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Background: According to intervertebral space division, the characteristics of
interbody bone graft fusion after transforaminal lumbar interbody fusion
(TLIF) were assessed via computed tomography (CT) scan to provide a
theoretical basis for selecting the bone grafting site of interbody fusion.
Methods: The medical records of 57 patients with lumbar spinal stenosis and
disc herniation treated with TLIF were analysed retrospectively. In total, 57
segments received lumbar interbody fusion. A thin-layer CT scan was
performed to evaluate fusion in each zone of the fusion space.
Results: The fusion rates were 57.89% (n= 33) in the anterior cage zone,
73.68% (n= 42) in the posterior cage zone, 66.67% (n= 38) in the
decompression zone, 26.32% (n= 15) in the contralateral decompression
zone and 94.74% (n= 54) in the inner cage zone. There were significant
differences among the fusion rates of the five zones (P < 0.001). Further
pairwise comparison revealed that the fusion rates in the inner cage
significantly differed from the anterior and posterior cages and
decompression and contralateral decompression zones (P= 0.001, 0.002,
0.001 and 0.001, respectively).
Conclusion: We think the central cage zone (i.e., inner cage) should be the
focus of bone grafting. Although there is small volume of bone graft on the
posterior cage zone, the fusion rate is relatively high, only secondary to the
inner cage zone. The fusion rate is of the contralateral decompression zone
is lower although there is a bone graft.

KEYWORDS

lumbar vertebra, interbody fusion, CT, intervertebral space division, inner cage

Introduction

Lumbar interbody fusion (LIF) has developed into the standard of care for

symptomatic lumbar spinal stenosis, spinal instability, spondylolisthesis, and

degenerative scoliosis (1, 2). An interbody cage is commonly used during

intraoperative fusion since it is important in achieving a stable interbody fusion of

spinal units, restoring the lumbar lordosis and achieving a high interbody fusion rate
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in lumbar fusion surgery (3–5). However, surgical

complications, including post-LIF non-union or

pseudarthrosis, implant loosening, and cage subsidence,

resulting in poor clinical outcomes, still remain a major

challenge (6). Despite the decades of effort, most recent

studies indicated that the non-union rates after LIF still

ranged from 7% to 20%, with a significantly higher incidence

in cases spanning 3 or more spinal levels (7–10).

In order to improve the fusion rate, some scholars began to

pay attention to the location of fusion after LIF. Seo (11) found

that the fusion rate for the inner cage area reached 100% after

posterior lumbar interbody fusion (PLIF). However, the fusion

in the lateral space outside of cages was not satisfactory,

though reasonable (72.3%). Transforaminal lumbar interbody

fusion (TLIF) approach has satisfactory clinical outcomes and

offers various potential benefits over conventional posterior

lumbar interbody fusion, including an increased fusion

surface area, less blood loss, less wound infections, less

reoperation, less retraction on the thecal sac and conus

medullaris, lower incidence of neural element injury and

lower subsidence (11–14). Ghasemi et al. reported that TLIF

was superior to PLF with respect to functional outcome and

fusion rate (92% vs. 81%) (15). Plantz also found no

significant difference in PRO at two-year follow-up between

PLIF and TLIF for the treatment of lumbar disc degeneration.

PLIF is associated with a five times higher risk of dural tears

(16). Chi (2) also believed that PLIF should be avoided in the

management of lumbar degenerative disc disease due to the

inferiority of overall complications, and TLIF seems to have

the safest profile in terms of neural, spinal, and vascular events.

With minimally invasive fusion technology, the operator

can achieve fusion with less trauma and bone grafting.

However, there have been few studies about the specific

location of fusion after TLIF. Hence, this study aimed to

identify the fused segments in each zone on the intervertebral

space plane after open TLIF, analyse and compare the fusion

rates of different zones and explore the zone with a high

fusion rate.
Materials and methods

Patients

57 patients with lumbar degenerative diseases who

underwent posterior lumbar spinal canal decompression,

transforaminal interbody fusion, bone grafting and internal

fixation at our hospital from March 2013 to August 2017

were retrospectively included. The inclusion criteria were

patients with diagnosis of single-segment lumbar degenerative

diseases, including lumbar spinal stenosis (LSS), lumbar disc

herniation (LDH) and lumbar spondylolisthesis (grade I); and

those who did not respond to non-surgical treatment for
Frontiers in Surgery 02
more than half a year and who experienced disease

recurrence; and those who underwent single-segment TLIF.

