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Background: Severe upper-limb motor paralysis following chronic stroke

presents a significant rehabilitation challenge, often with limited recovery. This

case study explores the e�ects of repetitive peripheral magnetic stimulation

(rPMS) combined with task-oriented training on motor recovery in a patient with

chronic stroke and severe upper-limb impairment.

Methods: A 50-year-old male with right upper-limb paralysis post-hemorrhagic

stroke underwent a 2-week intervention comprising 12 sessions of rPMS

targeting the elbow and wrist extensors, combined with task-oriented training.

Motor function was assessed using the Fugl-Meyer Assessment (FMA), kinematic

analysis, Motor Activity Log (MAL), and electromyographic (EMG) analysis of wrist

flexion-extension movements.

Results: The intervention resulted in a clinically meaningful increase in motor

function, reflected in improved FMA scores and greater elbow extension during

kinematic analysis. EMG analysis demonstrated reduced co-contractions of wrist

flexors and extensors, indicating improved muscle coordination. Despite these

gains, recovery of distal voluntary movements, such as wrist dorsiflexion and

finger extension, remained limited. As assessed byMAL, upper-limb usage in daily

activities showed minor improvements; however, qualitative reports indicated

functional gains, including the ability to hold a bottle and assist in closing a

car door.

Conclusion: rPMS combined with task-oriented training shows promise in

enhancing motor function in patients with chronic stroke combined with severe

upper-limb paralysis, particularly in proximal muscles. Further research involving

control groups and objectivemeasures of upper-limb use is necessary to validate

these findings and refine intervention protocols.
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1 Introduction

Post-stroke upper limb paralysis significantly impairs activities

of daily living (ADLs), with functional recovery posing a

substantial challenge, particularly for patients with moderate to

severe motor impairments (Choi, 2022). Rehabilitative strategies

such as task-oriented training and repetitive motor practice

have demonstrated efficacy for mild to moderate impairments

(Pollock et al., 2014; French et al., 2016). However, only 12%

of patients achieve full functional recovery, leaving severe cases

an ongoing focus in stroke rehabilitation (Aqueveque et al.,

2017; Broeks et al., 1999; Kwakkel et al., 2003; Coscia et al.,

2019).

Patients with severe upper-limb paralysis often exhibit

hypertonia and markedly reduced voluntary motor function,

limiting the feasibility of traditional task-oriented training (Pundik

et al., 2019). Emerging technologies, such as peripheral nerve

electrical stimulation, robotics, and brain-machine interfaces, have

shown promise when combined with functional training (Carrico

et al., 2016; Bertani et al., 2017; Monge-Pereira et al., 2017; Cervera

et al., 2018; Cho et al., 2018; Mehrholz et al., 2018; Carvalho

et al., 2019; Conroy et al., 2019; Bai et al., 2020). Despite its

reported efficacy, peripheral nerve stimulation is often associated

with pain and discomfort (Yoshida et al., 2017; Yang et al.,

2019).

Repetitive peripheral magnetic nerve stimulation (rPMS)

has emerged as a viable alternative, offering deeper, pain-

free stimulation (Beaulieu and Schneider, 2013; Han et al.,

2006). Studies indicate that rPMS promotes proprioceptive

input and neuroplasticity by inducing a repetitive contraction-

relaxation cycle (Struppler et al., 2003; Brown et al., 2009).

Clinical benefits have been reported in the acute phase of

stroke (Obayashi and Takahashi, 2020; Jiang et al., 2022),

and recent findings by Fawaz et al. (2023) suggest motor

improvements in patients with chronic-phase stroke following

rPMS combined with active training. However, the effects

on severe upper limb motor dysfunction remain unclear,

as severity-specific analyses were not conducted. To address

this gap, our protocol integrates rPMS with task-oriented

training, specifically targeting a patient with severe deficits

in upper-limb function. Through this approach, we aim to

examine whether the combined intervention leads to significant

improvements in proximal motor function within this specific

patient population.

The severity of upper limb motor paralysis depends on factors

such as lesion location and time since stroke onset (Okamoto

et al., 2021; Van Der Vliet et al., 2020). Evidence suggests that

proximal muscles are easier to target and train than distal ones,

particularly in patients with severe impairment (Hijikata et al.,

2020; Chen et al., 2023). Tailoring rPMS protocols to the difficulty

hierarchy of motor tasks may optimize recovery outcomes for

this population.

