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Fracture healing is a complex, dynamic process that is directed by cellular communication

and requires multiple cell types, such as osteoblasts, osteoclasts, and immune cells.

Physiological fracture healing can be divided into several phases that consist of different

processes, such as angiogenesis, osteogenesis, and bone resorption/remodelling.

This is needed to guarantee proper bone regeneration after fracture. Communication

and molecular regulation between different cell types and within cells is therefore

key in successfully orchestrating these processes to ensure adequate bone healing.

Among others, microRNAs (miRNAs) play an important role in cellular communication.

microRNAs are small, non-coding RNA molecules of ∼22 nucleotides long that can

greatly influence gene expression by post-transcriptional regulation. Over the course of

the past decade, more insights have been gained in the field of miRNAs and their role in

cellular signalling in both inter- and intracellular pathways. The interplay between miRNAs

and their mRNA targets, and the effect thereof on different processes and aspects

within fracture healing, have shown to be interesting research topics with possible future

diagnostic and therapeutic potential. Considering bone regeneration, research moreover

focusses on specific microRNAs and their involvement in individual pathways. However,

it is required to combine these data to gain more understanding on the effects of

miRNAs in the dynamic process of fracture healing, and to enhance their translational

application in research, as well as in the clinic. Therefore, this review aims to provide

an integrative overview on miRNAs in fracture healing, related to several key aspects

in the fracture healing cascade. A special focus will be put on hypoxia, angiogenesis,

bone resorption, osteoclastogenesis, mineralization, osteogenesis, osteoblastogenesis,

osteocytogenesis, and chondrogenesis.
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INTRODUCTION

Fracture healing is a complex, dynamic process that is directed by cellular
communication and requires multiple cell types, such as osteoblasts, osteoclasts,
and immune cells. Physiological fracture healing can be divided into several phases
that consist of different processes, such as angiogenesis, osteogenesis, and bone
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resorption/remodelling, in order to guarantee proper bone
regeneration after fracture (1). Cellular communication and
molecular regulation are important in orchestrating these
processes to enable swift interplay and transitioning among
them. Disturbance of the multiphase fracture healing cascade
can result in healing impairments such as delayed unions or
non-unions. Such healing impairments often require treatment
through multiple surgical interventions followed by long
rehabilitation periods and, in case treatment does not suffice, can
have invalidating consequences for the patient (2). Therefore,
understanding the cellular communication and molecular
regulation in and around the fracture zone is of great importance.

MicroRNAs (miRNAs) are small, non-coding, double
stranded RNA molecules that function as important post-
transcriptional regulators in both inter- and intracellular
signalling. MiRNAs were discovered as early as 1993 by Lee
et al. and have been under increasing attention in the health
and life sciences thereafter (3). Let-7, one of the miRNAs that
is discussed in the present review, was one of the first that was
shown to be involved in the development of larval stages in C.
elegans (4, 5). Their primary mechanisms of action are cleavage
of protein translations or direct repression of target messenger
RNAs (mRNAs). Pre-miRNAs are generated in the nucleus
after which they are transported into the cytoplasm through
exportin-5. Pre-miRNAs are then cleaved into mature miRNAs
by dicer, after which they bind to the RNA-induced silencing
complex (RISC) which acts as the functional unit to repress
target mRNAs. Imperfect complementary binding between the
miRNA and its target mRNA leads to translational inhibition
whereas near perfect complementary binding results in cleavage
of the target mRNA (6). To date, 2,656 mature, human miRNAs
have been identified (miRbase version 22; http://mirbase.org/).

MiRNAs have been broadly researched in endocrinology,
cardiology, and oncology, and are under increasing attention
in the field of bone regeneration over the past decade (7–
9). For example, patient-based work by Seeliger et al. and
Kelch et al. has shown that miRNAs are linked to osteoporosis
and osteoporotic fractures in both serum as well as bone
samples (10, 11). In fact, miRNAs are involved in various
musculoskeletal pathophysiological mechanisms (12). Looking at
physiological fracture healing, recent in vitro studies have shown
that miRNAs can influence processes that are involved in bone
regeneration, such as angiogenesis and osteogenesis (13, 14). Post
transcriptional regulation by miRNAs can be complex, since one
single miRNA can directly target several mRNAs. Integrating the
effects of miRNAs on the different processes taking place within
the fracture healing cascade can therefore be challenging.

The potential clinical application of miRNAs in the field of
bone regeneration is greatly dependent on the understanding
of miRNA expression and target analysis. As illustrated above,
fracture healing consists of various processes in which miRNAs
play a role. Even though much research has been done
on miRNAs in specific processes within fracture healing, an
overview that summarises up to date data on miRNAs in these
specific processes is lacking in current literature.

Therefore, this review aims to provide an integrative
overview on miRNAs in fracture healing, related to

several key aspects in the fracture healing cascade. A
special focus will be put on hypoxia, angiogenesis, bone
resorption, osteoclastogenesis, mineralization, osteogenesis,
osteoblastogenesis, osteocytogenesis, and chondrogenesis.

LITERATURE SEARCH AND SELECTION

A systematic search of the database PubMed was performed to
identify relevant articles. Search keywords were (osteogenesis OR
osteogenic) AND (regulation OR regulatory) AND (mirna OR
microrna). To be included in this review, papers had to be listed
in PubMed, written in the English language and present data of
original research. Two independent researchers (RVMG and JvK)
performed the selection of included literature. A first selection
was made by title and abstract. Articles were then grouped
into sections regarding the different fracture healing aspects as
described above. Reviews and articles that dealt with long non-
coding RNAs, circular miRNAs, pathological fracture healing,
glucocorticoid induced osteogenic differentiation, deregulated
inflammation, fracture healing impairments, osteonecrosis,
osteoporosis, periodontal Bone Mesenchymal Stem Cells
(BMSCs), adipogenic Mesenchymal Stem Cells (MSCs), or
vascular calcification were not included in this review.

RESULTS

All miRNAs that are discussed throughout this review are
summarised in Table 1 according to the aspects of fracture
healing and their involvement therein.

Hypoxia
Disturbed vascularization causes hypoxia in the fracture zone
during the initial phase of the fracture healing cascade
(2). Hypoxia can induce gene expression through a set of
transcription factors that respond to low oxygen levels, the
so-called Hypoxia Inducible Factors (HIFs) (15). Adequate
blood supply is key in proper fracture healing and is therefore
important to restore normoxic conditions as soon as possible
after bone fracture to stimulate bone regeneration. In fact,
poor blood supply and prolonged hypoxia are risk factors for
the development of fracture healing impairments (15). HIFs
play an important role in many cellular processes of interest.
Several miRNAs have been specifically researched in the light
of hypoxia and fracture healing. MiR-1, miR-21, miR-135, miR-
155, miR-199a, miR-429, and miR-675 have all been shown to
enhance bone regeneration through pathways that are regulated
via hypoxia.

