (106).

Studies have identified many genes associated with IDD, and

knockout of these genes may also replicate the phenotype of

spontaneous IDD. For example, collagen type II, encoded by the

Col2a1 gene, has been identified as the critical regulator in

intervertebral discs embryonic development (107). Col2a1

knockout showed the feature of AF glycosaminoglycans loss and

EP degeneration in 9-month-old mice (108). Deletion in other

collagen encoding genes, including Col9a2 (109), and Col9a1 (110),

also exhibited the feature of spontaneous IDD. Besides the

extracellular matrix components, loss in other genes (e.g,. Smad3

(111), IL-1rn (112), Hif-1a (113), Apoe 114) may also contribute

to IDD’s pathogenesis (Table 1). However, because IDD has long

been considered a heterogeneous disease with different etiology, the

use of the gene-specific knockout mice model may be limited.

2.3.2. Aging-induced IDD model
In 1988, Silberberg demonstrated that the sand rat (Psammomys

obesus), a small desert rodent, is susceptible to age-related IDD (127).

The severity of IDD was correlated with greater age. Helen et al.

examined the age-related IDD of sand rats in a more detailed

manner. The intervertebral discs of younger (2–11.9 months) and

older (12–25 months) animals were collected and subjected to

histological analysis. Their results suggested that the cervical spine

of both younger and older sand rats is more likely to develop

osteophytes than the lumbar spine. Moreover, the occurrence of

osteophytes correlates with the extrusion of the intervertebral disc

(128).
Frontiers in Surgery 05
Some previous studies have demonstrated that mice are less

susceptible to age-related IDD, which may limit the application of

this model to some extent. For example, Marfia et al. showed that

half of the mice did not exhibit IDD via MRI analysis in 19

months (129). Ohnishi et al.explored the availability of age-related

IDD model in mice by MRI analysis followed by Pfirrmann

classification and histological analysis followed by classification

proposed in this research (130). They analyzed the mice aged 6

months, 14 months, and 22 months with both Pfirrmann

classification and histological classification and found the feature of

IDD progressed with increased age. The 14-months-old mice

exhibited mild IDD while the 22-months-old mice developed

moderate to severe IDD, which suggested that at least a 14-month

follow-up is required for age-related IDD in C57BL/6 mice (130).

Aging alters IDD’s metabolism in many aspects, such as elevated

chondrocyte hypertrophy and loss of notochordal markers (131).

The age-related IDD mice model is also widely used in

investigating factors associated with senescence and longevity. Lin

et al. found that tenomodulin (Tnmd), an anti-angiogenic

transmembrane glycoprotein, maintained the structural integrity

and matrix gene expression in outer AF and NP (132). Loss of

Tnmd gene leads to early-onset IDD in 6-month-old mice and the

IDD progressed more severely in 18-month-old mice compared

with wild-type mice. Novais et al. investigated the role of senolytic

drugs in ameliorating age-related IDD and defined different age

groups, namely healthy adult (6-month-old), middle-aged

(14-month-old), aged (18-month-old), and old-aged (23-month-old)

(133). The mice started senolysis treatment at 6,14 and 18 months

and IDD was harvested at 23 months.
3. Discussions

Intervertebral disc degeneration is a disease with complex

etiology and clinical heterogeneity. Therefore, it is hard to find an

ideal animal model that mimics all the inherent pathophysiology of

IDD. Among these pathophysiology changes, some features are

considered extra important, including loss of extracellular matrix

and proteoglycans, biomechanical property alternations, and

increased cell death. Discogenic pain is not necessarily associated

with the severity of IDD (134), but the pain is the most disturbing

symptom and chief complaint in IDD cases. Lack of early signs

impairs the ability of early identification of IDD. Thus the disease

is commonly irreversible at a later stage. These remind us that

more in-detail studies into the common pattern of human IDD

development are needed. Encouragingly, some recent studies

combined new technology, including single-cell RNA-sequencing,

with human specimens to discover the disease’s very nature.

Recent studies by Gan et al. (135), Gao et al. (136), Han et al.

(137) and Zhang et al. (138) made delightful exploration into the

possible reason for IDD initiation. Subsequent studies are needed

to determine the similarities and differences between patients with

different natural disease histories.

In developing appropriate animal models, some important

considerations need extensive attention. Firstly, the upright

position determined the unique mechanical property of the human

spine and intervertebral disc. Secondly, the notochordal cells
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TABLE 1 Genetically modified or certain strain mice that exhibits features of
early IDD.