This case report examined the effects of combining rPMS

with task-oriented training in a patient with chronic stroke with

severe upper-limb motor paralysis. It aims to provide insights into

how targeting proximal muscles based on functional difficulty can

contribute to meaningful motor recovery, addressing a key gap in

the current literature.

2 Material and methods

2.1 Experiment design

This study was conducted over 2 weeks, comprising 12

intervention sessions that combined rPMS and task-oriented upper

limb training. rPMS was administered before the task-oriented

training, and evaluations were performed both before and after

intervention. The study received ethical approval from the affiliated

institution’s ethics committee (approval number e428), and written

informed consent was obtained after providing the patient with a

detailed explanation of the study procedures.

2.2 Patient

The patient was a 50-year-old man with chronic right

hemiparesis following a left putaminal hemorrhage 5 years prior

(Figure 1). The patient initially underwent 5 months of intensive

inpatient rehabilitation following stroke onset. Four years post-

stroke, he also participated in outpatient physical therapy sessions

(once to three times per month), which included task-oriented

training. However, no marked improvements in upper-limb

function were observed, and these sessions were discontinued 8

months before the start of this study. Since then, the patient has not

received any rehabilitation interventions. When the patient began

outpatient physical therapy 1 year prior to this study, his shoulder

flexion was limited to 150◦ and abduction to 120◦, with no other

noted range of joint motion restrictions.

At the beginning of this study, although independently

ambulatory and capable of driving, his functional activities were

significantly restricted due to limited voluntary use of the affected

upper limb. The patient exhibited partial active finger flexion,

with no ability to extend the fingers or perform voluntary wrist

flexion/extension. Voluntary elbow extension was limited not only

by motor paralysis of the elbow extensors but also by increased

muscle tone of the elbow flexors (Modified Ashworth Scale score: 2)

(Pandyan et al., 1999). The patient’s primary therapeutic goals were

to improve elbow and wrist movement and enhance functional

independence in activities of daily living and occupational tasks.

2.3 rPMS

rPMS was administered using a high-frequency peripheral

magnetic stimulator (Pathleader, IFG Corporation, Sendai, Japan)

(Suzuki et al., 2015). The device generated biphasic pulses (328–

372 µs) with a maximum magnetic gradient of 18.2 kT/s. Key

stimulation parameters included frequency, 30Hz (Obayashi and

Takahashi, 2020); duty cycle, 2 s ON and 3 s OFF (Fujimura et al.,

2020); session duration, 7min per targeted muscle group; and

stimulations per session,∼5,000 pulses (Krewer et al., 2014).

Target muscles included the elbow extensors and wrist

dorsiflexors, selected based on a preliminary functional assessment

and the patient’s rehabilitative goals. Stimulation intensity

was adjusted daily to achieve observable joint movement,

corresponding to 45%−60% of the device’s maximum output.
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The procedure identified stimulation sites by eliciting robust

muscle contractions in the contralateral limb and subsequently

targeting the homologous regions on the paretic limb. rPMS

was first applied to the wrist dorsiflexor muscles and then, in a

separate session, to the elbow extensor muscles. During the rPMS

intervention, the patient was instructed to synchronize voluntary

movements with those of the stimulating muscle. However, if the

muscle activity of the antagonist muscle inhibited joint movements

induced by rPMS, voluntary movements were not synchronized

during the rPMS intervention.

2.4 Task-oriented training

The task-oriented upper limb training comprised 30-min

sessions aimed at progressively challengingmotor function through

diverse upper-limb exercises. Training components included

grasping and releasing objects of varying dimensions, weights,

and frictional properties (e.g., spherical balls, cylindrical pegs, and

planar boards); table-level tasks, focusing on manipulative skills;

and activities requiring elbow extension and wrist dorsiflexion,

such as transferring objects beneath the table surface. A custom-

fitted finger orthosis was used to prevent hyperflexion of the

thumb’s interphalangeal joint.

2.5 Outcome measures

2.5.1 Motor function and use of the upper limbs
in ADLs

Motor function was assessed using the Fugl-Meyer Assessment

(FMA) upper limb subscale (Fugl-Meyer et al., 1975). The finger-

to-nose test, a subcomponent of the FMA, was video-recorded for

kinematic analysis. Two-dimensional trajectory data were collected

to measure relative movement between the paralyzed hand and

the patient’s nose. Standardized reference points (shoulder and

hip midpoints) were used, and the maximum distance across five

repetitions was calculated.