MiR-1 and miR-135 enhanced bone regeneration by directly
targeting Hypoxia Inducible Factor 1 Subunit Alpha Inhibitor
(HIF1AN), resulting in enhanced expression of osteogenic
markers such as Runt-related transcription factor 2 (RUNX2),
Alkaline Phosphatase (ALP), Osteocalcin (OCN), Osterix (OSX),
and Osteopontin (OPN) (16, 17). MiR-21 downregulated
the expression of Small Mothers Against Decapentaplegic
(SMAD) 7 in hypoxic conditions. Under normal conditions,
SMAD7 suppressed the expression of RUNX2. Therefore, miR-
21 promoted bone regeneration through enhancing RUNX2
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TABLE 1 | miRNAs and their involvement in different aspects of fracture healing.

microRNAs Hypoxia Angiogenesis Bone

resorption

Osteoclastogenesis Mineralization Osteogenesis

and

osteoblastogenesis

Osteocytogenesis Chondrogenesis

miR-21 ↑ ↑ ↑* ↑ ↑ ↑

miR-128 ↑ ↑ ∼

miR-23a ↑ ↑*
∼ * ↑

miR-27a ↑*
∼ * ↑

miR-143 ↑*
∼ *

miR-218 ↓ ↑ ↑ ↑

miR-222 ↓* ↑*
∼ *

miR-29a ↓ ↑* ↑* ↑*

miR-223 ↑*
∼ *

miR-126 ↑* ↑

miR-135b ↑* ↑*

miR-140 ↑* ↑

miR-142 ∼ * ↑ ↑

miR-23b ↑ ↑

miR-26b ∼ ↓

miR-31a ↑ ↑

miR-335 ↑ ↑

miR-451 ↑ ↑

miR-503 ↓ ↑ ↑

miR-9 ↓ ↑ ↑

miR-296 ↑* ↑*

miR-34c ↑ ↑ ↓

let-7 ↑*

let-7f ↑*

miR-1 ↑ ↓*

miR-125a ↑ ↓*

miR-135 ↑

miR-146a ↑* ↓*

miR-150 ↑ ↓*

miR-155 ↑* ↓ ↓

miR-15b ↑*

miR-181a ↓* ↑*

miR-182 ↑ ↓

miR-183 ↑

miR-199a ↑*

miR-24 ↑

miR-25 ↑

miR-26a ↑*

miR-337 ↑

miR-409 ↓ ↑

miR-429 ↑

miR-483 ↑*

miR-675 ↑*

miR-98 ↑*

miR-99 ↑*

miR-346 ↑*

miR-664 ↑*

miR-149 ↑

miR-187 ↑*

(Continued)
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TABLE 1 | Continued

microRNAs Hypoxia Angiogenesis Bone

resorption

Osteoclastogenesis Mineralization Osteogenesis

and

osteoblastogenesis

Osteocytogenesis Chondrogenesis

miR-194 ↑

miR-219 ↑

miR-224 ↑*

miR-302a ↑

miR-877 ↑

miR-5106 ↑

miR-100 ↓ ↓

miR-10a ↓

miR-124 ↓ ↓ ↓*

miR-125b ↓* ↓* ↓*

miR-137 ↓

miR-145 ↓ ↓

miR-148a ↓

miR-181 ↓

miR-191 ↓

miR-195 ↓*

miR-200b ↓*

miR-214 ↓* ↓*

miR-29b ↓*

miR-30c2 ↓*

miR-338 ↓

miR-92a ↓

miR-206 ↓* ↓

miR-10 ↓ ↓

miR-10b ↓

miR-17 ↓ ↓

miR-22 ↓

miR-23 ↓*

miR-31 ↓*

miR-103 ↓* ↓*

miR-383 ↓

miR-205 ↓ ↓

miR-449b ↓

miR-34a ↓*

miR-203 ↓*

miR-320b ↓*

miR-153 ↓*

miR-204 ↓*

miR-211 ↓

miR-765 ↓*

miR-342 ↓*

miR-542 ↓ ↓

miR-133a ↓ ↓*

miR-217 ↓

miR-375 ↓

miR-505 ↓

miR-138 ↓* ↓*

miR-139 ↓* ↓*

(Continued)
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TABLE 1 | Continued

microRNAs Hypoxia Angiogenesis Bone

resorption

Osteoclastogenesis Mineralization Osteogenesis

and

osteoblastogenesis

Osteocytogenesis Chondrogenesis

miR-545 ↓

miR-193a ↓* ↓*

miR-141 ↓* ↓*

miR-200a ↓ ↓

miR-144 ↓

miR-186 ↓ ↓

miR-188 ↓

miR-363 ↓

miR-384 ↓

miR-532 ↓ ↓

miR-320a ↓* ↓*

Green upward arrows depict a positive effect of the specific miRNA on the aspect related to fracture healing. Red downward arrows depict a negative effect of the specific miRNA on the

aspect related to fracture healing. ∼depicts controversial effects regarding the specific miRNA on the aspect related to fracture healing. *depicts that the specific miRNA in the relevant

aspect has been researched in a human setting.

expression (18). In hypoxic conditions, miR-155 and miR-199a
negatively regulated Hypoxia Inducible Factor 1 Subunit Alpha
(HIF-1A) and showed to enhance bone regeneration both in
vitro, as well as in vivo (19, 20). MiR-429 enhanced osteoblast
differentiation both in vitro as well as in vivo. Apart from
enhancing osteoblastic differentiation in vitro, miR-429 also
accelerated bone formation and remodelling in vivo (21).

Lastly, miR-675 showed to enhance osteoblastic
differentiation through increasing HIF-1A response, whilst
simultaneously activating the Wingless-related integration site
signalling (Wnt-signalling) pathway. Depletion of miR-675 in
human MSCs (hMSCs) under hypoxic conditions decreased
the differentiation capacity of hMSCs toward the osteoblastic
lineage, and reduced angiogenesis as described below (22).

Angiogenesis
Adequate blood supply to the fracture zone is necessary to ensure
a proper supply of nutrients, cells, and signalling molecules, but
also to normalise the acidic and hypoxic conditions that occur
after trauma due to reduced vascularization (1). Various stimuli
can trigger angiogenesis, such as hypoxia, tissue damage, nutrient
demand or cellular growth, and proliferation. In the field of bone
regeneration, miR-26a, miR-126, and miR-143 have shown to
exert pro-angiogenic effects.

Although the exact mechanism of action has not yet been
elucidated, miR-26a enhanced angiogenesis by increasing the
expression of both Vascular Endothelial Growth Factor (VEGF)
and Angiopoietin 1 (Ang1). Besides pro-angiogenic effects,
miR-26a also showed to elicit pro-osteogenic effects through
upregulating RUNX2, OCN, Bone Morphogenic Protein 2
(BMP2), and Collagen type 1 Alpha 1 (COL1A1) (23). In
vivo research has shown that miR-126 increased the expression
of angiogenesis related genes in fracture healing, such as
HIF-1A, Ang1, VEGF-A, and Transforming Growth Factor
Beta 1 (TGF-β1) (24). MiR-143, also involved in osteogenesis,
promoted angiogenesis via the Wnt-signalling pathway through

directly targeting Histone Deacetylase (HDAC) 7, which inhibits
endothelial growth through binding with β-catenin. This has
been shown in vivo where administration of miR-143 promoted
angiogenesis, as well as osteogenesis (25). Contrarily, miR-10a,
miR-92a, miR-191, miR-195, miR-200b, and miR-222 inhibited
angiogenesis. MiR-10a exerted its anti-angiogenic effects by
inhibiting VEGF and β-catenin expression, thereby interfering
with angiogenesis through these two important mediators (26).
MiR-92a has anti-angiogenic capacities by targeting Integrin
Alpha 5 and Mitogen activated protein Kinase Kinase 4. Work
by Murata et al. revealed that miR-92a was downregulated
during normal fracture healing. It was hypothesised that
further downregulation of miR-92a might aid in enhancing
angiogenesis (27). The capability of MSCs to migrate and invade
tissue is important in angiogenesis. MiR-191 interferes with
these capabilities, as it targets both Matrix Metallo Proteinase
(MMP) 9 and MMP13. Furthermore, miR-191 reduced VEGF
expression, similar to miR-195 (28, 29). MiR-200b has been
shown to downregulate the VEGF receptor Kinase Insert
Domain Receptor, as well as reducing the expression of v-
Ets Erythroblastosis Virus E26 Oncogene Homologue 1 (ETS1),
GATA binding protein 2 and Zinc Finger E-Box Binding
Homeobox 2, involved in VEGF-mediated angiogenesis (30). In
vivo work by Yoshizuka et al. showed that miR-222 reduced
capillary density in a murine fracture healing model. Although
the exact mechanism has not yet been validated, pathway analysis
identified the tyrosine-protein kinase receptor, together with
Signal Transducer and Activator of Transcription 5A (STAT5A),
as direct targets of miR-222 (31). Lastly, miR-137 might
inhibit angiogenesis as silencing miR-137 enhanced angiogenesis
through directly targeting Stromal Cell-Derived Factor 1a (SDF-
1a), a well-known promotor of angiogenesis (32).

