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A machine learning-based
radiomics approach for
differentiating patellofemoral
osteoarthritis from
non-patellofemoral osteoarthritis
using Q-Dixon MRI
Liangjing Lyu1, Jing Ren1, Wenjie Lu1, Jingyu Zhong1, Yang Song2,
Yongliang Li1*† and Weiwu Yao1*†

1Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China
This prospective diagnostic study aimed to assess the utility of machine learning-
based quadriceps fat pad (QFP) radiomics in distinguishing patellofemoral
osteoarthritis (PFOA) from non-PFOA using Q-Dixon MRI in patients
presenting with anterior knee pain. This diagnostic accuracy study
retrospectively analyzed data from 215 patients (mean age: 54.2 ± 11.3 years;
113 women). Three predictive models were evaluated: a proton density-
weighted image model, a fat fraction model, and a merged model. Feature
selection was conducted using analysis of variance, and logistic regression was
applied for classification. Data were collected from training, internal, and
external test cohorts. Radiomics features were extracted from Q-Dixon MRI
sequences to distinguish PFOA from non-PFOA. The diagnostic performance
of the three models was compared using the area under the curve (AUC)
values analyzed with the Delong test. In the training set (109 patients) and
internal test set (73 patients), the merged model exhibited optimal
performance, with AUCs of 0.836 [95% confidence interval (CI): 0.762–0.910]
and 0.826 (95% CI: 0.722–0.929), respectively. In the external test set (33
patients), the model achieved an AUC of 0.885 (95% CI: 0.768–1.000), with
sensitivity and specificity values of 0.833 and 0.933, respectively (p < 0.001).
Fat fraction features exhibited a stronger predictive value than shape-related
features. Machine learning-based QFP radiomics using Q-Dixon MRI
accurately distinguishes PFOA from non-PFOA, providing a non-invasive
diagnostic approach for patients with anterior knee pain.
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anterior knee pain, patellofemoral osteoarthritis, Q-Dixon MRI, radiomics, machine
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Abbreviations

AKP, anterior knee pain; AKPS, anterior knee pain scale; AUC, area under the curve; BMI, body mass index;
FF, fat fraction; ICC, intraclass correlation coefficient; IFP, infrapatellar fat pad; IPAQ, International Physical
Activity Questionnaire; KOA, knee osteoarthritis; MOAKS, MRI osteoarthritis knee score; MRS, magnetic
resonance spectroscopy; PDWI, proton density-weighted image; PFOA, patellofemoral osteoarthritis; PFP,
prefemoral fat pad; QFP, quadriceps fat pad; ROC, receiver operating characteristic; T1WI, T1-
weighted imaging.
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1 Introduction

Anterior knee pain (AKP) (1) is a common condition affecting

approximately 40% of adolescent athletes (2). Young, active

individuals with AKP seek care at sports injury clinics. A recent

systematic review (3) highlighted that females have a two-fold

higher risk of developing AKP due to patellofemoral issues

compared with males. While AKP was previously considered a

self-limiting condition, recent studies (4, 5) have demonstrated

its potential to become chronic, often leading to psychological

comorbidities. Patients with AKP experience reduced quality of

life (6) and progressive patellofemoral cartilage damage (7). The

etiology of AKP is multifaceted, involving multiple structures,

including the patellofemoral joint and soft tissues, and thus

requiring individualized treatment tailored to each patient’s

characteristics and the specific underlying cause. Patellofemoral

osteoarthritis (PFOA) is more prevalent than tibiofemoral

osteoarthritis (TFOA) (8), as it pertains to the flexion and

extension movements of the knee joint rather than being

associated with weight-bearing activities; however, it has received

less attention. Additionally, the presence of PFOA increases the

risk of OA in the tibiofemoral compartment (9). Simultaneously,

early clinical intervention in the progression of PFOA can

potentially maximize the avoidance of joint replacement

outcomes (5). However, there has been a persistent lack of

convenient and reliable quantitative methods for the assessment

of PFOA.

Peripatellar fat pads and synovium function as a cohesive unit,

with the fat pads playing a pivotal role in synovial inflammation,

fibrosis, and osteoarthritis (OA)-associated pain (10, 11). The

knee joint contains three types of fat pads: the quadriceps fat pad

(QFP), also known as the suprapatellar fat pad; the prefemoral

fat pad (PFP), which is separated from the QFP by the

suprapatellar bursa; and the infrapatellar fat pad (IFP), also

referred to as Hoffa’s fat pad. These structures are integral to

knee joint anatomy, contributing to its biomechanics, cushioning,

and secretory functions (12, 13). The IFP has garnered

significant attention. Edema of the IFP has shown strong

correlations with knee OA (KOA), particularly TFOA (14–17).

Recent radiomics studies (15, 18) have further underscored the

diagnostic and therapeutic potential of the IFP in KOA,

especially in TFOA. Similar to the IFP, the QFP and synovium

function as a unit, playing a role in the early stages of synovial

inflammation, fibrosis, and AKP (10). Conversely, research on

the QFP in the context of KOA, and particularly PFOA, remains

limited and has predominantly relied on conventional MRI

sequences. MRI offers superior soft tissue resolution, enabling

more sensitive detection of early pathological abnormalities in

OA than radiography and CT imaging, which makes it a reliable

tool in early intervention and monitoring treatment effects.

Despite its advantages, traditional MRI sequences cannot

directly provide quantitative values and are limited in

distinguishing the degree of edema in fat pads. Erber et al. (19)

proposed a grading method for QFP edema based on

conventional proton density-weighted image (PDWI) sequences.

This method compares the signal of the QFP with those of the
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PFP and the gastrocnemius muscle. Grade A is defined by a QFP

signal higher than that of the PFP but lower than that of the

gastrocnemius, while a signal similar to that of the gastrocnemius

is defined as Grade B, and one higher than that of the

gastrocnemius is defined as Grade C. This classification method

can only roughly divide the fat pad signal into four levels, which

may cause difficulties in practice, especially when the signal of

the fat pad is close to that of the gastrocnemius, or when there is

also edema in the PFP, making visual assessment unreliable.