Strain Method of
analysis

Observed onset
of

degeneration

Year

SPARC-null mice (99) Histological
analysis
Radiographic
analysis

14-month-old 2005

SPARC-null (100) Behavioral assays
Histological
analysis

78-week-old 2015

SPARC-null mice (102) Behavioral assays
Radiographic
analysis
Biochemical tests:
ELISA

7-month-old 2019

SPARC-null mice (115) Biomechanical test 18-month-old 2020

SPARC-null mice (98) Behavioral assays
Biochemical tests:
qPCR

14-month-old 2022

SM/J mice (104) Histological
analysis
Biomechanical test

17-week-old 2018

SM/J mice (105) Histological
analysis
Biochemical tests:
proteomes

8-week-old 2018

SM/J mice (106) Histological
analysis
Radiographic
analysis: μCT

6-month-old and 23-
month-old

2020

LG/J mice (106) Histological
analysis
Radiographic
analysis: μCT

6-month-old and 23-
month-old

2020

Bmal1 CKO
(Col2a1CreBmalfl/fl) (116)

Histological
analysis
Radiographic
analysis: x-ray

6-month-old and 12-
month-old

2017

SktGt/Gt (117) Histological
analysis

8-week-old 2006

Col IX KO (118) Histological
analysis
Radiographic
analysis: μCT

6-month-old and 10-
month-old

2016

TonEBP-deficient (119) Histological
analysis
Radiographic
analysis: μCT

22-month-old 2020

ERCC1-deficient (120) Histological
analysis

20-week-old 2010

Il1rn KO (125) Histological
analysis
Biochemical tests:
qPCR

55-day-old and 155-
day-old

2013

IL-1 KO (112) Histological
analysis
Radiographic
analysis: μCT

12-month-old and
20month-old

2019

(continued)

TABLE 1 Continued

Strain Method of
analysis

Observed onset
of

degeneration

Year

MCT4 KO (122) Histological
analysis
Radiographic
analysis: μCT

8-month-old 2020

Sox9 CKO
(AcanCreERT2Sox9fl/fl)
(123)

Histological
analysis
Radiographic
analysis: μCT

12-month-old 2020

Mkx KO (71) Histological
analysis
Biochemical tests:
qPCR & Western
Blotting

12-month-old 2016

Tgfbr2 CKO
(AcanCreERT2;Tgfbr2fl/fl)
(124)

Histological
analysis
Radiographic
analysis: x-ray

6-month-old and 12-
month-old

2018

CCN2 CKO (NotoCre;
CCN2fl/fl) (125)

Histological
analysis

12-month-old and
17-month-old

2013

FOXO1/3/4 CKO
(Col2a1Cre; Foxo1fl/fl;
Foxo3fl/fl; Foxo4fl/fl)
(126)

Histological
analysis

4-month-old and 6-
month-old

2018

FOXO1/3/4 CKO
(AcanCre; Foxo1fl/fl;
Foxo3fl/fl; Foxo4fl/fl)
(126)

Histological
analysis

6-month-old and 12-
month-old

2018

Smad3 KO (111) Histological
analysis

30-day-old and 60-
day-old

2009

Hif1α KO (ShhCre;
HIF1αfl/fl) (113)

Histological
analysis

6-week-old and 12-
week-old

2013

Kindlin2 CKO
(AcanCreERT2;Kindlin-2fl/fl)
(78)

Histological
analysis
Radiographic
analysis: μCT

18-week-old 2022
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undergo apoptosis and differentiation after birth and are absent in

the adult human spine. But notochordal cells may remain in the

intervertebral discs in certain specimens, which may promote the

regeneration ability of damaged discs. Thirdly, the duration

between modeling and detectable degeneration should be taken

into consideration. If the degeneration occurs too soon, it is

unlikely to replicate the actual circumstances in IDD. Severe

structural destruction will conceal the effectiveness of certain

therapy. Lastly, the ethical and cost issue should also be taken into

consideration.

In this review, we elaborated on the commonly used method to

construct IDD models, which mainly fall into three categories:

damage-induced, mechanical, and spontaneous. Damage-induced

models make punctures or incisions into the intervertebral discs

and impair the integrity of the disc structure, while mechanical

models exert external force into the disc and accelerate the

degeneration process. The spontaneous models focus on common

IDD causes, such as aging and collagen loss, which spontaneously

lead to IDD development. Each category replicates a certain stage
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of IDD to some extent. Therefore, in searching for possible

treatments for IDD, we should emphasize the importance of

selecting correct animal models. For example, SPARC-null mice

develop significant chronic back pain, making it suitable for

researching IDD-related pain. The discectomy model mimiked the

clinical situation of disc resection and seemed ideal for developing

disc regeneration therapy. Integrating more than one IDD animal

model into one study is becoming more common (139).

Combining these models is a helpful approach to gaining solid

evidence for the efficacy of specific interventions.
4. Conclusions

In conclusion, animalmodels are indispensable for understanding,

characterizing, and treating disc degeneration. However, despite the

methods listed in this review, there is still no consensus on which

model best mimics IDD. More importantly, there is still some gap

between model-induced IDD and actual clinical features. Further

studies are needed to determine the fidelity of these models and

eventually contribute to developing new IDD therapeutic strategies.
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