Bone Resorption
Bone is constantly resorbed and renewed, both after bone
fracture, as well as in normal bone remodelling (1). Therefore,
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bone resorption is considered an important aspect for bone
regeneration. Bone resorption is primarily dependent on both
the number of osteoclasts present in the bone, as well as their
functional activity. The number of osteoclasts is dependent on
osteoclastogenesis, whereas their functional activity depends on
various parameters, such asmechanical strain on the bone, as well
as patient-related factors such as nutritional state and lifestyle. In
this section, the latest literature in relation to the involvement of
specific miRNAs in bone resorption is discussed.

Osteoclast functional activity was enhanced by miR-21
and miR-31a. Hu et al. examined the effect of miR-21 on
osteoclast functioning and osteoclastogenesis in mice. They
showed that miR-21 targeted Programmed Cell Death Protein
4, resulting in enhanced bone resorption, as well as enhanced
osteoclastogenesis (33). MiR-31a showed to promote bone
resorption and osteoclastogenesis in vivo by targeting Ras
Homologue family member A (RhoA). Impairments in bone
resorption were observed upon increased RhoA expression.
Therefore, miR-31a is deemed to enhance osteoclast functioning
by targeting RhoA (34).

Contrarily, in vivo work by Zhou et al. showed that miR-
100 suppressed bone resorption, as well as osteoclastogenesis.
Although the exact mechanism has not yet been confirmed,
this effect is most likely due to targeting Fibroblast Growth
Factor 21 by miR-100. Furthermore, miR-100 overexpression
has shown to effectively block OVX-induced bone resorption,
emphasising its role in bone resorption as well as its
therapeutic potential in osteoporosis (35). Kelch et al. examined
miRNAs in bone tissue, osteoblasts, and osteoclasts from
osteoporotic patients. Surprisingly, they found that miR-100 was
significantly upregulated in isolated osteoblasts and osteoclasts
from osteoporotic patients, indicating that miR-100 might be
expressed to a greater extent to protect against failing bone
homeostasis (11).

Osteoclastogenesis
Fracture healing is a dynamic process which consists of both
the production of new bone in order to bridge the fracture gap,
as well as the resorption and remodelling of bone. In order to
maximally regain the original morphology and proper function
of a bone, remodelling is required and takes place over a period
of time that can extend long after the initial phases of fracture
healing. Osteoclasts originate frommonocytes, and are the major
cell type that facilitate this resorption and remodelling of bone
(1). Their formation and development, osteoclastogenesis, is also
under the influence of miRNAs. Specifically, miR-21, miR-31a,
miR-34c, miR-99, miR-125a, miR-128, miR-142, miR-182, miR-
183, and miR-483 have shown to enhance osteoclastogenesis.

MiR-21, a miRNA that has proven to be involved in various
aspects of bone regeneration, enhanced osteoclastogenesis. It
targeted Sprouty RTK Signalling Antagonist 1 and Phosphatase
and Tensin Homologue (PTEN), thereby reducing Extracellular
signal-Regulated Kinases (ERK) activity whilst activating
Phosphatidylinositol 3-Kinase/serine threonine kinase
(PI3K/AKT) signalling, leading to enhanced osteoclastogenesis
and bone resorption (33, 36). MiR-21 has also shown to
prevent osteocyte apoptosis, which is known to stimulate

osteoclastogenesis (37). In vitro work by Xu et al. revealed
the pro-osteoclastogenic properties of miR-31a. Apart from
enhancing osteoclastogenesis through enhanced RhoA
expression, it also promoted osteoclast functioning and inhibited
osteoblastogenesis (34). In vivo work by Bae et al. revealed
an interesting interaction by which miR-34c targeted multiple
components of the Notch signalling pathway, thereby enhancing
osteoclastogenesis, whilst suppressing osteoblastogenesis (38).

Exhibiting similar characteristics, miR-99 promoted
osteoclastogenesis whilst simultaneously inhibiting osteogenic
differentiation by suppressing the expression of RUNX2 and
ALP, whereas osteogenic fusion markers Dendritic Cell-Specific
Transmembrane Protein, C-C motif chemokine ligand 2
and osteogenic-specific marker Cathepsin K (CTSK) were
increasingly expressed (39). An interesting miRNA with
regard to osteoclastic differentiation and functioning is miR-
125a. It exerted a dual effect on osteoclasts by promoting
osteoclastic differentiation through directly targeting Tumour
Necrosis Factor (TNF) Receptor Superfamily Member 1B, whilst
simultaneously enhancing osteoclast motility by increasingMMP
expression (40). Activated in part by TNF, Nuclear Factor Kappa-
light-chain-enhancer of activated B cells (NF-κB) signalling is
also required in osteoclastogenesis. MiR-128 engages with this
signalling pathway to enhance osteoclastogenesis by directly
targeting Sirtuin 1 (Sirt1) which, under normal circumstances,
inhibits NF-κB signalling. The positive effect of miR-128 is
underlined by the increased expression of osteoclastogenic
marker Nuclear Factor of Activated T-cells (NFATc) 1 both in
vitro as well as in vivo (41). Work by Inoue et al. showed that
miR-182 exerted pro-osteoclastogenic effect by targeting Protein
Kinase R, an inhibitor of osteoclastogenesis through suppression
of the Interferon-Beta pathway. Several osteoclastic markers,
among others NFATc1 and Tartrate-Resistant Acid Phosphatase,
showed increased expression levels in vitro upon increased
miR-182 levels, whereas in vivo miR-182 knockout resulted in
decreased expression levels of osteoclastic marker genes (42, 43).

MiR-183 increased osteoclastogenesis by direct targeting of
Heme-oxygenase-1, which subsequently resulted in enhanced
Receptor Activator of NF-κB Ligand (RANKL) signalling (44).
Lastly, in vivo work by Li et al. revealed the regulatory role
of miR-483 in osteoclastogenesis. MiR-483 reduced osteoclast
apoptosis whilst enhancing the expression of osteoclastic
differentiation markers, such as NFATc1, NFATc2, and CTSK
(45). AmiRNA of particular interest regarding osteoclastogenesis
is miR-142. MiR-142 showed to exert both pro- as well as anti-
osteoclastogenic effects, affecting various cellular communication
processes. Osteoclast differentiation is promoted by miR-142
through directly targeting PTEN and thereby enhancing the
activity of the PI3K/Akt/Forkhead box O1 (FOXO1) pathway
(46). Contrarily, Fordham et al. describe a mechanism by which
overexpression of miR-142 reduced osteoclastic differentiation
and induced osteoclast apoptosis through RANK-signalling (47).

Osteoclastogenesis was inhibited by miR-9, miR-29a, miR-
100, miR-124, miR-142, miR-145, miR-181, miR-218, miR-338,
and miR-503. Both miR-9, as well as miR-181 have shown
to directly target Casitas B-lineage Lymphoma and lead to
reduced ubiquitination of B-Cell Lymphoma 2 (Bcl2) like protein
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11, an important pro-apoptotic protein, through which both
miRNAs enhanced osteoclast apoptosis (48). Osteoclastogenesis
is under regulation of RANKL and CXC motif chemokine
12, both being repressed by miR-29a. Interestingly, miR-29a
simultaneously enhanced osteoblast functioning, as discussed
in section Osteogenesis and Osteoblastogenesis (49). Apart
from regulating bone resorption, as described in section Bone
Resorption, miR-100 inhibited osteoclastogenesis in vivo by
reducing the expression levels of Fibroblast Growth Factor
21 (35). MiR-124 inhibited osteoclast formation via direct
targeting of NFATC1, reducing the expression of NFATC1
dependent genes, such as Acp5 and CTSK. Apart from inhibiting
osteoclastogenesis, miR-124 also reduced osteoclast motility
through reduced expression of RhoA and Rac Family Small
GTPase1 (Rac1) (50, 51).

