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Field-based tests for determining
critical speed among runners and
its practical application:
a systematic review
Lucie Lipková1*, Ivan Struhár2, Jakub Krajňák1, Dominik Puda1

and Michal Kumstát1

1Department of Sport Performance and Exercise Testing, Faculty of Sports Studies, Masaryk University,
Brno, Czechia, 2Department of Physical Activities and Health Sciences, Faculty of Sports Studies,
Masaryk University, Brno, Czechia
Introduction: This review focuses exclusively on field-based critical speed (CS)
tests for runners, aiming to evaluate key testing conditions to optimize field-
based assessments and their practical applications.
Methods: A systematic search was conducted in PubMed, Scopus, SPORTDiscus,
and Web of Science databases in July 2024 using terms like “critical power,”
“critical speed,” “testing,” and “field condition” along with related keywords.
Following PRISMA 2020 guidelines, studies were systematically identified,
screened, assessed for eligibility, and evaluated for the validity, reliability, and
applicability of field-based methods for determining CS in runners.
Results: From an initial pool of 450 studies, 19 met the inclusion criteria. The
time trial (TT) test and the 3-minute all-out test (3MT) emerged as the most
frequently used field-based methods, demonstrating high reliability when
conducted under specific conditions.
Conclusion: This review demonstrates that while field-based CS testing is a
practical alternative to lab-based assessments, obtaining reliable results relies
on following recommended testing settings, particularly for TT tests. By
outlining the practical applications and conditions necessary for accurate CS
assessment, this review supports athletes and coaches in applying CS testing
effectively to enhance training strategies and performance.
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1 Introduction

The critical power (CP) is a key parameter in understanding aerobic performance,

defined as the asymptote of the power-duration relationship. It represents the highest

power output (PO) an athlete can sustain without accumulating excessive fatigue (1, 2).

In running, this model is mirrored by critical speed (CS), which reflects the maximum

sustainable speed for prolonged efforts (3–6). Traditionally, CP has been considered a

threshold distinguishing exercise intensity where physiological equilibrium can be

maintained from those where it cannot, leading to fatigue manifestation (7–9).

However, recent research (10, 11) highlights that CP is not a fixed threshold but rather

a dynamic marker of fatigue, indicating the transition from sustainable to unsustainable

exercise intensities.

Beyond CP, physiological homeostasis cannot be maintained, resulting in rapid

exhaustion (10, 12, 13). This transition creates a “grey zone,” where metabolic responses
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such as lactate accumulation and oxygen consumption become

increasingly complex as athletes approach and exceed CP (13).

This nuanced understanding positions CP as more than a simple

steady-state marker; instead, it indicates the point where

metabolic instability begins to develop, signalling a loss of

physiological control over exercise intensity (11). Above CP, the

finite capacity for work is quantified by W′, representing the

total amount of work an athlete can perform above CP before

exhaustion occurs (14). In running, this is reflected by parameter

D′, indicating the distance an athlete can cover above CS before

the effects of fatigue culminate in exhaustion.

Once W′, or its running-specific counterpart D′, is depleted,
athletes must reduce PO or speed to continue exercise (14, 15).

Initially, W′ and D′ were considered an anaerobic source, such

as intramuscular adenosine triphosphate (ATP), creatine

phosphate (PCr), stored oxygen, and glycogen. More recent

findings, though, suggest that W′/D′ is closely linked to the

accumulation of fatigue-inducing metabolites, including lactate,

inorganic phosphate (Pi), hydrogen ions (H+), and potassium

(K+) (1, 7, 13). Managing these metabolites is essential for

high-intensity, prolonged efforts, where pacing and energy

reserve management are critical, particularly in middle- and

long-distance running events (16).

While CP and CS are primarily used to optimize endurance

performance, their application extends across a range of sports

and activities, including interval training, fatigue monitoring, and

performance evaluation. They are also applied to optimize

recovery in team sports like rugby and hockey or to assess

military fitness. This broader applicability underscores the

flexibility of CP and CS, providing valuable insights not only for

endurance athletes but across various disciplines. By refining

training strategies and deepening the understanding of fatigue

mechanisms, CP and CS contribute to optimizing performance,

improving endurance management, and enhancing recovery

strategies across multiple sports (17).