The exclusion criteria were patients with previous lumbar

surgery history, severe lumbar deformity, lumbar

spondylolisthesis and spondylolysis, osteoporosis or

ankylosing spondylitis and other medical conditions that were

not suitable for surgical treatment.

The fused segments were distributed as follows: L1–2, L2–3,

L3–4, L4–5 and L5–S1 in 1, 5, 4, 36 and 11 patients, respectively.

All patients provided written informed consent, and this study

protocol was performed in accordance with the Declaration of

Helsinki reviewed and was approved by the Ethics Committee

of The Hospital.
Surgical methods

The operations were performed by the same surgeon with

more than 10 years of experience in lumbar interbody fusion.

The surgery was performed with the patient in the prone

position under general anesthesia (17). A posterior median

approach was used to expose the vertebral plate and the

articular process of the operative segment. Firstly, four

pedicle screws were used. Then, the upper and lower

vertebral plates and unilateral facet joints of the operative

segment were removed to expose the dural sac and nerve

root and protect the nerve. Afterwards, the intervertebral

disc was taken out, and the cartilage plates of the upper

and lower vertebral bodies were removed with a ring

curette. Subsequently, the resected autologous bone was

sheared and transplanted into the intervertebral space.

Then, an appropriately sized cage (Johnson & Johnson)

made of PEEK material was placed into the autologous

bone, which was then set in the intervertebral space, with a

total bone graft volume of 5–10 (mean: 7) ml. Finally, the

fixing rod was installed, and the screws were tightened after

longitudinal pressurisation between them.
Division of fusion zones

The fusion area was divided into five zone based on the

markers in the cage and the challenges in making bone

beds during surgery. The bone graft area in the cage was

marked as the inner cage zone, the anterior cage area

(ventral) as the anterior cage zone, the posterior cage area

(dorsal) as the posterior cage zones, the decompression side

of the cage as the decompression zone and the contralateral

decompression side as the contralateral decompression zone

(Figure 1).
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FIGURE 1

Fusion area in the implanted cage. 1: Decompression zone. 2:
Contralateral decompression zone. 3: Anterior cage zone. 4:
Posterior cage zone. 5: Inner cage zone.
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Determination of intervertebral fusion

The fusion space and successful fusion were assessed via

sagittal 2D lumbar CT scan reconstruction (18), and fusion

was defined as the presence of trabecular bridging (19, 20).
Evaluation method

Fusion, which was defined as the clear growth of the

trabecular bone into the upper and lower vertebral bodies in

any zone (21), was evaluated via a 1-mm thin-layer CT scan

(Figure 2). The fusion in each zone was assessed via sagittal

two-dimensional CT scan reconstruction (Figure 3). Non-
FIGURE 2

A 71-year-old Male patient received cage implantation after surgery for lumbar
3 days revealed good bone filling in the inner cage zone but no bone graft in
remodelling and passage of the bone trabecula in the inner cage zone and t
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fusion was defined as the absence of continuous growth of the

trabecular bone into the upper and lower vertebral bodies at

any level (13, 14). Three senior spine surgeons performed

the evaluation, of whom two reached a consensus regarding

the final grade of each case. CT scan was used to evaluate the

fusion rate after TLIF, and patients with follow-up time for at

least 1 year after TLIF were included to improve the accuracy

and rationality of the evaluation.
Clinical assessment

All patients underwent a three-dimensional CT scan and

reconstruction of the lumbar spine during follow-up (mean,

2.5 years; range, 1–5.5 years). Clinical outcomes of patients in

our study were assessed by visual analog scale (VAS),

oswestry disability index (ODI) and Japanese Orthopaedic

Association (JOA) scores. VAS of leg pain, ODI scores and

JOA scores were recorded before surgery, 1-week post

operation and at the last follow-up.
Statistical analysis

Statistical analyses were performed using SPSS 24.0 software

(IBM SPSS, the USA). Continuous numerical data were

expressed as means ± SD and categorical data were expressed

as percentages (%). The fusion rates of the five zones were

compared using the chi-square test. The comparison between

every two zones was corrected using the Bonferroni method,

and then were analysed using the chi-square test. Repeated
spinal stenosis. (A) Sagittal lumbar CT scan performed at postoperative
the posterior cage zone. (B) CT at postoperative 3 years showed bone
he posterior cage zone.
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FIGURE 3