One of the major signal transducers in osteoclastogenesis,
SMAD3, showed to be directly targeted by miR-145, thereby
inhibiting the downstream expression of osteoclastic genes,
such as NFATC1, Tartrate-Resistant Acid Phosphatase and
CTSK (52). As described previously in this section, the NF-
κB pathway is an important signalling pathway in osteoclast
formation, which is activated by TNF. MiR-218 interfered with
this signalling pathway through direct targeting of the TNF-
membrane receptor, thereby inhibiting the activation of the NF-
κB pathway and reducing osteoclastogenesis (53). Through a
partially similar mechanism, miR-338 affected the formation and
activity of osteoclasts by targeting I-Kappa B Kinase, a master
regulatory kinase that activated the NF-κB signalling pathway
(54). Lastly, through directly targeting RANK, miR-503 inhibits
RANK-mediated osteoclastogenesis (55).

Mineralization
Bone can be divided into two main components, an organic-
and an inorganic component. The inorganic component of
bone, which constitutes roughly 60% of the total bone mass,
mainly consists of hydroxyapatite. The organic component
of bone, the remaining 40%, consists of proteins, such as
collagens, and water (56). Collagens warrant a certain degree of
flexibility in the bone whereas the hydroxyapatite mainly aids
in withstanding axial stress. Mineralization of the collagen rich
network is therefore an important aspect in bone regeneration.
Even though many miRNAs influence collagen expression,
several miRNAs have been researched with a special emphasis
on matrix mineralization. MiR-21, miR-126, miR-29a, miR-
142, miR-150, miR-218, and miR-451 have shown to enhance
matrix mineralization. Increased miR-21 expression has shown
to enhance matrix mineralization in several in vitro and in vivo
studies. It does this by targeting SMAD7, thereby enhancing
matrix mineralisation through increased expression of RUNX2,
ALP, OCN, and OPN (57–59). MiR-21 also enhanced the
expression of Myocyte Enhancer Factor 2c, a protein that
under normal conditions inhibits Sclerostin (SOST). On its
turn, SOST affects osteoblast-mediated bone formation through
matrix mineralization and inhibits cellular differentiation toward
the osteogenic lineage (60). In short, miR-21 has several points of
engagement in matrix mineralization, as well as other aspects of

bone regeneration. Similar to miR-21, miR-126 enhanced matrix
mineralization by targeting SOST (61, 62).

MiR-29a showed to enhance matrix mineralization in
vitro by targeting Dickkopf-related protein 1 (DKK1),
kremen and Secreted Frizzled-Related Protein 2 (SFRP2),
thereby upregulating Wnt-signalling. This promoted matrix
mineralization and increased expression of osteogenic markers,
such as BMP2, OPN, OCN, and COL1A1 (63).

MiR-142, important in cellular differentiation toward both
the osteoblastic- as well as the osteoclastic lineage, has shown
to enhance mineralization by targeting WW domain containing
E3 ubiquitin protein ligase 1, a negative regulator of osteoblast
differentiation. MiR-142 downregulation reduced the expression
of RUNX2, OCN, and JunB, a well-known cell proliferation
inhibitor (64).

Mineralization was also enhanced by increased expression of
miR-150. MMP14, a key enzyme in cellular migration, invasion,
proliferation, and bone resorption, is a direct target of miR-
150 and therefore potentially enhances osteoblast functioning
(65). Proven to be involved in chondrogenesis as described
in section Osteogenesis and Osteoblastogenesis, miR-218 also
increased mineralization nodule formation (66). MiR-451, a
glucose regulated miRNA, enhanced mineralization in vitro and
in vivo through suppressing Odd Skipped Related 1 whilst
enhancing RUNX2 and BMP-4 expression (67).

MiR-29b, miR-30c2, and miR-125b inhibited mineralization
both in vitro as well as in vivo. Research has shown that
various osteogenic markers are upregulated in response of
their inhibition (68, 69). Apart from its involvement in
osteoclastogenesis, as described in section Osteocytogenesis, in
vitro work by Moura et al. showed that miR-99 reduced matrix
mineralization (39). Similarly, miR-148a decreased ALP activity,
osteogenic marker expression and subsequently reduced matrix
mineralization (70). MiR-409 inhibited matrix mineralization
through targeting Low-density Lipoprotein Receptor-Related
Protein (LRP) 8 and decreasing ALP activity. Conversely,
inhibiting miR-409 promoted osteoblast functioning (71).

Osteogenesis and Osteoblastogenesis
Osteoblasts are among the most important cells in bone
regeneration. They synthesise bone matrix and coordinate
mineralization of the skeleton. Together with osteoclasts and
osteocytes, both discussed in more detail in later sections of
this review, they regulate bone homeostasis and regeneration
(1, 72). In this section, the role of miRNAs within osteogenesis
and osteogenic differentiation is discussed, putting special focus
on osteoblastogenesis.

Involved in various cell types, the Wnt-signalling pathway
also regulates osteogenic differentiation and is under the
influence of miRNAs. Under normal circumstances, β-catenin is
continuously degraded by the axin complex. Let-7f has shown to
directly target axin 2 in hMSCs, thereby enhancing osteogenic
differentiation through promoting β-catenin activity (73). Let-
7, a miRNA closely related to let-7f, has shown to promote
osteogenic differentiation by directly targeting Chemokine-Like
Receptor 1. Chemokine-Like Receptor 1 normally mobilises
intracellular calcium and activates signalling cascades, such
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as NF-κB (74). Although the exact mechanism is not yet
fully known, osteoblastogenesis and osteoblast functioning were
enhanced by miR-9, as shown by in vitro work from Luo et
al. where the expression levels of RUNX2 and mineralization
were enhanced upon miR-9 overexpression (75). MiR-15b
indirectly enhanced osteogenic differentiation by preventing
the degradation of RUNX2, through directly targeting SMAD
Ubiquitylation Regulatory Factor (SMURF) 1 (76). MiR-21 is also
involved in osteogenesis and is of particular interest, since it is
involved in various aspects of bone regeneration as described
throughout this review. MiR-21 targets SMAD7, a well-known
inhibitory protein that antagonises the phosphorylation of other
SMAD proteins. By doing so, miR-21 has shown to enhance
osteogenic differentiation andmineralization both in vitro as well
as in vivo (58).

Controversy exists regarding the role of miR-23a in
osteogenesis. In vitro work by Guo et al. showed that miR-
23a and miR-23b promoted osteogenic differentiation and
mineralization, as seen by enhanced expression levels of
RUNX2, OCN and ALP (77). Contrarily, Li et al. observed
that miR-23a overexpression resulted in reduced osteogenic
differentiation, ALP activity, and decreased expression levels
of RUNX2, OPN, and Bone Sialoprotein (78). This finding is
reinforced through similar observations by work from Ren
et al. that report on reduced osteogenic differentiation and
mineralization in hMSCs upon miR-23a overexpression (79).
Presumably by enhancing Rac1 expression, miR-25 activated
PI3K/AKT and c-Jun N-terminal kinase pathways, leading
to enhanced osteoblastic viability and migration, as well as
increased expression levels of osteogenic marker genes RUNX2
and OCN (80). Research by Jiang et al. showed that miR-25
also targeted the expression SMURF1, thereby enhancing
RUNX2 signalling and subsequently promoting osteogenic
differentiation (81). Hu et al. examined the interaction of miR-
26b with the Wnt-signalling pathway in rat BMSCs. MiR-26b
directly targeted Glycogen Synthase Kinase 3 Beta, thereby
preventing the degradation of β-catenin and enhancing its
signalling capabilities (82). Contrarily to this observation, Lin et
al. report on decreased osteogenic differentiation upon miR-26b
overexpression through targeting Oestrogen Receptor Alpha,
thereby most likely reducing Wnt-signalling effectiveness (83).

MiR-346 showed to enhance osteogenesis in human
(h) BMSCs in the same manner as miR-26b, by directly
targeting Glycogen Synthase Kinase 3 Beta (84). MiR-
142, also involved in osteoclastogenesis and matrix
mineralization, showed to directly target WW domain
containing E3 ubiquitin protein ligase 1, a negative
regulator of osteoblast differentiation, thereby enhancing
osteoblastogenesis (64).