Determining CP and CS in both laboratory and field settings

presents challenges. Reliable testing methods must balance validity

and practicality. The time-to-exhaustion (TTE) test remains the

benchmark for determining CP/CS and W′/D′, though it requires

multiple tests at different constant POs, which can be time-

consuming (18, 19). Alternative approaches, such as time trial

(TT) tests over fixed distances or durations (9, 14, 16, 20) and the

3-minute all-out test (3MT), which is designed to fully deplete W′
in the first 150 s while maintaining a PO equal to CP in the final

30 s (2, 9, 15), offer more practical solutions. Despite their

efficiency, these methods have limitations in reliability and accuracy.

Field-based assessments of CS, introduced in the 1990s, provided

practical alternatives to laboratory tests. However, their accuracy was

initially limited due to environmental variability, inconsistent

methodologies, and a lack of standardized protocols (21). Over

time, advancements such as wearable technology, improved

mathematical models, and better data collection techniques have

enhanced the precision of field assessments. Despite these

improvements, selecting protocols that balance validity, reliability,

and ease of application remains a significant challenge, particularly

for use in competitive and training settings (22, 23).
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Although the models of CP and CS have been extensively

studied in cycling (24, 25) and swimming (26, 27), their

application in running has gained increasing attention due to its

potential for performance optimization. However, applying them

in running introduces unique challenges due to environmental

factors and protocol variability. This review aims to address these

challenges by focusing exclusively on field-based CS tests for

runners, assessing their practical applications, key testing

conditions, and evaluating their strengths and weaknesses.

Additionally, it explores practical applications of the CS,

providing actionable insights for athletes and coaches to

implement these tests in training and performance optimization.
2 Methods

2.1 Search strategy

The systematic review followed the 2020 updated Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (28). The search strategy was performed (July

2024) in PubMed, Scopus, SPORTDiscus, and Web of Science. The

selected keywords and Boolean operators for the search were:

(“critical power” OR “critical speed” OR “critical velocity”) AND

(“test” OR “tests” OR “testing” OR “method” OR “methods”) AND

(“running” OR “runners” OR “runner” OR “athletes” OR “athlete”)

AND (“field” OR “track” OR “field condition”).
2.2 Selection of studies and results
extraction

All records retrieved from the database search were imported

into the Rayyan systematic review software (29) for screening.

Two reviewers (DP and JK) independently conducted the

screening process, and any disagreements were resolved by

consultation with a third reviewer (LL). Exclusion criteria

included non-English language publications, reviews, meeting

abstracts, letters, corrections, editorials, and non-human studies.

Titles and abstracts were initially screened to exclude studies

lacking the predefined keywords. The inclusion of articles was

restricted to those published between 2010 and 2024. Studies

were further assessed based on the PECO criteria (Table 1), with

eligibility determined during the full-text review. Studies focused

solely on novice or untrained individuals were excluded at this

stage to ensure applicability to athletic populations. Additionally,

studies with fewer than six participants were excluded to

minimize deviations due to small sample sizes (30). Data

extraction was conducted by one reviewer (LL) and cross-verified

by a second reviewer (MK) where necessary.
2.3 Assessment of study quality

The assessment of study quality utilised the Downs and Black

scale (31). The original checklist includes 27 questions assessing the
frontiersin.org
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TABLE 1 PECO criteria.

PECO criteria Inclusion criteria
P = participants Female or male athletes, recreational to elite runners, age more than >18

E = exposure Field-based protocols for determining CS: including single-visit methods (e.g., 3MT), multi-visit methods (e.g., TTs or TTE tests), CS estimation derived
from training or competition data

C = comparison Comparison of different field-testing methods (e.g., single-visit vs. multi-visits), comparison of filed-based method with laboratory tests (e.g., treadmill
protocols), or evaluation of predictive accuracy for performance outcomes (e.g., race times, endurance capabilities)

O = outcome Accurate determination of CS and related parameters (e.g., W′/D′). Validation of field test settings (e.g., time/distance/power/speed metrics). Test
reliability (e.g., test-retest coefficients). Practical utility for training or performance prediction.
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quality of reporting, internal and external validity, and statistical

power. For this review, the checklist was adapted by excluding

12 questions that were not relevant to the selected studies, such

as those specific to intervention designs. As a result, 16 questions

were used to evaluate the studies, focusing on reporting clarity,

study design validity, and appropriate statistical analysis

(Supplementary Table S1). Two reviewers independently

conducted the quality assessment, with disagreements resolved by

a third reviewer. Each item received a binary score, with

1 representing “yes” and 0 indicating “no” or “unable to

determine.” The total points were converted to percentages and

adjusted according to the number of selected questions. In this

review, the Downs and Black (31) total score was adjusted to a

maximum of 15 points, as one question was considered self-

evident and not included in the scoring. Studies scoring less than

45.4% (6 points or fewer) were categorized as having “poor”