For lumbar 4-5 TLIF, the decompression side is on the left, and 2D CT reconstruction in our hospital was scanned from right to left. From (A–C), the
opposite side of decompression was observed continuously from the first image until the appearance of the cage marker. (D–F) is the front, inside
and back areas of the cage, and the marker was observe from one side of the cage to the other side. (G–I) showed the decompression area, and the
last image was observed after the marker on the other side of cage disappeared.

TABLE 1 Characteristics of patients.

Total patients (n) n = 57

Male, n (%) 25 (43.86)

Age (years) 57.93 ± 12.71

Xu et al. 10.3389/fsurg.2022.1004230
measures analysis of variance (ANOVA) was used to analyse

VAS of leg pain, ODI scores and JOA scores before surgery,

postoperative 1-week and at the last follow-up. Two-tailed

probability value of P < 0.05 was considered as statistically

significant.

BMI 25.0 ± 3.54

BMD −0.6 ± 1.8

Follow-up time (years) 2.49 ± 1.29

Level, n (%)

L1–2 1 (1.75)

L2–3 5 (8.77)

L3-4 4 (7.02)

L4–5 36 (63.16)

L5–S1 11 (19.30)

Diagnosis, n (%)

Lumbar spinal stenosis 38 (66.67)

Lumbar disc herniation 6 (10.53)

Lumbar spondylolisthesis 13 (22.80)

BMI, Body mass index; BMD, Bone mineral density.
Results

The baseline data were shown in Table 1. In total, there

were 25 men and 32 women aged 25–78 (mean: 57.9) years.

The fusion rates of the five zones were assessed by

comparing the fusion of the same segment in each patient.

The fragment was considered fused if any of the five zones

met the fusion criteria. A total of 55 fused segments (98.2%)

were observed. Only one patient who received cage

implantation did not achieve fusion in any zone. Table 2

show the cage fusion rates of the five zones measured via CT

scan. The inner cage zone (n = 54, 94.74%) had the highest
Frontiers in Surgery 04 frontiersin.org
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TABLE 2 Comparison of the fusion rates in the five zones.

Patients, n = 57 Inner cage Anterior cage Posterior cage Decompression Contralateral P-value

Patients, n (%) P < 0.001

Fusion 54 (94.74)** 33 (57.89)*,** 42 (73.68)*,** 38 (66.67)*,** 15 (26.32)*

Non-fusion 3 (5.26) 24 (42.11) 15 (26.32) 19 (33.33) 42 (73.68)

*Indicate comparison with inner cage, P < 0.05.

**Indicate comparison with contralateral, P < 0.05.

Xu et al. 10.3389/fsurg.2022.1004230
fusion rate, followed by the posterior cage zone (n = 42, 73.68%)

and the contralateral decompression zone (n = 15, 26.32%). The

fusion rates of the five groups were significantly different (P <

0.001). Non-fusion in the cage was observed in three patients.

Among them, one presented with non-fusion in the five zones

accompanied by bilateral pedicle screw loosening at L5. The

other two patients achieved fusion in the posterior cage but

not in the cage, and one experienced pedicle screw loosening

(Figure 4).

Further pairwise comparison revealed that the

fusion rates in the inner cage significantly differed from

that in the anterior and posterior cages and decompression

and contralateral decompression zones (P = 0.001, 0.002,

0.001 and 0.001, respectively). The fusion rate in

the contralateral decompression zone significantly differed

from that in the decompression and anterior and posterior

cage zones (P = 0.001, 0.001 and 0.001, respectively)

(Table 2).