Additionally, some studies (20, 21) focused on the mass effect of

the QFP based on conventional PDWI, suspecting that the

protruding morphological characteristics of the QFP might have

certain clinical significance. However, only a rough visual

assessment is possible, without precise quantitative analysis.

Currently, the primary MRI sequences used for the measurement

of fat content are Q-Dixon and proton magnetic resonance

spectroscopy (MRS), both renowned for their robust accuracy

and objectivity. Both techniques have been widely used in the

quantification of fat in various tissues, including the liver, bones,

and muscles (22, 23). However, the cubic volume-of-interest with

a small volume of MRS restricts its clinical applications. Q-Dixon

holds greater clinical potential since it provides scalable maps of

fat distribution.The Q-Dixon MRI sequence employs a multi-

echo, three-dimensional (3D) gradient echo volumetric

interpolated breath-hold examination T2*-corrected 6-point

Q-Dixon protocol, which is adept at generating images that

distinguish between water, fat, T2*, R2*, in-phase, and opposed-

phase signals. This enables the automated reconstruction of fat

fraction (FF) maps, where the FF is defined as the ratio of the

signal intensity from fat to the total signal intensity from both

fat and water. Our previous research (24) has confirmed that the

FF values obtained from Q-Dixon-based QFP are correlated with

PFOA severity. Quantitative and radiomics data exploring the

role of the QFP are sparse despite their relevance in PFOA

processes. Furthermore, MRI sequences based on the Q-Dixon

technology not only offer the advantage of a short scanning time

of only 35 s but also provide a more comprehensive set of

quantitative information compared with traditional MRI,

indicating their significant potential in medical imaging.

We hypothesized that integrating the Q-Dixon technology with

conventional MRI sequences would enhance the diagnostic

performance of QFP radiomics, leading to improved diagnostic

outcomes for PFOA. To test this hypothesis, this study aimed to

evaluate the performance of QFP radiomic features derived from

different sequences to serve as independent imaging markers

for PFOA.
2 Materials and methods

2.1 Ethics approval and patient consent

This cross-sectional study with prospective data collection was

approved by the Institutional Review Board of Shanghai Tongren

Hospital (no. 2022-044-01) and adhered to the ethical standards

outlined in the 2013 revision of the Declaration of Helsinki.
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Informed consent was obtained from all patients. This study

followed the Strengthening the Reporting of Observational

Studies in Epidemiology guidelines.
2.2 Study design and patients

A total of 306 patients diagnosed with AKP between August 1,

2023, and July 31, 2024, at orthopedic outpatient clinics and

through referrals from community clinics were evaluated. The

inclusion criteria included age 40–70 years and persistent pain

in the patella region for more than two months. Exclusion

criteria were as follows: (i) prior knee dislocation, fracture, or

severe soft tissue contusion; (ii) severe internal derangements,

such as meniscal, tendinous, or ligamentous tears; (iii) prior

knee injections, surgeries, or arthroscopy; (iv) prior knee

pathologies, including tumors, pseudotumorous lesions,

rheumatic autoimmune disorders, and metabolic abnormalities;

(v) concomitant pain originating from other knee structures, the

hip, or the lumbar spine; and (vi) contraindications to MRI.

After applying these criteria, 91 patients were excluded, leaving

215 eligible patients. Orthopedic outpatients (n = 182) were

randomly assigned to training (n = 109) and internal test (n = 73)

datasets in a 6:4 ratio, with individual differences [age, sex, and

body mass index (BMI)] controlled to minimize confounding
FIGURE 1

Patient selection flowchart.
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effects. Patients referred by community general practitioners

(n = 33) were included in the external testing dataset (Figure 1).

Patient data, including height, weight, age, sex, surgery history,

trauma, rheumatism, metabolic joint conditions, daily physical

activity levels [quantified using the International Physical

Activity Questionnaire (IPAQ) scores], and knee joint pain and

functional status [quantified using the Anterior Knee Pain

Scale (AKPS)], were collected.
2.3 MRI acquisition

All MRI procedures were performed using a Magnetom Vida 3

Tesla (Siemens, Erlangen, Germany) machine equipped with an

18-channel knee coil. Following an explanation of the

examination precautions, the patients’ knees were positioned in

slight flexion between 15° and 20°. Cotton cushions were used to

stabilize the flexed position of the knee joint and to enhance

patient comfort. Initial assessments were conducted using

standard MRI sequences, including coronal T1-weighted images

(T1WI) and transverse, sagittal, and coronal PDWI. A multi-

echo Q-Dixon technique was employed for FF quantification.

This method uses multiple echoes to generate accurate fat and

water fraction maps, enabling rapid and comprehensive fat

quantification within a single breath-hold. Furthermore, the
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https://doi.org/10.3389/fspor.2025.1535519
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Lyu et al. 10.3389/fspor.2025.1535519
Q-Dixon technique facilitates concurrent evaluation of both FF and

transverse relaxation time (T2*). The detailed sequence parameters

are provided in Table 1.
2.4 MRI assessment

All patients were assigned unique identification numbers, and

all MR images were anonymized. Two musculoskeletal

radiologists (J.R. and L.J.), with 4 years and 14 years of

experience, respectively, assessed each patient’s MRI scans using

the patellofemoral joint-specific items of the MRI Osteoarthritis

Knee Score (MOAKS) through a consensus-based approach. The

MOAKS (7, 25) is a commonly used semi-quantitative tool for

scoring KOA adapted from the Whole Organ Magnetic

Resonance Imaging Score and the Boston Leeds Osteoarthritis

Knee Score. This adaptation led to improved convenience and
TABLE 1 Parameters of the magnetic resonance imaging protocol.