Motor Activity Log (MAL) (Van Der Lee et al., 2004) outcomes

assessed the frequency and quality of upper limb use during

functional tasks. On the final day, a semi-structured interview

documented qualitative changes in upper limb utilization.

2.5.2 Kinematic and electromyographic analyses
Kinematic and EMG analyses were performed before and

after stimulation on both intervention days. The patient was

seated and rested the forearm on a table at a height of

70 cm. The shoulder was slightly flexed and internally rotated,

the elbow was flexed, the forearm was in a neutral position

between pronation and supination (with assistance provided

during the measurement), and the wrist was in a neutral position

between dorsiflexion and palmar flexion. The tasks included

repetitive wrist palmar/dorsal flexion and finger flexion/extension

(performed at a controlled cadence of one cycle every 6

seconds under verbal guidance). Video recordings were acquired

from an overhead perspective to ensure clear visualization

FIGURE 1

T1-weighted magnetic resonance imaging (MRI) 5 years following

brain hemorrhage onset. The white arrow indicates the left putamen

lesion.

of the forearm and hand. The Supplementary videos 1, 2 (1:

Finger Flexion-Extension Task, 2: Wrist Flexion-Extension Task)

present synchronized recordings of the EMG signals and the

patient’s movement.

For kinematic analysis, joint angles (elbow, wrist,

metacarpophalangeal [MP] joint, and fingertip of the index

finger) were calculated using Kinovea software (2023.1). This

method was adapted from a previous study (Aoyama et al.,

2021), in which markers were placed on the patient’s joints, and

a two-dimensional motion analysis using a video camera was

employed to calculate joint angles. Data smoothing was achieved

using a 10Hz second-order Butterworth low-pass filter and a 1-s

moving average.

All kinematic and EMG data were processed using

MATLAB R2024a (MathWorks, Natick, USA). The wrist

extension angle was defined as the angle subtended by the

elbow, wrist, and MP joint, while the finger flexion angle

was measured as the angle formed by the wrist, MP joint,

and fingertip. A 10Hz second-order Butterworth low-pass

filter was applied to smooth the data, followed by a 1-s

moving average.

EMG signals were recorded using a wireless system (TS-

MYO, Trunk Solution, Japan) at 1 kHz sampling. Bipolar surface

electrodes targeted the flexor and extensor carpi radialis muscles.

Signal processing involved detrending, high-pass filtering (10Hz

Butterworth), rectification, and smoothing. EMG amplitudes

were normalized to a maximum value of 100% for inter-

condition comparisons.
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3 Results

3.1 Motor paralysis and use of the upper
limbs in ADLs

The FMA score was improved from 27 at baseline to 33 post-

intervention (Supplementary Table 1), surpassing the threshold for

minimal detectable change (MDC). Improvements were observed

in shoulder, elbow, and forearm flexion joint movement (+3

points) and hand grip movement (+3 points).

The finger-nose test score remained at 2 points, but task

performance improved: completion time reduced from 38 s to 27 s

(Figure 2B), and the range of motion between the nose and the

paralyzed hand increased considerably (from 1.13 ± 0.11 meters

to 1.60± 0.03) (Figures 2A–C).

MAL outcomes included amount of use (AOU), 1.79 ± 2.49

pre-intervention to 1.86 ± 2.44 post-intervention. Quality of

movement (QOM) also improved from a baseline of 0.71 ± 1.27

to 0.93± 1.38 on the last day.

For the sub-items, the QOM for “putting one’s hand through

the sleeve of a garment” increased from 2 to 3 points. For “moving

an object with one’s hand,” AOU and QOM improved, with AOU

increasing from 0 to 1 point and QOM increasing from 0 to 2

points. During the patient interview, it was noted that on the

final day of the intervention, the patient was able to hold a plastic

bottle with the paralyzed hand while opening it, an action that was

not previously possible. Additionally, the patient, who had been

unable to use the paralyzed hand to close a car door prior to the

intervention, was now able to position the paralyzed hand using

the non-paralyzed hand and successfully pull the door closed with

the paralyzed hand.

3.2 Kinematic and EMG evaluation of
palmar and dorsal flexion movements

In the wrist palmar flexion-extension task (Figure 3), pre-

stimulation results on Day 1 revealed a flexion angle of −14◦ and

a limited dorsiflexion range (from −16◦ to −8◦) due to persistent

antagonist muscle contraction.

Post-stimulation observations included:

Day 1: The dorsiflexion angle improved to −4◦, though

antagonist contraction persisted, limiting further gains.