MiR-27a has also shown to exhibit dual effects on
osteogenesis. Work by Fu et al. showed that miR-27a
was downregulated in serum of patients suffering from
osteoporosis. Subsequent in vitro work on hMSCs revealed pro-
osteogenic capacities of miR-27a by direct targeting of Activating
Transcription Factor 3. This resulted in enhanced osteoblastic
differentiation and matrix mineralization (85). On the other
hand, miR-27a has shown to directly target OSX and Specificity

Protein 7 (Sp7), thereby inhibiting osteogenic differentiation
(86, 87).

HDAC4, an enzyme involved in several aspects of bone
regeneration, is important in suppressing chondrocytes and the
differentiation of osteoblasts. Tan et al. revealed that HDAC4 is
targeted by miR-29a, which led to increased expression levels
of RUNX2 and OCN, as well as enhanced mineralization (88).
Work by Gao et al. revealed an interesting interaction between
miR-98 and Mammalian High-Mobility-Group Protein AT-hook
2 (HMGA2) in vitro. HMGA2 can prevent differentiation of stem
cells, and therefore also inhibit osteogenic differentiation. MiR-
98 directly targeted HMGA2, thereby decreasing its activity and
subsequently enhancing osteogenic differentiation (89). In vitro
work by Zhang et al. showed that miR-664a promoted osteogenic
differentiation of hBMSCs in a similar way as miR-98, by directly
targeting HMGA2 (90).

In vivo work by Wang et al. revealed that overexpression of
miR-128 promoted osteogenic differentiation and mineralization
by increasing expression levels of ALP, RUNX2, BMP-2, and
COL1A1. MiR-128 directly targeted DKK2, a Wnt-signalling
pathway antagonist, and thereby enhanced Wnt-signalling (91).
Another important signalling pathway in bone homeostasis
is the Hippo pathway. It regulates the equilibrium between
osteoclastic bone resorption and osteoblastic bone formation.
MiR-135b enhances Hippo-signalling by targeting Large Tumour
Suppressor Kinase and Mps One Binder protein 1B, both
important negative regulators of the Hippo-signalling pathway.
By doing so, it promoted both osteogenic differentiation and
mineralization, as seen by increased expression levels of ALP,
OSX, RUNX2, and OPN (92).

The attraction of MSCs is also an important aspect in
bone regeneration. This is in part regulated by TGF-β, which
enhances both the recruitment, as well as proliferation of MSCs
during bone formation. Surprisingly, TGF-β inhibits osteoblast
differentiation, which emphasises the presumably delicate, time
related activity of TGF-β in order to attract MSCs without
preventing them from differentiating into functional osteoblasts.
MiR-140 directly targets TGF-β3, thereby theoretically enhancing
osteoblast differentiation. Interestingly, miR-140 overexpression
resulted in increased expression levels of OCN, but did
not influence the expression of ALP, COL1A1, or RUNX2
(93). As described later in this review, chondrogenesis is an
important aspect of bone regeneration. MiR-146a has shown
to affect chondrogenesis, whilst enhancing osteogenesis through
downregulation of SMAD2 and SMAD3 protein expression,
resulting in reduced SRY-Box transcription factor 9 (SOX9)
expression whilst enhancing RUNX2 expression (94). MiR-
149 has shown to regulate the switch between adipogenic
or osteogenic differentiation of BMSCs. It presumably does
this by targeting the Fat Mass and Obesity-associated protein,
showing enhanced osteogenic differentiation upon miR-149
overexpression (95). Primarily researched in the field of
oncology, miR-187 has also shown to enhance osteoblastic
differentiation by targeting Intercellular Adhesion Molecule 1,
leading to enhanced expression levels of RUNX2, OSX, and
OPN (96). An important regulator of MSC lineage differentiation
is Chicken Ovalbumin Upstream Promoter-transcription factor
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2 (COUP-TFII). Under normal circumstances, COUP-TFII
promotes the expression of Peroxisome Proliferator-Activated
Receptor gamma (PPARy) whilst inhibiting RUNX2 activity and
thus stimulating adipogenic differentiation. Work by Jeong et
al. showed that COUP-TFII is presumably targeted by miR-194,
thereby promoting osteogenic differentiation through enhanced
activity of RUNX2 (97). MiR-218, involved in chondrogenesis,
matrix mineralization, and osteoclastogenesis, directly targeted
Hydroxyprostaglandin Dehydrogenase (HPGD) through which
it enhanced the expression of several osteogenic marker genes,
such as RUNX2, ALP, COL1A1, OCN, and OPN (98).

In vitro work by Aquino-Martinez et al. revealed a
direct interaction between miR-219a and RAR-related Orphan
Receptor beta. MiR-219a ostensibly targets RAR-related Orphan
Receptor beta in a direct manner, thereby enhancing osteoblastic
differentiation (99). Although an exact mechanism of action
has to be clarified, Yoshizuka et al. showed that miR-222
enhanced bone formation and chondrogenesis, whilst reducing
angiogenesis in vivo (31).

Similar to miR-29a, miR-223 enhances osteoblastic
differentiation by targeting HDAC2. MiR-223 mimics increased
the expression levels of ALP, OCN, and RUNX2. Additionally,
miR-223 mimics enhanced matrix mineralization (100).
Contrarily, in vitro work by Long et al. revealed FOXO3 as
a target of miR-223. Although the exact mechanism has not
been unravelled, expression levels of RUNX2, ALP, OCN,
and SMAD4 were enhanced upon an increased expression
of FOXO3. Conversely, miR-223 overexpression reduced the
expression levels of the beforementioned osteogenic markers
(101). MiR-143, also involved in angiogenesis, showed to directly
target HDAC7, and thereby promoted osteogenic differentiation
(25). Contrarily, Li et al. revealed that miR-143 directly targeted
OSX, thereby suppressing osteogenic differentiation (102).
MiR-224 directly targets Rac1, thereby enhancing osteogenic
differentiation and expression levels of osteogenic marker genes
RUNX2, OCN, OPN, and ALP (103). Interestingly, Rac1 is also
targeted by miR-124, which results in reduced osteoclast motility,
as described in section Bone Resorption of this review.

MiR-296 also promoted osteoblast differentiation, though
no exact mechanism of action has been identified yet.
Overexpression of miR-296 prevented apoptosis of osteoblasts,
whilst enhancing matrix mineralization, as well as increased
expression levels of osteogenic marker genes RUNX2, OCN,
COL1A1, and ALP (104). Similar to miR-194, miR-302a
stimulated osteoblastic differentiation by inhibiting COUP-TFII,
thereby promoting RUNX2 activity. Interestingly, a positive
feedback loop exists among RUNX2 and miR-302a. Under
normal circumstances, RUNX2 promotes miR-302a expression,
which on its turn inhibits COUP-TFII, a negative regulator
of RUNX2. Therefore, increased miR-302a expression leads to
reduced suppression of RUNX2 by COUP-TFII, resulting in
enhanced miR-302a expression (105). Within the field of bone
regeneration, various miRNAs interfere with the Wnt-signalling
pathway. In vivo work by Zhang et al. showed that miR-335
reduced the expression of DKK1, a Wnt-signalling antagonist,
thereby promoting osteogenic differentiation in hBMSCs (106).
MiR-409 has shown to enhance osteogenic differentiation

by activating the Wnt-signalling pathway. MiR-409 directly
targeted Suppressor of Cancer Cell Invasion, thereby reducing
its expression, whereas Suppressor of Cancer Cell Invasion
upregulation showed to decrease osteoblastic differentiation and
reduce protein expression of Wnt-signalling related genes, such
as β-catenin, c-myc, and cyclin D1 (107). A glucose regulated
miRNA, miR-451, enhanced osteoblastogenesis in vitro and in
vivo, by suppressing Odd Skipped Related 1 whilst enhancing
RUNX2 and BMP-4 expression (67).