Sequence TR (ms) TE (ms) FA (°) Section
spacin

Coronal T1WI 363 12 90

Sagittal PDWI 2,240 30 150

Coronal PDWI 2,350 30 150

Transverse PDWI 2,240 30 150

Sagittal liver lab 9 1.05, 2.46, 3.69, 4.92, 6.15, 7.38 4

T1WI, T1-weighted image; PDWI, proton density-weighted image; TR, repetition time; TE, ech

FIGURE 2

Comparative sagittal MRI scans of patients with and without patellofemoral o
differences between a 49-year-old male without PFOA and a 50-year-old
imaging (PDWI) of the PFOA patient without PFOA shows uniform hypoin
PFOA shows uniform fat-like intensity in QFP. (C) Fat fraction (FF) map
(D) PDWI of the patient with PFOA showing an elevated signal in QFP. (
mapping of the patient with PFOA shows reduced fat content in QFP.
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reliability compared with the precursor scoring systems. The

MOAKS divides the knee joint into 14 distinct subregions and

assigns scores based on the severity of articular cartilage loss,

bone marrow lesions, and osteophytes. MRI-PFOA was defined

(7, 25) as the presence of both a definite osteophyte (MOAKS-

osteophyte score ≥2) and cartilage damage (MOAKS-cartilage

size score ≥2 or full-thickness loss score ≥1) within the

patellofemoral joint (Figure 2).
2.5 MR image processing and segmentation

The image-processing pipeline is illustrated in Figure 3. First,

all images were resampled to a 1 × 1 × 1 mm3 isotropic voxel

resolution. Following registration, a senior radiologist (L.J.)

segmented the QFPs based on anatomical landmarks using the

ITK-SNAP program (version 3.6.0) to generate a 3D mask from
thickness/
g (mm)

Voxel resolution (mm) FOV Acquisition time

3 0.4 × 0.4 × 3.0 160 68 s

3 0.5 × 0.5 × 3.0 160 87 s

3 0.5 × 0.5 × 3.0 160 91 s

3 0.5 × 0.5 × 3.0 160 87 s

0.9 1.2 × 1.2 × 1.2 230 35 s

o time; FA, flip angle; FOV, field of view.

steoarthritis (PFOA). Sagittal MRI scans illustrate quadriceps fat pad (QFP)
male with severe PFOA. (A) Proton density-weighted turbo spin-echo
tensity in QFP. (B) T1-weighted imaging (T1WI) of the patient without
ping of the patient without PFOA showing high-fat content in QFP.
E) T1WI of the patient with PFOA shows hypointensity in QFP. (F) FF
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the sagittal PDWI and FF mapping images. Intra- and inter-

observer reliabilities were assessed by randomly selecting 30

patients’ images, with J.R. performing the segmentation, followed

by repetition three weeks later by two blinded observers

(L.J. and J.R.).
2.6 Feature extraction, selection, and
classification model building

Features were extracted from each segmented volume using

FeAture Explorer Pro (FAE, version 0.5.13) in Python (version

3.7.6) following normalization. These features were selected based

on our previous study (25). Instead of using high-dimensional

and computationally intensive features, first-order features

evaluating the distribution of voxel intensity within the QFP on

sagittal PDWI/FF maps and shape-related features derived from

the original images were extracted for further analysis. A total of

18 first-order features were included: energy, entropy, minimum,

maximum, mean, median, range, interquartile range, mean

absolute deviation, robust mean absolute deviation, root mean

squared, skewness, kurtosis, variance, uniformity, total energy,

10th percentile, and 90th percentile. In addition, 14 shape-related

features were analyzed: voxel volume, surface-to-volume ratio,

surface area, mesh volume, maximum diameter, minor axis

length, elongation, flatness, least axis length, major axis length,

maximum 2D diameter column, maximum 2D diameter row,

maximum 2D diameter slice, and maximum 3D diameter. To

ensure reproducibility and reliability only features with intraclass

correlation coefficients (ICCs) greater than 0.75 were selected for

further analysis.

Data from orthopedic outpatient and community datasets were

independently collected. To balance the distribution of positive and

negative samples in the dataset, random upsampling was

applied. The feature matrix was normalized by centering each
Frontiers in Sports and Active Living 05
vector through mean subtraction and further normalization

based on its magnitude. To address high dimensionality,

feature similarities were assessed by calculating Pearson’s

correlation coefficients. Any pair of features with a correlation

coefficient exceeding 0.990 had one member removed to

ensure feature independence. This curation step reduced

redundancy and enhanced the streamlining of data features for

analysis. Subsequently, an analysis of variance (ANOVA) was

performed to identify the most relevant features, with F-values

calculated to quantify feature-label correlations. Features were

ranked by their F-values, and the top-ranking features were

selected for model construction. Three classification models

were developed based on feature sets derived from PDWI (PD

model), FF maps (FF model), and a combination of both

(merged model). Logistic regression was used as the classifier.

To optimize the hyperparameters, such as the number of

features included, a 10-fold cross-validation was performed on

the training dataset. The optimal hyperparameters were

determined by evaluating model performance on the

validation dataset. Python (version 3.7.6) and FeAture

Explorer Pro (FAE, version 0.5.13) were employed for the

entire process.
2.7 Statistical analysis

Baseline clinical information was compared using the t-test or

Mann–Whitney U-test for continuous variables and the chi-

squared test for categorical variables. Reliability was assessed by

calculating the ICC using 30 randomly selected knees. ANOVA

and chi-squared tests were employed to evaluate clinical

differences between the datasets. Receiver operating characteristic

(ROC) curve analysis, along with the area under the ROC curve

(AUC), was performed to evaluate model performance. The 95%

confidence interval (CI) was estimated using bootstrapping with
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1,000 samples to enhance the robustness of the results. The DeLong

test was used to compare the AUCs of different models. All

statistical analyses were conducted using SPSS software (version

24.0; IBM Corporation, Armonk, NY, USA). A two-sided p-value

of <0.05 was considered statistically significant.
3 Results

3.1 Patient characteristics

The mean age of the study cohort was 54.2 ± 11.3 years, and

113 patients were female. The training, internal test, and

external test datasets included 109 patients (56/53 positive/

negative), 73 patients (38/35 positive/negative), and 33

patients, respectively. Clinical information for each dataset is

provided in Table 2. The IPAQ scores were not

significantly different across the datasets. However, the AKPS

scores showed significant differences, with the training and

internal test datasets demonstrating lower scores compared

with the external test dataset (80.5 ± 8.5 and 82.1 ± 8.4 vs.