methodological quality. Scores between 45.4% and 63.6% (7–8

points) indicated “fair” quality, while scores above 63.6%

(9 points or more) reflected “good” methodological quality.
3 Results

A total of 450 studies were initially identified, with 227 duplicates

removed prior to the screening process (Figure 1). One additional

studies was included based on recommendations. Furthermore, 15

studies were excluded due to factors such as non-English language,

wrong study design (e.g., reviews, meeting abstracts, letters,

editorials), or non-human subjects. Subsequently, 135 articles were

excluded following the screening of titles, abstracts, keywords, and

topics. A total of 74 full-text articles underwent further assessment,

resulting in the selection of 19 studies that met all predefined

PECO criteria (Table 1). These studies provided detailed

descriptions of field-testing protocols and evaluated the validity,

reliability, or predictability of CS and related measures.
3.1 Characteristics of the participants

Table 2 summarises the main characteristics of participants from

the included studies. A total of 285 participants contributed to this

research (207 males, 66 females, mean ± SD: age = 30.6 ± 6.3

years). Smyth and Muniz-Pumares (41) analyzed a dataset of

31,190 runners from Strava®; however, due to the large sample

size and its focus on aggregated training data, this study was not

included in these statistics. Ten studies included only male
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participants, while seven had a mixed sample, and only one study

focused solely on female participants. The limited representation

of female participants may influence the generalizability of the

results, which should be considered in further analysis. The

participants’ training experience varied widely, ranging from as

little as 6 months to over 18 years. Training volumes also differed,

from 4 h per week to 110 km per week, encompassing a mix of

recreational, regional, and national-level runners.
3.2 Characteristics of the field tests

The research included a variety of field-based running test

procedures to evaluate CS/CP, reflecting the diversity in

approaches across studies (Table 3). The TT were the most

popular method, involving fixed distances (iso-distance) ranging

from 400 to 3,600 m (14, 16, 20, 22, 23, 32–36, 39, 40, 42), with

the most popular over three fixed distances: 1,200, 2,400 and

3,600 m (22, 33–36). Some studies employed fixed-duration trials

(iso-duration) (23, 40, 42, 44). The 3MT (14, 15, 38, 43, 44)

challenged participants to achieve maximum speed over a brief

period, offering an alternative perspective on performance.

Hunter et al. (44) explored the application of 3MT and TTs

alongside habitual training (HAB) data, demonstrating the

potential for estimating CS/CP from non-invasive and remote

methods. Similarly, Smyth and Muniz-Pumares (41) analyzed

large-scale activity datasets logged on Strava®, offering an

innovative approach to derive CS and CP from everyday

training records.

In addition to these methods, Vassallo et al. (43) applied the

gold-standard TTE test in a field setting and introduced an

enhanced 3MT model that incorporates energetic calculations,

offering a practical approach to estimate CP and CS in outdoor

conditions with power derived from GPS and speed variations

accounted for. Notably, Olaya-Cuartero et al. (37), Ruiz-Alias

et al. (23), Hunter et al. (44) and Van Rassel et al. (22) utilized

the Stryd power meter to determine CP, either through the

9,3-minute CP test (23, 37) or via the iso-distance model (22).

Several mathematical models were employed for CS

determination, including linear distance-time relationships (e.g.,

Linear-TD), inverse-of-time models (e.g., INV), work-time

calculations (e.g., linear work-time), and hyperbolic models (e.g.,

2-HYP). Some studies also compared field test results with

laboratory-based protocols (15, 16, 23, 33, 35, 38), as well as with

performance outcomes, enhancing the assessment of the validity

and reliability of these methods.
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FIGURE 1

PRISMA flow diagram of the search strategy.
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To summarize, the field-based methods for determining CS/CP

were grouped into three main categories: TTs (including traditional

iso-distance and iso-duration trials, as well as innovative

approaches like habitual activity tracking and raw race data

analysis), TTE, and 3MT.
3.3 Assessment of study quality

The study quality was evaluated based on a maximum score of

15 points. Five studies achieved the score of 12 (80%), seven studies

scored 11 (739%), four studies scored 10 (66%), and the remaining

four studies scored 9 or 8 (60%–53%). No studies scored below 8,

indicating generally fair to good methodological quality across all

included studies (Supplementary Table S2).
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4 Discussion

This systematic review provides insights into field-based

assessments of CS for runners, with a focus on the key settings

and practical application of various testing protocols. The

findings highlight the use of TTs over varying distances and

durations, as well as the 3MT, which are commonly employed in

real-world scenarios. The effectiveness of these methods is

influenced by factors such as the number of trials, their duration

or distance, recovery time between trials, and trial order.