Another important regulatory pathway in bone formation
is the TGF-β/BMP signalling pathway. In vivo and in vitro
work by Sun et al. showed that miR-503 promoted both
osteogenic differentiation as well as mineralization by targeting
SMURF1, a well-known inhibitor of TGF-β/BMP signalling
(108). Like miR-503, miR-877 enhanced osteogenesis, both in
vitro as well as in vivo, by promoting TGF-β signalling. It
directly targets SMAD7, a negative regulator of RUNX2, bone
metabolism, and the TGF-β signalling pathway (109). Lastly,
miR-5106 from M2-macrophage derived exosomes has proven
to enhance osteoblastic differentiation of BMSCs. This finding
offers interesting perspectives since bone regeneration is in
great part subject to the various immune cells that are present
upon bone fracture. MiRNAs from these immune cells might
therefore interfere with/aid in bone regeneration and play a role
in fracture healing. Since trauma severity has already proven
to affect leukocyte infiltration, fracture healing might in part
be influenced by alternating leukocyte activities due to trauma
severity (110, 111). Although limited research has been done
on the role of Salt-Inducible Kinase (SIK) 2 and SIK3 in the
field of bone regeneration, in vitro and in vivo work by Xiong
et al. revealed a potential involvement of both kinases in bone
regeneration. MiR-5106 overexpression, suppressing SIK2 and
SIK3, showed to enhance osteogenic differentiation of BMSCs
and bone regeneration in a murine fracture model (112).

In the remainder of this section, miRNAswill be discussed that
negatively influence osteogenesis and osteogenic differentiation.
As previously described, Luo et al. investigated the pro-
osteogenic effects of miR-9 on BMSCs. In the same study,
the group examined the effect of miR-10 on osteogenesis.
Contrarily to miR-9, miR-10 suppressed both mineralization,
as well as osteogenic differentiation capabilities by reducing β-
catenin expression as well as directly targeting Bcl6 (26, 75). A
family member of miR-10, miR-10b, has also proven to negatively
regulate osteoblast differentiation. MiR-10b directly targets Bcl6,
an important promotor of osteoblastic differentiation, whilst
enhancing expression levels of STAT1, a negative regulator of
osteoblastic differentiation (113). In vitro work by Chen et al.
showed that miR-17 reduces both osteoblastic differentiation,
as well as mineralization through directly targeting SOX6.
Expression levels of ALP, COL1A1, and OPN were decreased
upon miR-17 overexpression, whereas miR-17 inhibition led to
an increased expression of these genes (114). MiR-22 has also
proven to reduce the expression levels of ALP, OCN, and RUNX2,
whilst enhancing apoptosis. Additionally, miR-22 showed to
indirectly inactivate the p38 Mitogen-Activated Protein Kinase
(MAPK)/c-Jun N-terminal kinase signalling pathway. Therefore,
miR-22 suppresses both osteoblastic differentiation, as well as
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osteoblast viability (115). Similar to miR-22, miR-23 also inhibits
osteogenic differentiation through suppressingMAPK signalling.
MiR-23 targets Myocyte-Specific Enhancer Factor 2C, thereby
suppressing MAPK activation and inhibiting the expression of
RUNX2 (116).

In vitro work by Baglio et al. revealed an interaction
between miR-31 and OSX, an important transcription factor
that regulates the expression of several genes involved in
fracture healing, such as COL1A1 and OCN. MiR-31 directly
targeted OSX, leading to reduced osteogenic differentiation of
BMSCs (117). The inhibitory role of miR-31 in osteogenesis is
underlined by work from Deng et al. who showed that miR-31
overexpression negatively modulated Special AT-rich Sequence-
Binding Protein 2 (Satb2) expression by direct targeting,
leading to decreased expression levels of osteogenic marker
genes RUNX2, OPN, and OCN (118). MiR-103 and miR-383
negatively regulated osteogenic differentiation by targeting Satb2,
similar to miR-31. Overexpression of miR-103, as well as miR-
383 decreased expression levels of ALP, RUNX2, OCN, and
reduced mineralization, whilst inhibiting miR-103 and miR-
383 alleviated these phenomena (119, 120). Similarly, miR-
205 and miR-449b decreased expression levels of Satb2 and
RUNX2, resulting in reduced osteogenic differentiation of rat
(r) BMSCs (121, 122). Additionally, miR-205 inhibited the
activation of ERK/MAPK signalling, further reducing osteogenic
differentiation and mineralization (121).

Research has shown that cellular metabolism can also affect
osteogenic differentiation. By directly targeting glutaminase,
miR-206 disturbed glutamine metabolism in hBMSCs, thereby
inhibiting osteogenic differentiation. Restoring glutaminase
activity in miR-206 overexpressing hBMSCs reassured osteogenic
differentiation (123). Glucose metabolism is also essential for
MSCs to differentiate into osteoblasts, and to subsequently
synthesise large amounts of extracellular matrix proteins. By
directly targeting Lactate Dehydrogenase A, a key glycolysis
enzyme, miR-34a suppressed osteoblast differentiation, as was
depicted by reduced expression levels of ALP, OCN, and
OPN (124). Apart from glucose metabolism, in vivo work
by Chen et al. showed that miR-34a is also involved in
osteogenic differentiation through directly targeting Jagged1,
thereby reducing Notch-signalling (125). Like miR-34a, miR-34c
inhibited osteoblast differentiation, and even showed to enhance
osteoclastogenesis by targeting Notch1, thereby reducing Notch-
signalling activity (38).

In vitro as well as in vivo work by Qadir et al. showed that
miR-124 inhibited osteoblastic differentiation andmineralization
by targeting transcription factors Distal Less Homeobox (Dlx)2,
3, and 5. Apart from osteoblastic differentiation, osteoclastic
differentiation has also shown to be affected by miR-124, whilst
enhancing adipogenic differentiation (126). Similar to miR-124,
in vitro work by Laxman et al. showed that miR-203 and
miR-320b directly targeted Dlx5, thereby reducing expression
levels of RUNX2 and OSX (127). Besides inhibition of Dlx
transcription factors, miR-124 has also shown to directly target
Sp7, thereby inhibiting osteoblast differentiation (128). MiR-
145 suppresses osteogenic differentiation in a similar manner
by targeting Sp7, decreasing the expression levels of ALP,

OCN, and COL1A1 (129). G-protein-coupled Receptor Kinase-
Interacting Protein 1, a protein known to be involved in
osteoblast migration and growth, is directly targeted by miR-
125a. By doing so, it inhibited osteoblastic differentiation
and proliferation, as shown by reduced expression levels of
ALP, RUNX2, OCN, and OSX (130). MiR-125b, a family
member of miR-125a, suppressed proliferative capabilities and
osteogenic differentiation of hBMSCs, presumably by targeting
BMP-receptor (BMPR) 1b (131, 132). MiR-125b overexpression
reduced expression levels of osteogenic marker genes RUNX2,
ALP, COL1A1, and OCN (131). In order for BMPR1 to
become active, it needs to be phosphorylated by BMPR2.
BMPR2 showed to be a direct target of miR-153, leading to
reduced osteogenic differentiation capacities (133). Work by
Liu et al. showed that also directly targets BMPR2, as well as
RUNX2, thereby decreasing osteogenic differentiation capacities
and matrix mineralization (134). Furthermore, miR-155 showed
to directly target SMAD5 and inhibit several BMP-signalling
pathways, such as SMAD1, Human Immunodeficiency Virus
Type I Enhancer Binding Protein 2, CCAAT Enhancer Binding
Protein Beta, MYO10, and RUNX2 (135). Similar to miR-
155, miR-128 directly targeted SMAD5, thereby inhibiting bone
formation, as shown by in vivo work from Xu et al. (136).