85.1 ± 7.4, p = 0.04). There was no missing data, and

the details of sample size estimation are provided in

Supplementary Materials.
3.2 Reliability of radiomics features

First-order and shape-related QFP features exhibiting

excellent intra- and inter-observer reliability (ICC ≥0.75) were
included in subsequent analyses (Supplementary Material).
TABLE 3 Performance of the radiomics models in the training and test sets.

Cohort Model AUC (95% Cl) Acc
Training PD 0.786 (0.698–0.874)

FF 0.827 (0.751–0.903)

Merged 0.836 (0.762–0.910)

Internal test PD 0.769 (0.660–0.876)

FF 0.802 (0.694–0.909)

Merged 0.826 (0.722–0.929)

External test PD 0.711 (0.532–0.891)

FF 0.860 (0.734–0.987)

Merged 0.885 (0.768–1.000)

Cl, confidence interval; AUC, area under the curve; FF, fat fraction.

TABLE 2 Clinical characteristics of the patients.

Characteristics Training set
(n = 109)

Internal te
(n = 73

Age (mean ± SD) 53.6 ± 10.5 53.8 ± 12

Sex (female) 58 (53.2) 38 (52.1

BMI (kg/m2) 24.2 ± 3.8 23.9 ± 3

IPAQ 1.7 ± 0.8 1.8 ± 0.

AKPS 80.5 ± 8.5 82.1 ± 8

IPAQ, International Physical Activity Questionnaire; AKPS, anterior knee pain scale; BMI, body
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There were eight FF-original first-order, six FF-original shape-

related, eight PD-original first-order, and six PD-original

shape-related features.
3.3 Model performance in training and
internal test sets

The merged model, constructed using the four features,

demonstrated the best performance with an AUC of 0.836 (95%

CI: 0.762–0.910) in the training set and 0.826 (95% CI: 0.722–

0.929) in the internal test set. For the PD model, the AUCs in

the training and test sets were 0.786 (95% CI: 0.698–0.874) and

0.769 (95% CI: 0.660–0.876), respectively. The FF model achieved

an AUC of 0.827 (95% CI: 0.751–0.903) in the training set and

0.802 (95% CI: 0.694–0.909) in the internal test set (Table 3).

Significant differences in the AUC were observed across the

training, internal test, and external test datasets (all p < 0.001).

The ROC curves and feature weights for the models are

presented in Figure 4.
3.4 External test set performance

To further evaluate the optimal model’s performance, 33

additional cases from the community were independently

assigned to an external test set and analyzed using the

same feature selection and classification processes applied to

the training and internal test sets. The merged model

demonstrated the highest diagnostic performance, achieving

an AUC of 0.885 (95% CI: 0.768–1.000) and accuracy,
uracy Sensitivity Specificity
0.762 0.790 0.731

0.771 0.732 0.811

0.789 0.768 0.811

0.726 0.833 0.622

0.767 0.658 0.886

0.808 0.816 0.800

0.636 0.500 0.800

0.727 0.765 0.688

0.879 0.833 0.933

st set
)

External test set
(n = 33)

P-value

.3 57.2 ± 11.5 0.84

) 17 (51.5) 0.99

.0 24.9 ± 4.5 0.52

3 1.6 ± 0.8 0.09

.4 85.1 ± 7.4 0.04

mass index; SD, standard deviation.
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FIGURE 4

Performance of the PD model (A), the FF model (B), and the merged model (C) and their feature contribution of performance metrics generated using
feature explorer software. Receiver operating characteristic (ROC) curves illustrate the model’s performance in the training and internal test sets. The
bar chart shows the contribution of selected features to each model’s performance.
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sensitivity, and specificity values of 0.879, 0.833, and 0.933,

respectively (Table 3). The FF model also showed strong

diagnostic potential, achieving an AUC of 0.860 (95% CI:

0.734–0.987), an accuracy of 0.727, a sensitivity of 0.765,

and a specificity of 0.688.
4 Discussion

4.1 Key findings

This study investigated the potential value of QFP analysis

based on conventional PDWI and convenient Q-Dixon

sequences for distinguishing PFOA from non-PFOA using

machine learning algorithms. The key findings include the

following: (i) the merged model, utilizing ANOVA for feature

selection and logistic regression for classification, achieved the

highest AUC; (ii) the feature “FF_original_firstorder_Mean”

extracted from FF mapping exhibited excellent diagnostic

performance in differentiating PFOA from non-PFOA; (iii)

shape-based features added limited value to differentiation; and

(iv) features derived from FF mapping appeared more relevant to

PFOA than those from PDWI, with the mean FF value being

particularly significant. FF mapping based on the Q-Dixon

sequence represents a promising imaging tool for the diagnosis,

treatment, and follow-up of OA due to its convenience and

quantifiable nature.
Frontiers in Sports and Active Living 07
4.2 Comparison with prior studies

Our findings align with previous studies (26, 27) indicating that

women, older adults, and individuals with higher BMIs are more

susceptible to PFOA. While the mechanisms underlying sex-

specific susceptibility to PFOA are not completely understood,

they may be linked to thinner cartilage, increased levels of

inflammatory markers, and higher obesity prevalence in females

compared with males. An MRI study (28) revealed structural

abnormalities in the patellofemoral joint of younger individuals,

although these abnormalities did not correlate with AKP.

Conversely, other studies (7, 27) have shown that persistent AKP

in young to middle-aged adults often presents with radiographic

signs of PFOA. Further longitudinal research is needed to

determine whether early structural abnormalities of PFOA in

younger adults represent a critical target for preventing OA

progression. The current study focused on patients aged 40–70

years, minimizing age-related variability. Most of the outpatient

population also fell within this range. To control for individual

differences, age, sex, and BMI were carefully balanced across the

training and testing datasets.