Final Day (pre-stimulation): Dorsiflexion began at −5◦,

gradually improving to−14◦ over task execution.

Final Day (post-stimulation): The dorsiflexion angle improved

to 2◦, with increased dorsal flexor activity contributing to

improved movement control. Fluctuations between −4◦ and 2◦

were observed, with more time spent in a dorsiflexed position

than baseline.

These findings suggest enhanced motor coordination

and reduced antagonist co-contraction following

repeated rPMS sessions. Supplementary EMG waveforms

(Supplementary Figure 1) demonstrate increased activation of

dorsal flexors and reduced compensatory activity in palmar flexors.

After stimulation on the first day (Figure 3B), the dorsiflexion

angle improved to −4◦. However, simultaneous contraction of the

flexor and extensor muscles limited changes in the dorsiflexion

angle to within 2◦ during each phase. On the final day before

stimulation (Figure 3C), the dorsiflexion angle was −5◦, with

continued simultaneous muscle contraction gradually reducing the

dorsiflexion range to−14◦ over the task duration.

On the final day after stimulation (Figure 3D), the dorsiflexion

angle improved to 2◦, accompanied by marked palmar flexor

activity, resulting in a 6◦ palmar flexion movement. In subsequent

phases, dorsal flexor activity increased, producing approximately

6◦ of dorsiflexion, although palmar flexor activity persisted.

Throughout the task, the dorsiflexion angle fluctuated between−4◦

and 2◦, with increased time spent in the dorsiflexion position.

Additional EMG waveforms and detailed analyses are available

as Supplementary Figure 1.

3.3 Kinematic and EMG evaluation of finger
flexion and extension tasks

During the finger flexion-extension task

(Supplementary Figures 2, 3), we did not observe any increase in

extensor muscle activity during the extension phase (when flexor

muscles were inactive) on Day 1 or before stimulation on the final

day. However, in the second extension phase following stimulation,

there was a slight increase in extensor muscle activity, while the

flexor muscles did not show increased activity.

3.4 Adverse e�ects

No adverse events, such as pain, discomfort, or unexpected

reactions, were reported during the intervention. All sessions were

completed as planned, confirming the safety and tolerability of the

combined rPMS and task-oriented training protocol.

4 Discussion

This study investigated the effects of combining rPMS

and task-oriented training in a patient with severe upper

motor paralysis combined with chronic-phase stroke. The

intervention resulted in a 6-point improvement in FMA,

reduced time required for the finger-nose test, increased

upper limb range of motion, and a change in muscle activity

during palmar flexion. These improvements exceed the

MDC (3.2–7.2) and minimally clinically important difference

(MCID; 4.0–12.4) thresholds reported for FMA in upper-limb

stroke rehabilitation (Hsueh et al., 2008; Lin et al., 2009; See

et al., 2013; Arya et al., 2011; Page et al., 2012; Lundquist

and Maribo, 2017; Hiragami et al., 2019). The findings

suggest that rPMS combined with task-oriented training has

clinical relevance in promoting motor recovery even in the

chronic phase.

The patient exhibited severe motor paralysis at baseline, with

an FMA score below 30 points and the inability to perform

voluntary finger and wrist extension. These findings align with

prior definitions of severe motor impairment, including a total

FMA score of ≤30 (Coscia et al., 2019) and limited extension
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FIGURE 2

Improvements in the finger-to-nose test, a subcomponent of the fugl-meyer assessment (FMA). (A) Representative images showing the maximum

distance (green line) between the nose (red circle) and the wrist of the paralyzed side (blue circle). The left panel illustrates performance on Day 1 of

the intervention, while the right panel shows performance on the final day of the intervention. (B) Time-series plot of the distance between the nose

and wrist of the paralyzed side during the finger-to-nose task. The black line represents Day 1, and the red line represents the final day of

intervention. Improvements in distance and task performance are evident. (C) Two-dimensional trajectories of the nose (red line) and wrist (black

line) of the paralyzed side in the frontal plane. The left panel displays trajectories on Day 1, characterized by restricted and inconsistent wrist

movement. The right panel depicts trajectories on the final day, showing a broader range of wrist movement and improved task execution.

of the metacarpophalangeal and wrist joints (Carrico et al.,

2016). Targeting the elbow and wrist extensors with rPMS led to

noticeable improvements in elbow extension range and reductions

in antagonist muscle activity, particularly in the extensor carpi

radialis, during palmar flexion. However, voluntary distal motor

movements, including finger extension or wrist dorsiflexion,

showed limited improvement.