Additionally, innovative approaches such as HAB tracking

and raw race data analysis have expanded the possibilities

for estimating CS without requiring dedicated testing sessions.

By addressing these factors and exploring novel approaches,

this review offers actionable insights for athletes and coaches
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TABLE 2 Participant characteristics across included studies.

Author n Sex
(F, M)

Age
(mean ± SD)

Subjects VO2max (ml·kg–1

min–1, mean ± SD)
Training/experience/level (years)

Aguiar et al. (14) 7 M 26 ± 5 College students 56.6 ± 4.1 2x/wk running

Broxterman et al. (15) 7 4 M, 3 F 25.3 ± 3.4 Healthy subjects 49.6 ± 5.7 ranged from not active to highly trained (<150 min
marathon)

Corrêa et al. (20) 34 20 M, 14 F 42.4 ± 11.0 Runners NO 18 years running; participation in at least one 10-km
race

Figueiredo et al. (32) 25 M 28.6 ± 4.7 Runners NO recreational, regional and local

Galbraith et al. (33) 10 M 39 ± 7 Middle-distance
runners

60.7 ± 2.8 competitive club standard; 2 years of competing

Galbraith et al. (34) 13 M 33 ± 14 Middle/long-
distance runners

No min 3 years competing

Galbraith et al. (35) 14 M 28 ± 8 Runners 69.8 ± 6.3 11 years of running training, national level

Kordi et al. (36) 14 M 28 ± 8 Distance runners 69.8 ± 6.3 11 ± 2 years running; local athletic clubs

Olaya-Cuartero et al. (37) 9 M 38.1 ± 5.4 Runners NO >150 min/w, half-marathon time 1:25:36 ± 00:11:20

Pettitt et al. (38) 14 F 19 ± 1 Distance runners 55 ± 4 NO

Ribeiro et al. (39) 34 20 M, 14 F 42.4 ± 11.0 Amateur runners 49.5 ± 8.1 >6 months uninterrupted training; participation in at
least one 10-km race

Ruiz-Alias et al. (40) 15 8 M, 7 F 23 ± 5 Trained athletes NO 110 ± 15 km/week, 5 km best 15:29 ± 00:53

Ruiz-Alias et al. (23) 15 8 M, 7 F 23 ± 5 Trained athletes NO 110 ± 15 km/week, 5 km best 15:29 ± 00:53

Smyth and Muniz-
Pumares (41)

31.190 M, F 39 ± 8 Runners NO Frequency of activities per week 3.6, volume 41.3 (km
per week)

Triska et al. (42) 10 M 31.0 ± 5.7 Endurance-trained
triathletes

NO 8 h/wk running; 3 years

Triska et al. (16) 10 M 24.9 ± 2.1 Moderately trained 52.9 ± 3.1 4 h/wk running

Van Rassel et al. (22) 10 7 M, 3 F 29 ± 7 Runners 59.0 ± 4.2 Recreationally active or trained/developmental
runners

Vassallo et al. (43) 9 M 24 ± 3 Healthy active 4.4 ± 0.5* NO

F = Female, M = Male, SD = standard deviation, NO = value not mentioned, Smax = maximal speed, wk = week.

*values measured in liter per minute (L·min–1).
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to effectively integrate CS testing into training and

performance optimization.
4.1 Traditional and TTs key setting

In endurance research, two primary testing methods exist: the

traditional TTE, where participants run at a constant speed over

several trial (3–5) until exhaustion and the TTs, where athletes

cover a fixed distance or run for a set duration at their maximal

intensity. While the TTE is effective in controlled environments,

they are less practical for field applications due to the difficulty

of maintaining consistent pacing. For instance, Vassallo et al.

(43) conducted a TTE test using audio tone for pace

synchronization, ending the test when the athlete could no

longer meet the required speed. However, even with auditory

guidance, verifying that participants truly exert maximal effort

remains challenging in the absence of physiological markers like

VO2max attainment. Moreover, environmental factors, such as

wind, temperature, or uneven terrain, can further complicate

pacing and reliability, making TTE a less optimal method for

field conditions. These limitations underscore why TTE tests are

less favored for field assessments compared to other methods.