The results revealed no significant differences in IPAQ scores

across the datasets, likely owing to the absence of athletes or

individuals engaged in manual labor among the study

population. However, the AKPS scores significantly differed

among the datasets, with patients in the training and internal test

sets exhibiting lower AKPS scores than those in the external test
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set. This disparity may be attributed to the tiered medical treatment

system, where patients with more severe symptoms often seek care

at larger hospitals rather than community health care centers.

Lower AKPS scores indicate decreased functionality and reduced

quality of life. Despite being a primary contributor to AKP,

PFOA has received less attention than TFJ in OA-related studies.

Traditionally, such studies (8, 29) have relied on broad indices,

such as the Western Ontario and McMaster Universities

Osteoarthritis Index (WOMAC), to measure knee pain. These

indices, however, may obscure specific underlying causes of AKP,

such as PFOA. To address this limitation, we selected the AKPS

as a more precise assessment tool. Further investigation into the

pathology underlying AKP symptoms is warranted.

Several studies (14, 30, 31) have validated that quantitative

measures of the infrapatellar fat pad (IPFP) can serve as

surrogate markers of treatment efficacy in clinical trials on KOA.

Notably, changes in FF (32, 33) within the IPFP correlate with

OA severity, Hoffa’s synovitis, and knee pain, suggesting its

potential as an emerging quantitative imaging marker for KOA.

Recent radiomics studies (15, 18) have further confirmed the

predictive capacity of the IPFP for KOA progression. However,

identifying the IPFP can be challenging in some patients because

of its irregular and slit-like shape, particularly in the presence of

large joint effusions (34). In contrast, the QFP, another

peripatellar fat pad, is gaining increased recognition. The QFP is

more readily distinguishable on MRI and is less affected by joint

effusion. QFP abnormalities, including alterations in signal

intensity or morphological changes observed on MRI, have been

linked to PFOA and AKP in previous studies (35–37).

In the current study, the QFP, the smallest peripatellar fat pad,

exhibited a triangular configuration in sagittal views. Similar to the

IFP, the QFP was observed as white fatty tissue with lobes and

partitions of uniform size and width. A histological study (38)

comparing the suprapatellar and infrapatellar fat pads revealed

that the QFP contains smaller adipocytes, while the IFP is rich in

type III collagen. Second-harmonic generation microscopy

demonstrated an anisotropic collagen distribution in the septa,

with the IFP being stiffer, suggesting that anatomical location

influences fat pad characteristics. The QFP plays a vital role in

facilitating knee movement within the extensor mechanism.

Anatomical changes in the QFP can increase pressure and

potentially lead to inflammation and hypertrophy, presenting as

shape or signal alterations on MRI. Similar to the IFP, the QFP

and synovium function as a cohesive unit, contributing to early

synovial inflammation, fibrosis, and pain associated with KOA

(10, 39). Previous studies (35, 37) have identified correlations

between QFP mass effect or signal intensity changes and PFOA,

suggesting that shape-related or histogram features of the QFP

can serve as important markers for PFOA. Interpatient variability

in QFP appearance on MRI is notable. Consequently, this

study avoided quantifying the absolute size or gray value of the

QFP, focusing instead on shape-related and first-order features

derived from radiomics. The findings demonstrated that, in the

PDWI model, both shape-related and first-order features

contributed to distinguishing PFOA from non-PFOA, reflecting

QFP-related imaging changes. Quantitative extraction of shape
Frontiers in Sports and Active Living 08
features offered a more objective definition of the QFP.

However, the results also revealed that histogram features

were more relevant to PFOA than shape-related features,

indicating that inflammatory and metabolic activities within

the QFP play a more significant role in PFOA development

than morphological changes.

Previous MRI studies (35–37) on QFP relied on traditional

PDWI, which provided a semi-quantitative assessment that

lacked sufficient sensitivity to pathological alterations, making it

suboptimal for planning targeted interventions. In a prior

investigation, we identified a relationship between the QFP’s FF

and T2* values and PFOA severity using the quantitative

Q-Dixon technique in patients with AKP (40). Given the

sensitivity of T2* to magnetic field homogeneity, we developed

three predictive QFP models for PFOA evaluation: the PD model

(10 features), the FF model (1 feature), and the merged model

(4 features). The merged model, incorporating four features,

demonstrated the best diagnostic performance, while the simpler

FF model, with only one feature, also showed promising results.

This finding suggests that FF derived from Q-Dixon may hold

greater clinical significance than traditional gray values derived

from PDWI in evaluating PFOA. The merged model integrated

three histogram features from FF mapping and one feature from

PDWI, with the feature “FF-original first-order Mean” having the

most significant impact. This feature demonstrated the strongest

correlation with the mean FF value and PFOA severity, making

it the most stable and predictive feature in the analysis. This

study provides a novel perspective for monitoring QFP changes

during PFOA progression. FF mapping of QFP as a quantitative

imaging biomarker based on Q-Dixon, along with its radiomic

features, offers a promising noninvasive approach for

distinguishing between PFOA and non-PFOA cases. This

approach has the potential to enhance individualized clinical

diagnosis and treatment strategies.
4.3 Limitations

This study has several limitations. First, the small external

validation sample size of 33 patients may have influenced the

comparability of the radiomics model’s performance metrics.

However, the community referral origin of these patients

enhances the generalizability of our conclusions to real-world

settings. Future research should include a more extensive and

diverse external validation cohort to ensure model robustness

and applicability. Second, the use of a single MRI machine, while

reducing confounding factors, limits the generalizability of the

results. Data collected from standardized MRI machines across

multiple centers would provide greater reliability and robustness,

helping to validate the model in varied imaging environments.