The ligands to BMPRs, BMPs, are key players in bone
formation, and widely applied in scientific research for the
induction of osteogenesis. In vitro work by Jiang et al. revealed
the anti-osteogenic capacities of miR-204 by directly binding to
BMP2, a BMP that is frequently used to induce osteogenesis
in vitro and is applied in the clinic as a bone grafting
material (InfuseTM) (137). Apart from targeting BMP2, miR-
204 directly targeted RUNX2, leading to reduced osteoblastic
differentiation of BMSCs. MiR-211, a homologue of miR-
204, elicited similar effects as miR-204 (138). BMP6 was a
direct target of miR-765, and miR-765 overexpression reduced
BMP6 expression as well as SMAD1/5/9 phosphorylation,
thereby inhibiting osteogenic differentiation of hBMSCs (139).
Although the exact mechanism must be clarified, miR-342
overexpression decreased expression levels of BMP7, leading to
reduced viability, proliferation, and osteogenic differentiation,
whilst enhancing apoptosis. Furthermore, miR-342 inhibition
increased the activity of MAPK/ERK signalling (140). BMP7 was
also directly targeted by miR-542, decreasing BMP7 mediated
PI3K/survivin signalling, resulting in suppressed osteoblastic
differentiation and mineralization (141). BMP10 showed to be
directly targeted by miR-181a, thereby decreasing osteogenic
differentiation, as shown by in vitro work from Tao et al. (142).

Work from Peng et al. and Zhang et al. independently
observed that miR-133a directly targeted RUNX2 (143, 144).
MiR-133a inhibited matrix mineralization, and reduced
expression levels of COL1A1, OCN, OPN, and ALP (144).
Like miR-133a, miR-217, miR-375, and miR-505 directly
targeted RUNX2, reducing osteogenic differentiation capacities
(145–147). Furthermore, overexpression of miR-217 resulted
in decreased ERK/MAPK signalling (145). MiR-138 inhibited
osteogenic differentiation as shown by reduced expression levels
of osteogenic marker genes RUNX2, OCN, and ALP (148). In
vitro and in vivo research by Eskildsen et al. showed that miR-138
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inhibited osteogenic differentiation and matrix mineralization by
suppressing Focal Adhesion Kinase-ERK1/2 signalling through
inhibiting Focal Adhesion Kinase expression (149).

Wnt-signalling, being involved in various cell types, is
key in osteogenic differentiation. MiR-139 reduces osteogenic
differentiation by targeting β-catenin and Frizzled 4, leading
to reduced mineralization and decreased expression levels of
RUNX2, ALP, OCN, and COL1A1 (150). Like miR-139, miR-
150 suppresses osteogenic differentiation by directly targeting
β-catenin, as shown by in vitro work from Wang et al.
(151). Apart from the direct inhibition of RUNX2 by miR-
375, Sun et al. displayed a dual mechanism by which miR-
375 influences the Wnt-signalling pathway. Both β-catenin
and LRP5, an important co-receptor of the Wnt-signalling
pathway, showed to be directly targeted by miR-375, thereby
reducing Wnt-signalling activity (152). Interestingly, Li et al.
showed that miR-545 also targeted LRP5, but not β-catenin,
thereby inhibiting osteogenesis (153). By targeting both the
Wnt-signalling pathway, as well as MAPK-signalling, miR-193a
attenuated osteoblastic differentiation and matrix mineralization
in hBMSCs. It presumably achieves this by directly targeting
High Mobility Group Box 1 Protein (HMGB1), as transfection
of HMGB1 in miR-193a overexpressing hBMSCs greatly restored
the inhibitory effects of miR-193a on osteoblastic differentiation
(154). Sangani et al. examined the role of miR-141 and miR-200a
in bone regeneration. Both miRNAs exhibited anti-osteogenic
characteristics, reducing osteogenic differentiation, as well as
mineralization, in murine BMSCs by direct targeting of Sodium
Dependent Vitamin C transporter (155). Furthermore, miR-
141 has shown to directly target SDF-1, a known potentiator
of osteogenic differentiation (156). SMAD proteins are also
well-known for their involvement in osteogenesis. MiR-144
interferes with osteoblastic differentiation by causing cell
cycle arrest of murine mesenchymal precursors at the G0/G1
phase, presumably by targeting SMAD4. SMAD4 expression
was markedly downregulated upon miR-144 overexpression,
inhibition of miR-144 led to opposite results (157). MiR-182
also influences osteogenic differentiation by interfering with the
cell-cycle. By directly targeting FOXO1, miR-182 attenuates the
capability of FOXO1 to protect the cell against Reactive Oxygen
Species (ROS), thereby enhancing apoptosis and cycle arrest.
In vivo overexpression of miR-182 has shown to impair bone
formation (158).

MiR-186 has shown to decrease osteogenic differentiation,
as well as mineralization, in rBMSCs through directly
targeting Sirt6. Interestingly, an interaction between Sirt6
and NF-κB was observed in which Sirt6 downregulation by
miR-186 resulted in enhanced phosphorylation of NF-κB.
Therefore, miR-186 attenuated osteogenic differentiation
by targeting Sirt6 and thereby upregulating NF-κB
(159). An interesting miRNA, showing age dependent
expression, is miR-188. MiR-188, increasingly expressed
with progressing age, has shown to regulate the switch
between osteoblastic or adipogenic differentiation from
BMSCs. Overexpression of miR-188 promoted adipogenic
differentiation by targeting HDAC9 and Rictor, thereby
activating PPARy (160).

MiR-214 directly targeted Baculoviral IAP Repeat-Containing
Protein 7, leading to enhanced expression of STAT1 and reduced
osteogenic differentiation, as shown by in vitro work from Liu et
al. (161).

In vitro work with hMSCs by Huang et al. showed a negative
regulatory effect of miR-320a on osteogenic differentiation, as
well as mineralization. It directly targeted Homeobox A10,
thereby decreasing expression levels of RUNX2, ALP, and OCN
(162). TNF Receptor-Associated Factor 3, an important negative
regulator of the NF-κB pathway, appeared to be a direct
target of miR-363, leading to reduced osteogenic differentiation,
as well as increased cellular senescence (163). Involved in
cellular differentiation, proliferation, and stem cell maintenance,
GLI Family Zinc Finger 2 has shown to enhance osteogenic
differentiation in rBMSCs. MiR-384 directly targeted GLI Family
Zinc Finger 2, thereby reducing osteogenic differentiation
capacities, as well as inducing cellular senescence (164). ETS
are transcription factors that play a role in angiogenesis,
inflammation, and bone metabolism. ETS1 potentially functions
in a synergistic manner with Sp1 to promote the expression
of RUNX2 (165). MiR-532 directly targeted ETS1, thereby
reducing osteogenic differentiation, as well as mineralization
and osteogenic marker gene expressions. Inhibiting miR-532
generated opposite results (166).

Osteocytogenesis
In the field of bone regeneration, osteoblasts, and osteoclasts
are most often researched as key functional cells in fracture
repair. However, osteocytes make up 95% of bone cells in
healthy, undisturbed bone. They are important, versatile cells
that influence both osteoblast as well as osteoclast functioning.
Osteocytes act as mechanoreceptors and thereby steer bone
formation by direct cellular communication with osteoblasts
and osteoclasts (167). More research is being performed on
osteocytes and their role in bone regeneration. Therefore, this
section focusses on miRNAs and osteocytes in relation to
fracture healing.

Davis et al. researched a pathway in which osteocyte
apoptosis was linked to an age dependent expression of miR-
21. Although the exact mechanism is not yet fully understood,
miR-21 prevented osteocyte apoptosis and showed a decreased
expression in relation to age (37).

A cluster of three miRNAs, miR-23a, miR-24, and miR-27a
promoted osteocyte differentiation. It did so by suppressing TGF-
β signalling and reducing the expression of OCN. The net effect
of this miRNA cluster was enhanced differentiation of terminal
osteoblasts into osteocytes (168).

Lastly, osteocytes have shown to inhibit osteoblast maturation
upon mechanical strain through targeting Insulin-like Growth
Factor 1 (IGF-1) by miR-29b. Under normal circumstances,
IGF-1 enhanced osteoblast differentiation (169). Interestingly,
Zeng et al. showed that miR-29b is a mechanosensitive miRNA
whose expression reduced upon mechanical strain. Mechanical
strain reduced miR-29b expression and thereby increased IGF-
1 secretion, resulting in enhanced osteoblastic differentiation
and maturation in order to preserve or increase bone formation
upon strain.
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To date, not much research has been done into miRNAs
related to osteocyte formation, functioning and survival. This
warrants for more research into this cell type that is increasingly
under attention in the field of bone regeneration.