The VAS of leg pain, ODI scores and JOA scores of patients

at postoperative 1 week and the last follow-up were significantly

lower than those before surgery (P < 0.05). The ODI scores and

JOA scores of patients at the last follow-up were significantly

improved than their 1-week postoperative scores (P < 0.05)

(Table 3).
FIGURE 4

A 69-year-old Male patient with lumbar spinal stenosis underwent cage impla
showed good bone filling in the inner cage zone and no bone graft in the p
showed cage subsidence and educed upper and lower endplate space in the p
a lucent line without bone remodelling or passage of the bone trabecula in th
of the bone trabecula in the posterior cage zone were observed. (D) Cross-
loosening of the pedicle screws.
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Discussion

Spinal fusion has been used for degenerative spinal diseases

since Albea and Hibbs first applied it to spinal tuberculosis in

1911. Among different fusion technologies, TLIF is widely

applied due to its high fusion rate (22). CT scan has been

widely used in postoperative fusion evaluation because it can

perform thin-layer scanning and multi-dimensional

reconstruction, which is superior to static and dynamic plain

film evaluation (23). Lee (24) found that after implantation of

the cage filled with local bone chips, the fusion rate at

postoperative 1 year was higher than that at postoperative 6

months, which maybe because the implanted local bone chips

grew slower into the callus than the implanted iliac bone.

Therefore, it is more accurate to measure the fusion rate at

least postoperative 1 year. In our study, CT scan was used to

evaluate the fusion rate after TLIF, and patients with follow-

up time for at least 1 year after TLIF were included to

improve the accuracy and rationality of the evaluation.

In this study, the fusion rate was 98.2%, which was

consistent with previous reports (90%–100%) (25–28). Only

one of 57 patients with LDH did not achieve fusion in every

zone. This patient was re-visited at postoperative 1 year after

surgery due to lumbar pain and discomfort, and a lumbar CT
ntation. (A) Sagittal lumbar CT scan performed at postoperative 3 days
osterior cage zone. (B) CT scan performed at postoperative 3 months
osterior zone. (C) CT scan performed at postoperative 2 years showed
e inner cage zone. However, complete bone remodelling and passage
sectional lumbar CT scan performed at postoperative 2 years showed
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TABLE 3 VAS of leg pain, ODI score and JOA score.

Preoperative Postoperative
1 week

Last
follow-up

P-value

VAS of
leg pain

6.16 ± 1.65 1.81 ± 1.08* 1.37 ± 1.01* P < 0.001

ODI
score

48.79 ± 8.39 17.86 ± 4.57* 11.05 ±
3.87*,**

P < 0.001

JOA
score

13.32 ± 4.09 22.15 ± 5.33* 27.30 ±
5.35*,**

P < 0.001

VAS, Visual analog scale; ODI, Oswestry disability index; JOA, Japanese

Orthopaedic Association score.

*Indicate comparison with preoperative, P < 0.05.

**Indicate comparison with postoperative 1 week, P < 0.05.

Xu et al. 10.3389/fsurg.2022.1004230
scan revealed bilateral pedicle screw loosening at L5, which

might be correlated with osteoporosis and obesity. His

condition improved after continuous use of a brace for

protection. However, some studies reported low fusion rates.

Giorgi’s (29) reported an interbody fusion rate of 72.6% at

postoperative 1 year in their prospective multicentre study,

with 182 patients treated with TLIF were included. He

believed that may be due to a postoperative follow up that

was too short to determine definitive successful or

unsuccessful fusion. He believes this may be due to the short

postoperative follow-up time to determine whether fusion was

successful.

In the past, some scholars used intervertebral space

partition to study the characteristics of intervertebral fusion.

Abbushi (30) divided intervertebral space into 16 areas in an

average way of 4 × 4 to observe the spatial position of the

fusion device after placement. Similarly, Choi (31) divided the

intervertebral space into 9 areas in an average way of 3 × 3.

However, they did not apply partition to evaluate the fusion

situation, and such mechanical partition method could not

accurately describe the fusion characteristics of each partition

from CT. Lee (32) used two cages as a reference point to

divide the intervertebral space into 7 regions to observe the

characteristics of intervertebral fusion after TLIF, including

between two cages, left side of left cage, right side of right

cage, front of cage, back of cage and inner cage. However,

since Lee’s research objects were TLIF patients after

implantation of two fusion devices, his results cannot

represent the fusion characteristics after single-cage TLIF,

which are more commonly used now.