Third, the absence of histopathological examination limits our

ability to clarify the relationship between QFP radiomics features

and histopathological characteristics. Future studies should

integrate histopathological data to strengthen the biological

interpretability of QFP imaging findings. Finally, the modest size

of this single-center dataset reduces the statistical power and
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limits the generalizability of the findings. Expanding to multicenter

studies with larger, more diverse datasets is essential for a more

robust analysis and a comprehensive understanding of the

implications of these findings.
4.4 Conclusion

Integrating machine learning with radiomics derived from QFP

using FF mapping and PDWI or FF mapping alone represents an

effective noninvasive approach for distinguishing PFOA from non-

PFOA. This approach shows significant promise for enhancing

clinical diagnosis and treatment planning. Notably, Q-Dixon-

based FF mapping offers a novel avenue for PFOA research, with

potential implications for advancing both diagnostic precision

and personalized care strategies.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Institutional

Review Board of Shanghai Tongren Hospital (no. 2022-044-01).

The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in

this study.
Author contributions

LL: Conceptualization, Formal Analysis, Funding acquisition,

Investigation, Methodology, Visualization, Writing – original

draft, Writing – review & editing. JR: Data curation,

Investigation, Writing – original draft. WL: Data curation,

Writing – original draft. JZ: Validation, Writing – original draft.

YS: Software, Visualization, Writing – original draft. YL:

Writing – review & editing. WY: Project administration,

Resources, Writing – review & editing.
Frontiers in Sports and Active Living 09
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

has received funding from the Research Fund of Shanghai

Changning District Health Commission (20234Y002).
Acknowledgments

We would like to thank Editage (https://www.editage.cn) for
English language editing.
Conflict of interest

YS, from Siemens Healthineers Ltd., was an MR collaboration

scientist providing technical support for this study under Siemens

collaboration regulation without any compensation or personal

interest pertaining to this study.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fspor.2025.

1535519/full#supplementary-material
References
1. Cen H, Yan Q, Meng T, Chen Z, Zhu J, Wang Y, et al. Quantitative infrapatellar
fat pad signal intensity alteration as an imaging biomarker of knee osteoarthritis
progression. RMD Open. (2023) 9:e002565. doi: 10.1136/rmdopen-2022-002565

2. Chen Y, Zhang X, Li M, Zhong L, Ding Y, Zhang Y, et al. Quantitative MR
evaluation of the infrapatellar fat pad for knee osteoarthritis: using proton density
fat fraction and T2* relaxation based on DIXON. Eur Radiol. (2022) 32:4718–27.
doi: 10.1007/s00330-022-08561-5
3. Coburn SL, Barton CJ, Filbay SR, Hart HF, Rathleff MS, Crossley KM. Quality of
life in individuals with patellofemoral pain: a systematic review including meta-
analysis. Phys Ther Sport. (2018) 33:96–108. doi: 10.1016/j.ptsp.2018.06.006

4. Collins NJ, Oei EHG, de Kanter JL, Vicenzino B, Crossley KM. Prevalence of
radiographic and magnetic resonance imaging features of patellofemoral
osteoarthritis in young and middle-aged adults with persistent patellofemoral pain.
Arthritis Care Res (Hoboken). (2019) 71:1068–73. doi: 10.1002/acr.23726
frontiersin.org

https://www.editage.cn
https://www.frontiersin.org/articles/10.3389/fspor.2025.1535519/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspor.2025.1535519/full#supplementary-material
https://doi.org/10.1136/rmdopen-2022-�002565
https://doi.org/10.1007/s00330-�022-�08561-�5
https://doi.org/10.1016/j.ptsp.2018.06.006
https://doi.org/10.1002/acr.23726
https://doi.org/10.3389/fspor.2025.1535519
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Lyu et al. 10.3389/fspor.2025.1535519
5. Crossley KM, van Middelkoop M, Barton CJ, Culvenor AG. Rethinking
patellofemoral pain: prevention, management and long-term consequences. Best
Pract Res Clin Rheumatol. (2019) 33:48–65. doi: 10.1016/j.berh.2019.02.004

6. D’Ambrosi R, Meena A, Raj A, Ursino N, Hewett TE. Anterior knee pain: state of
the art. Sports Med Open. (2022) 8:98. doi: 10.1186/s40798-022-00488-x

7. de Vries BA, van der Heijden RA, Poot DHJ, van Middelkoop M, Meuffels DE,
Krestin GP, et al. Quantitative DCE-MRI demonstrates increased blood perfusion in
Hoffa’s fat pad signal abnormalities in knee osteoarthritis, but not in patellofemoral
pain. Eur Radiol. (2020) 30:3401–8. doi: 10.1007/s00330-020-06671-6

8. Elnemr R, El Hamid MMA, Taleb RSZ, Khalil NFW, El-Sherif SM. Study of
adiponectin gene (rs1501299) polymorphism and serum adiponectin level in
patients with primary knee osteoarthritis. Hum Genomics. (2024) 18:105. doi: 10.
1186/s40246-024-00670-0

9. Eymard F, Pigenet A, Citadelle D, Tordjman J, Foucher L, Rose C, et al. Knee and
hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous
adipose tissue: a specific phenotype for a central player in osteoarthritis. Ann
Rheum Dis. (2017) 76:1142–8. doi: 10.1136/annrheumdis-2016-210478

10. Fontanella CG, Belluzzi E, Rossato M, Olivotto E, Trisolino G, Ruggieri P, et al.
Quantitative MRI analysis of infrapatellar and suprapatellar fat pads in normal
controls, moderate and end-stage osteoarthritis. Ann Anat. (2019) 221:108–14.
doi: 10.1016/j.aanat.2018.09.007

11. Harris M, Edwards S, Rio E, Cook J, Cencini S, Hannington MC, et al. Nearly
40% of adolescent athletes report anterior knee pain regardless of maturation status,
age, sex or sport played. Phys Ther Sport. (2021) 51:29–35. doi: 10.1016/j.ptsp.2021.
06.005

12. He J, Ba H, Feng J, Peng C, Liao Y, Li L, et al. Increased signal intensity, not
volume variation of infrapatellar fat pad in knee osteoarthritis: a cross-sectional
study based on high-resolution magnetic resonance imaging. J Orthop Surg (Hong
Kong). (2022) 30:10225536221092215. doi: 10.1177/10225536221092215