The limited improvement in distal motor control is consistent

with the findings of Hijikata et al. (2020), who reported that

task difficulty in FMA increases from proximal to distal muscles,
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FIGURE 3

Electromyographic (EMG) activity and wrist extension angle during the wrist flexion-extension task. (A) Pre-stimulation on Day 1. (B) Post-stimulation

on Day 1. (C) Pre-stimulation on the Final Day. (D) Post-stimulation on the Final Day. The left Y-axis represents the wrist extension angle (black line),

while the right Y-axis shows the EMG activity of the wrist flexor (blue line) and extensor (red dashed line) muscles. The task consists of alternating

phases: Dorsiflexion (D) and Palmar flexion (P). The black arrow in (D) highlights the first palmar flexion phase on the Final Day (Post-stimulation),

where a notable increase in palmar flexion movement and corresponding activity of the palmar flexor muscles is observed. In contrast, the activity of

the dorsal flexor muscles shows limited increases, reflecting improved motor control during the task.

with tasks involving the hand being the most challenging.

Additionally, antagonist overactivity is a well-known factor

interfering with voluntary movement in patients with motor

paralysis (Pundik et al., 2019). In this study, the reduction

in antagonist activity likely facilitated proximal motor gains,

suggesting that appropriate targeting of muscles for rPMS can

promote task-specific improvements. However, recovery of distal

muscle function remains a challenge in severe cases and may

require additional interventions or longer treatment durations.

Previous studies examining rPMS and upper limb training

often lacked detailed descriptions of motor tasks, focusing

primarily on passive stretching or automated joint range of motion

exercises (Obayashi and Takahashi, 2020; Werner et al., 2016;

Krewer et al., 2014). In contrast, this study incorporated task-

oriented training, which may enhance neural circuit activity and

promote motor learning. Combining rPMS with functional, task-

oriented practice likely facilitated motor recovery that simple

upper-limb exercises alone could not achieve. However, further

research is needed to verify these findings, particularly in patients

with severe paralysis in chronic-phase stroke.

In this study, although MAL was used to assess upper limb

use, the results did not meet the MDC thresholds for patients

with stroke: 0.84 for AOU and 0.77 for QOM (Chen et al.,

2012). The MCID for dominant-hand paralysis is reported

as 1.0 (Lang et al., 2008). Despite this, notable qualitative

improvements were observed, such as elbow extension and

specific upper limb tasks (e.g., manipulating objects) that

were previously unachievable. These findings are further

supported by changes in FMA scores, kinematic evaluations,

and EMG data. While the FMA evaluates motor function

through standardized assessment tasks, the MAL reflects

the patient’s ability to use their affected limb in everyday

activities. This difference in focus may explain the discrepancies

in outcomes.

This study has some limitations. First, the absence of a

control group makes it challenging to attribute the observed motor

improvements solely to the intervention. However, as the patient

was in the chronic phase of stroke recovery, significant natural

recovery in upper limb motor function is unlikely (Hussain et al.,

2021; Borschmann and Hayward, 2020).
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Second, while the intervention required only 1 hour per day

over 14 days, the patient was encouraged to practice independently

and integrate the acquired functions into daily activities and work.

The actual usage of the affected upper limb likely exceeded the

intervention time. However, the lack of objective measurement

tools, such as activity monitors, limits our ability to quantify the

real-world use of the upper limb.

Finally, this intervention requires substantial voluntary effort

from patients, which may restrict its applicability to individuals

with cognitive or motivational limitations.

Although these findings are promising, future research

should include control groups and incorporate objective

evaluations of upper limb usage to comprehensively validate

the intervention’s effectiveness.

5 Conclusion

In this study, we investigated the effects of rPMS combined

with task-oriented training in a patient with severe upper limb

motor paralysis in the chronic phase after a brain hemorrhage.

The interventional resulted in clinically meaningful improvements,

including increased FMA scores and enhanced range of motion,

particularly in proximal muscle groups.

However, improvements in voluntary movements of distal

muscles, which are inherently more challenging to recover, were

limited. Additionally, there was no significant change in the

amount or quality of upper limb usage during daily activities.

Future research should include control groups to validate these

findings and employ objective measures such as activity monitors

to accurately assess upper limb use in real-world settings. This will

further clarify the intervention’s efficacy and guide the development

of personalized rehabilitation protocols.
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