The endplate preparation during TLIF has its unique

characteristics. The operation blind area is prone to occur.

The bone bed on the side of the fusion device is the easiest to

clean, while the bone bed on the opposite side of the

approach is the most difficult to handle, and cartilage residue

is prone to occur, thus affecting the fusion effect (33).

Therefore in this study, disc space is divided into five zones

according to the difficulty of endplate preparation and metal

marking point of cage: the inner cage zone, the anterior cage
Frontiers in Surgery 06
zone, the posterior cage zones, the decompression zone and

the contralateral decompression zone. This partition is easier

to identify when evaluating fusion with CT, which is simple,

reproducible and helpful to guide the selection of key areas of

bone grafting and clinical implementation.

In the five zones, the inner cage zone had the highest fusion

rate (94.74%), which is consistent with the study of Seo (11),

which divided the disc space implanted with the double cage

undergoing PLIF into 4 zones and found that inner double

cage zone had the highest fusion rates of 100%. This can be

explained by Wolf’s law (34). That is, appropriate stress is

required during bone remodelling, and the cage and its

internal bone graft play the main supporting role and bear

more stress. Hence, callus formation is better. By contrast, the

cage-like structure prevents the overflow of implanted bone

chips, and high-density bone chips in a closed cage is

conducive for enhancing fusion (35). In addition, during cage

placement, the cage will cause friction with the endplate,

which is equivalent to the secondary endplate preparation.

In our research, posterior cage zone is the second highest

area, which is consistent with the study of Kim and Burkus

(36). We think there are three reasons of high fusion rate in

posterior cage zone. First is appropriate endplate preparation

of the posterior endplate (12). To achieve spinal interbody

fusion, a complete endplate preparation is essential to assure

bone growth in the intervertebral space (21). The second

reason is that there is more space in posterior cage zone for

bone grafting than in other zones. Cages of TLIF are designed

to be positioned along this anterior apophyseal ring or

designed obliquely overlay the central portion of the disk, so

there is plenty of space for a bone graft (35). The third reason

is posterior cage zone is the most stable zone. This zone was

supported by a cage in the anterior part and was fixed by a

pedicle screw system in the posterior part, so this zone is

more stable biomechanically. Furthermore, the stimulation of

local hematoma enhanced the formation of active bone

tissues. The living bone cells in the cages are exposed to the

peri-implant hematoma and will eventually result in

ossification around the cages (35). In our study, although

there was no effective bone graft in the posterior cage zone,

however, a clear fusion could be achieved in the posterior

cage zone in many cases.

The contralateral decompression zone outside the cage had

the lowest fusion rate, which was associated with insufficient

preparation of the endplate and bone grafting. When nucleus

pulposus is mixed with the autogenous bone graft, it can

delay or decrease the bone formation inside the disc space,

thus influencing the final fusion (37). Yao (38) found that

bone grafting in the contralateral decompression zone was,

indeed, poor in measuring the bone grafting area via CT scan

after surgery. Some bone grafts achieve bone resorption at the

final follow-up (35), particularly in the anterior

decompression zone of the cage.
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The current study had several limitations. Firstly, the sample

size was small. Secondly, the follow-up period was short, and

the study only focused on fusion during the last follow-up.

Thirdly, the sequence of bony fusion in each zone was not

described. Fourthly, the use of PEEK cages might decrease the

fusion rate due to its chemically inert, as previous reported

(22). However, this issue will be addressed in our subsequent

study.
Conclusions

This study first described the achievement of interbody

fusion after TILF with single cage implantation. We think the

central cage zone (i.e., inner cage) should be the focus of

bone grafting. Bone fusion in the posterior cage zone even

without bone grafting indicates that the endplate should be

adequately prepared to achieve full fusion in the intervertebral

space and to ensure the long-term efficacy of the surgery.

Therefore, it may be more important to properly prepare the

endplate in the bone grafting area and create a good

environment for callus growth. There are no excessive surgical

requirements for areas that are challenging to manage and

those with bone grafts.
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