13. Jarraya M, Diaz LE, Roemer FW, Arndt WF, Goud AR, Guermazi A. MRI
findings consistent with peripatellar fat pad impingement: how much related to
patellofemoral maltracking? Magn Reson Med Sci. (2018) 17:195–202. doi: 10.2463/
mrms.rev.2017-0063

14. Lanois CJ, Collins N, Neogi T, Guermazi A, Roemer FW, LaValley M, et al.
Associations between anterior knee pain and 2-year patellofemoral cartilage
worsening: the MOST study. Osteoarthr Cartil. (2024) 32:93–7. doi: 10.1016/j.joca.
2023.09.008

15. Li J, Fu S, Gong Z, Zhu Z, Zeng D, Cao P, et al. MRI-based texture analysis of
infrapatellar fat pad to predict knee osteoarthritis incidence. Radiology. (2022)
304:611–21. doi: 10.1148/radiol.212009

16. Li J, Gui T, Yao L, Guo H, Lin YL, Lu J, et al. Synovium and infrapatellar fat pad
share common mesenchymal progenitors and undergo coordinated changes in
osteoarthritis. J Bone Miner Res. (2024) 39:161–76. doi: 10.1093/jbmr/zjad009

17. Li J, Zhu Z, Li Y, Cao P, Han W, Tang S, et al. Qualitative and quantitative
measures of prefemoral and quadriceps fat pads are associated with incident
radiographic osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil.
(2020) 28:453–61. doi: 10.1016/j.joca.2020.02.001

18. Liew JW, Rabasa G, LaValley M, Collins J, Stefanik J, Roemer FW, et al.
Development of a magnetic resonance imaging-based definition of knee
osteoarthritis: data from the multicenter osteoarthritis study. Arthritis Rheumatol.
(2023) 75:1132–8. doi: 10.1002/art.42454

19. Erber B, Baur-Melnyk A, Glaser C, Goller S, Ricke J, Heuck A. Quadriceps fat
pad edema in MR imaging: association with quadriceps tendon alterations in a
retrospective analysis. Eur J Radiol. (2021) 142:109858. doi: 10.1016/j.ejrad.2021.
109858

20. Cosentino A, Richard R, Baron M, Demondion X, Favre J, Omoumi P. MRI
signal and morphological alterations of the suprapatellar fat pad in asymptomatic
subjects: are these normal variants? Skeletal Radiol. (2022) 51:1995–2007. doi: 10.
1007/s00256-022-04055-z

21. Can TS, Yilmaz BK, Özdemir S. Magnetic resonance imaging of the quadriceps
fat pad oedema pattern in relation to patellofemoral joint pathologies. Pol J Radiol.
(2019) 84:e375–80. doi: 10.5114/pjr.2019.89196

22. Zhang W, Fu C, Yan D, Yuan Y, Zhang W, Gu D, et al. Quantification of
volumetric thigh and paravertebral muscle fat content: comparison of quantitative
dixon (Q-dixon) magnetic resonance imaging (MRI) with high-speed T2-corrected
multiecho MR spectroscopy. Quant Imaging Med Surg. (2024) 14:4490–505. doi: 10.
21037/qims-24-127
Frontiers in Sports and Active Living 10
23. Hou M, Huang Y, Yan J, Fan G. Quantitative dixon and intravoxel incoherent
motion diffusion magnetic resonance imaging parameters in lumbar vertebrae for
differentiating aplastic anemia and acute myeloid leukemia. Front Oncol. (2023)
13:1277978. doi: 10.3389/fonc.2023.1277978

24. Lyu L, Ren J, Lu W, Li Y, Zhong J, Yao W. Association between quadriceps fat
pad edema and patellofemoral osteoarthritis: a quantitative Q-dixon-based magnetic
resonance imaging (MRI) analysis. Quant Imaging Med Surg. (2024) 14:3275–88.
doi: 10.21037/qims-23-1730

25. Lyu L, Li Y, Zhong J, Yao W. Association among peripatellar fat pad edema and
related patellofemoral maltracking parameters: a case-control magnetic resonance
imaging study. BMC Musculoskelet Disord. (2023) 24:678. doi: 10.1186/
s12891-023-06827-7

26. Lyu L, Ren J, Lu W, Li Y, Zhong J, Yao W. Association between quadriceps fat
pad edema and patellofemoral osteoarthritis: a quantitative Q-dixon-based magnetic
resonance imaging (MRI) analysis. Quant Imaging Med Surg. (2024) 14:3275–88.
doi: 10.21037/qims-23-1730

27. Maclachlan LR, Matthews M, Hodges PW, Collins NJ, Vicenzino B. The
psychological features of patellofemoral pain: a cross-sectional study. Scand J Pain.
(2018) 18:261–71. doi: 10.1515/sjpain-2018-0025

28. Macri EM, Neogi T, Jarraya M, Guermazi A, Roemer F, Lewis CE, et al. Magnetic
resonance imaging-defined osteoarthritis features and anterior knee pain in
individuals with, or at risk for, knee osteoarthritis: a multicenter study on
osteoarthritis. Arthritis Care Res (Hoboken). (2022) 74:1533–40. doi: 10.1002/acr.
24604

29. Mustonen AM, Käkelä R, Lehenkari P, Huhtakangas J, Turunen S, Joukainen A,
et al. Distinct fatty acid signatures in infrapatellar fat pad and synovial fluid of patients
with osteoarthritis versus rheumatoid arthritis. Arthritis Res Ther. (2019) 21:124.
doi: 10.1186/s13075-019-1914-y

30. Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in
cartilage adaptation: from degeneration to regeneration. Biol Sex Differ. (2023)
14:17. doi: 10.1186/s13293-023-00500-3

31. Schwaiger BJ, Mbapte Wamba J, Gersing AS, Nevitt MC, Facchetti L, McCulloch
CE, et al. Hyperintense signal alteration in the suprapatellar fat pad on MRI is
associated with degeneration of the patellofemoral joint over 48 months: data from
the osteoarthritis initiative. Skelet Radiol. (2018) 47:329–39. doi: 10.1007/
s00256-017-2771-x