Chondrogenesis
Chondrogenesis plays an important role in fracture healing,
as it is key to the formation of cartilage at the early stages
of endochondral ossification. Chondrogenic differentiation and
proliferation are two processes that are characteristic of different
phases in fracture healing (1). Chondrogenesis has shown to be
promoted by miR-29a, miR-140, miR-181a, miR-218, miR-222,
miR-335, and miR-337. By directly targeting FOXO3A, miR-29a
promoted the expression of P21 & P27. Increased expression of
these proteins decreased cellular proliferation, but was required
for MSC commitment toward chondrocytic lineage (170).

MiR-140, expressed specifically in cartilage tissue during
embryonic development, targeted HDAC4. Under normal
conditions, HDAC4 suppressed RUNX2, an important initiator
of chondrocyte hypertrophy. Through this mechanism, miR-
140 increased RUNX2 activity and thereby contributed to
chondrocyte hypertrophy (171). In vivo work by Zheng
et al. showed that miR-181a was expressed to a greater
extent in the hypertrophic zone of human long bones
during the developmental stage. Indeed, research showed that
overexpression of miR-181a in human chondrocytes increased
the expression of RUNX2, OSX, and OCN. By enhancing
these transcription factors, miR-181a promoted chondrocyte
hypertrophy (172). On the other hand, early chondrogenesis of
MSCs was enhanced bymiR-218 whilst suppressing chondrocytic
maturation. MiR-218 directly targeted HPGD through which
it regulated the expression of several chondrogenic, as well
as osteogenic markers. Overexpression of miR-218 led to
increased expression of SOX9, glycosaminoglycans and Cartilage
Oligomeric Matrix Protein whilst reducing the expression of
several osteogenic markers, such as ALP, COL1A1, OCN, and
OPN (98).

Another interesting miRNA in the field of chondrogenesis
is miR-335. It promoted chondrogenic differentiation via two
independent mechanisms. On the one hand, it directly targeted
DKK1 by which it enhanced β-catenin/TFC activity, on the
other hand it directly targeted Dishevelled-associated Activator
of Morphogenesis 1 & Rho associated Coiled-coil containing
protein Kinase 1, resulting in enhanced SOX9 expression.
Another interesting aspect about the mechanism of action
behind miR-335 is that it promoted its own expression via
a positive feedback loop (173). MiR-337 was also capable of
enhancing chondrogenesis, presumably through targeting TGF-
βR2, thereby promoting the differentiation and maturation of
chondroblasts. MiR-337 overexpression resulted in increased
expression of Aggrecan (AGC), whereas inhibition of miR-337
resulted in reduced AGC1 expression. Furthermore, miR-337 has
shown to inhibit the activity of MMP3, an enzyme important in
cartilage degeneration (174).

Contrary to the above-mentioned miRNAs, miR-1, miR-26b,
miR-125b, miR-146a, miR-206, miR-214, and miR-222 have

shown to inhibit chondrogenic differentiation. MiR-1 and miR-
26b did so by inhibiting AGC synthesis. Sumiyoshi et al. showed
thatmiR-1 primarily suppressed AGC expression in hypertrophic
chondrocytes as compared to proliferating chondrocytes (175).
MiR-26b also decreased AGC synthesis. This occurred through
inhibition of the Wnt-signalling pathway (176). Under normal
circumstances, miR-125b has shown to be downregulated in
human BMSCs. Although no direct mechanism of action has
been revealed yet, miR-125b attenuated IL-1B target gene
expression whilst directly targeting OSX, thereby preventing
proper chondrocyte differentiation (177). Another important
signalling pathway in endochondral ossification is the TGF-
β signalling pathway. MiR-146a affected TGF-β signalling by
decreasing the expression of SMAD2 and SMAD3, which resulted
in enhanced expression levels of RUNX2 and ALP and decreased
SOX9 expression. MiR-146a thereby reduced chondrogenesis
and steered toward osteogenic differentiation through enhanced
RUNX2 and ALP activity (94).

MiR-206 inhibited chondrocyte proliferation, as seen by
reduced expression levels of AGC andCOL2A1, whilst enhancing
apoptosis through decreasing Bcl2 expression. Simultaneously,
the expression of RUNX2 and MMP13, also involved in
angiogenic regulation by miR-191, increased upon miR-206
expression (178). Research by Roberto et al. revealed that certain
miRNAs regulated chondrogenesis in a dose-dependent manner.
An example is miR-214, vital to normal skeletal development
and cartilage formation, although research revealed that miR-214
overexpression resulted in a substantial decrease in expression
of SOX9, COL2A1 and Activating Transcription Factor 4 (179).
Lastly, Yoshizuka et al. revealed that miR-222 interferes with
angiogenesis, as described above, as well as chondrogenesis
and osteoblastogenesis. Regarding chondrogenesis, miR-222
inhibition promoted chondrogenic differentiation in hMSCs,
as confirmed by enhanced expression of COL2A1, AGC, and
SOX9 (31).

DISCUSSION

This review displays the functions of miRNAs in fracture healing,
providing a concise overview on regulatory roles of miRNAs in
specific aspects that are related to bone regeneration. It therefore
aids in determining possible future research aims, as well as
offering a broad, integrated view on the role ofmiRNAs in cellular
signalling related to fracture healing.

The literature describes the role of specific miRNAs in
several processes that are involved in fracture healing. Proper
fracture healing is dependent on the successful coherence of
these processes. The complexity of cellular communication and
functioning underline the dynamic and multifaceted nature of
bone regeneration. MiRNAs play an important role in cellular
communication and functioning, thereby greatly influencing
fracture healing on several aspects. One single miRNA can
affect the expression of several proteins, influencing multiple
processes differentially within bone regeneration. Additionally,
miRNA expression has shown to be dynamic, due to the gradual
transitions in-between several phases of the fracture healing
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cascade, requiring differential cellular activities. Interestingly,
various miRNAs influenced fracture healing processes in a
contradictive manner, indicating the need for more research to
clarify their role in bone regeneration. This may be related to
spatiotemporal expressions.

Focusing on potential diagnostic or therapeutical applications,
miRNAs have shown to be differentially expressed in several
musculoskeletal diseases, indicating an involvement in bone
formation and regeneration, as well as pathophysiological
mechanisms. Furthermore, in vivo research, presented
throughout this review, on the therapeutic application of
miRNAs in bone regeneration has already shown promising
results. However, more research on miRNAs, their targets,
involvement in various pathways, and systemic responses is
required to develop clinical applications.

Several challenges are evident regarding the clinical
application of miRNAs. On a cellular level, examples of
such challenges are the degradation by nucleases, endosomal
entrapment, activation of innate immune responses, and low
cellular membrane penetration (180). Furthermore, delivery of
miRNAs to a target tissue, and delivery vectors are challenging.
In fracture healing, one can think of local application during
fracture surgery, but unwanted toxicity is a major component
that needs to be taken into account. Looking at a systemic
application of miRNAs, various barriers appear, such as the
need for miRNAs to travel through the bloodstream, after
which they have to extravasate and selectively enter a target
tissue (181). Moreover, miRNAs can exhibit differential, tissue

specific effects, since they are often involved in various pathways
simultaneously, requiring in depth knowledge on cellular
signalling on the individual patient level to minimise the risk of
undesired side effects (182).

Although the role of miRNAs has been broadly researched
in several specific aspects of bone regeneration, such as
osteoblastogenesis, more insights should be gained in other
aspects of fracture healing. One should be aware that the
literature discussed throughout the present review concerns
English literature only, has been selected on a limited amount
of keywords, and was processed according to a set of strict
exclusion criteria in order to maintain a focus on healthy fracture
healing, therefore potentially missing out on specific literature
on miRNAs related to skeletal pathophysiology. This indicates
that fracture healing research would benefit from a more
integrative approach, considering the sophisticated interplay
of several processes as described above. This review therefore
potentially serves as a benchmark, describing the intricate role
of miRNAs throughout various processes within fracture healing,
and offering useful insights for future research into the regulatory
role of miRNAs in bone regeneration.
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