32. Smith BE, Selfe J, Thacker D, Hendrick P, Bateman M, Moffatt F, et al. Incidence
and prevalence of patellofemoral pain: a systematic review and meta-analysis. PLoS
One. (2018) 13:e0190892. doi: 10.1371/journal.pone.0190892

33. Stefanik JJ, Guermazi A, Roemer FW, Peat G, Niu J, Segal NA, et al. Changes in
patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over
7 years: the multicenter osteoarthritis study. Osteoarthr Cartil. (2016) 24:1160–6.
doi: 10.1016/j.joca.2016.01.981

34. Stocco E, Contran M, Fontanella CG, Petrelli L, Toniolo I, Emmi A, et al. The
suprapatellar fat pad: a histotopographic comparative study. J Anat. (2024)
244:639–53. doi: 10.1111/joa.13984

35. van der Heijden RA, de Kanter JLM, Bierma-Zeinstra SMA, Verhaar JA, van
Veldhoven PL, Krestin GP, et al. Structural abnormalities on magnetic resonance
imaging in patients with patellofemoral pain: a cross-sectional case-control study.
Am J Sports Med. (2016) 44:2339–46. doi: 10.1177/0363546516646107

36. Wang Q, Zhao W, Ji X, Chen Y, Liu K, Zhu Y, et al. Broken-fat pad sign: a
characteristic radiographic finding to distinguish between knee rheumatoid arthritis
and osteoarthritis. Insights Imaging. (2024) 15:33. doi: 10.1186/s13244-024-01608-9

37. Yasemin K, Ozum T. Anterior knee pain and oedema-like changes of the
suprapatellar fat pad: correlation of the symptoms with MRI findings. Curr Med
Imaging. (2021) 17:1350–5. doi: 10.2174/1573405617666210129114110

38. Yu K, Ying J, Zhao T, Lei L, Zhong L, Hu J, et al. Prediction model for knee
osteoarthritis using magnetic resonance–based radiomic features from the
infrapatellar fat pad: data from the osteoarthritis initiative. Quant Imaging Med
Surg. (2023) 13:352–69. doi: 10.21037/qims-22-368

39. Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in
osteoarthritis. Ann Endocrinol (Paris). (2024) 85:214–9. doi: 10.1016/j.ando.2024.05.
012

40. Zhong L, Li M, Du X, Ding Y, Zhang X, Mei Y, et al. Quantitative evaluation of
the characteristic of infrapatellar fat pad fat content and unsaturation Index by using
hydrogen proton MR spectroscopy. Magn Reson Imaging. (2022) 94:18–24. doi: 10.
1016/j.mri.2022.07.014
frontiersin.org

https://doi.org/10.1016/j.berh.2019.02.004
https://doi.org/10.1186/s40798-�022-�00488-�x
https://doi.org/10.1007/s00330-�020-�06671-�6
https://doi.org/10.1186/s40246-�024-�00670-�0
https://doi.org/10.1186/s40246-�024-�00670-�0
https://doi.org/10.1136/annrheumdis-2016-�210478
https://doi.org/10.1016/j.aanat.2018.09.007
https://doi.org/10.1016/j.ptsp.2021.06.005
https://doi.org/10.1016/j.ptsp.2021.06.005
https://doi.org/10.1177/10225536221092215
https://doi.org/10.2463/mrms.rev.2017-�0063
https://doi.org/10.2463/mrms.rev.2017-�0063
https://doi.org/10.1016/j.joca.2023.09.008
https://doi.org/10.1016/j.joca.2023.09.008
https://doi.org/10.1148/radiol.212009
https://doi.org/10.1093/jbmr/zjad009
https://doi.org/10.1016/j.joca.2020.02.001
https://doi.org/10.1002/art.42454
https://doi.org/10.1016/j.ejrad.2021.109858
https://doi.org/10.1016/j.ejrad.2021.109858
https://doi.org/10.1007/s00256-�022-�04055-�z
https://doi.org/10.1007/s00256-�022-�04055-�z
https://doi.org/10.5114/pjr.2019.89196
https://doi.org/10.21037/qims-24-�127
https://doi.org/10.21037/qims-24-�127
https://doi.org/10.3389/fonc.2023.1277978
https://doi.org/10.21037/qims-23-�1730
https://doi.org/10.1186/s12891-�023-�06827-�7
https://doi.org/10.1186/s12891-�023-�06827-�7
https://doi.org/10.21037/qims-23-�1730
https://doi.org/10.1515/sjpain-2018-�0025
https://doi.org/10.1002/acr.24604
https://doi.org/10.1002/acr.24604
https://doi.org/10.1186/s13075-�019-�1914-�y
https://doi.org/10.1186/s13293-�023-�00500-�3
https://doi.org/10.1007/s00256-�017-�2771-�x
https://doi.org/10.1007/s00256-�017-�2771-�x
https://doi.org/10.1371/journal.pone.0190892
https://doi.org/10.1016/j.joca.2016.01.981
https://doi.org/10.1111/joa.13984
https://doi.org/10.1177/0363546516646107
https://doi.org/10.1186/s13244-�024-�01608-�9
https://doi.org/10.2174/1573405617666210129114110
https://doi.org/10.21037/qims-22-�368
https://doi.org/10.1016/j.ando.2024.05.012
https://doi.org/10.1016/j.ando.2024.05.012
https://doi.org/10.1016/j.mri.2022.07.014
https://doi.org/10.1016/j.mri.2022.07.014
https://doi.org/10.3389/fspor.2025.1535519
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/

	A machine learning-based radiomics approach for differentiating patellofemoral osteoarthritis from non-patellofemoral osteoarthritis using Q-Dixon MRI
	Introduction
	Materials and methods
	Ethics approval and patient consent
	Study design and patients
	MRI acquisition
	MRI assessment
	MR image processing and segmentation
	Feature extraction, selection, and classification model building
	Statistical analysis

	Results
	Patient characteristics
	Reliability of radiomics features
	Model performance in training and internal test sets
	External test set performance

	Discussion
	Key findings
	Comparison with prior studies
	Limitations
	Conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