The choice of mathematical model has a key influence on CS

and D′ estimates. Linear models (INV, EXP) typically provide

higher CS values, while non-linear models (2-HYP, 3-HYP) are

more reliable for estimating D′ but exhibit greater variability.
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These differences should be carefully considered when selecting

the number and duration of trials, as inaccuracies can be a

source of variability in performance predictions. While

mathematical models are not the primary focus of this review,

they are extensively discussed in other studies (45–48), providing

deeper insights into their application and limitations.
4.1.1 Trial duration and length
In contrast, TTs have become the preferred method for field

testing, as they more accurately reflect real-world exercise

conditions and offer greater flexibility in trial design. However,

due to the considerable variability in testing settings, careful

consideration must be given to selecting the most appropriate

protocol for specific objectives and contexts. Trials typically fall

within a 3–12 min time window (e.g., 3,600, 2,400, and 1,200 m),

corresponding to exhaustion times of 3, 7, and 12 min (22,

33–36, 42, 44). This time range balances the engagement of both

aerobic and anaerobic systems while maintaining sufficient

intensity to approach VO2max. Time-based protocols are

particularly advantageous as they provide more consistent

physiological markers, reducing variability introduced by

individual differences in speed or fitness levels.

Shorter trials have been shown to yield higher CS values

compared to longer ones, emphasizing the impact of trial

duration on the accuracy of CS estimation. Triska et al. (42)

demonstrated that trials lasting 10, 5, and 2 min produced higher

CS values than those lasting 12, 7, and 3 min. Similarly,
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TABLE 3 Description of running test protocols in included studies.

Author Num.
of trials

Protocol
(outcome)

Setting Critical speed
(m.s−1)/power

(watts) (mean ± SD)

Compared with
laboratory tests/with

performance

Recovery time
between
sessions

Calculation (Math.
model)

Condition

Aguiar et al.
(14)

3 TT 800, 1,600, 2,400 m 3.69 ± 0.50 NO at least 48 h Linear distance-time 200 m synthetic outdoor track

3.77 ± 0.47 Linear inverse-of-time

1 3MT As fast as possible Test 3.90 ± 0.41 — CS over the last 30 s

Retest 3.89 ± 0.48

Broxterman
et al. (15)

1 3MT As fast as possible 13.4 ± 2.8* 13.3 ± 2.8* (TTE—treadmill
linear inverse-of-time)

— CS over the last 20 s running track

Corrêa et al.
(20)

2 TT 400, 2,000 m (as fast as possible) 13.9 ± 2.2* 13.4 ± 2.1 (10 km race) 48 h Linear distance-time 400 m running track

Figueiredo et al.
(32)

3 TT 2,600, 1,800, 1,000 m 12.1 ± 1.4 12.0 ± 1.3 (5 km run) 30 min Linear distance-time
(combination of 2 or 3
TTs)

400 m running track
(completion times 3–12 min)

Galbraith et al.
(33)

3 TT 3,600, 2,400, 1,200 m 4.07 ± 0.28 4.05 ± 0.22 (TTE –treadmill
linear distance-time)

30 min Linear distance-time 400 m running track (12-, 7-
and 3-min completion time)4.07 ± 0.26 60 min

Galbraith et al.
(34)

3 TT 3,600, 2,400, 1,200 m 4.41 ± 0.48 NO 30 min Linear distance-time 400 m running track

Galbraith et al.
(35)

3 TT 3,600, 2,400, 1,200 m 4.90 ± 0.32 compared with VO2max, lactate
threshold and running
economy

30 min Linear distance-time 400 m athletic track (average
temperature 13.8 °C, wind
speed ≤2.0 m/s)

4.99 ± 0.30

Hunter et al.
(44)

3 TT 3, 7 and 12 min CS: 3.42 ± 0.53 m·s−¹; CP:
290 ± 44 W

NO 24 h Hyperbolic model, linear
distance/power-time, linear
inverse-of-time

all test on the same route, with
minimal changes in elevation
and sharp corners (Stryd
power meter)1 3MT as fast as possible CS: 3.76 ± 0.57 m·s−¹; CP:

305 ± 53 W, CS:
3.77 ± 0.60 m·s−¹; CP:
307 ± 52 W

— CS over the last 30 s

Multiple Habitual training
data

— CS: 3.44 ± 0.63 m·s−¹; CP:
281 ± 41 W

— Hyperbolic model, linear
distance/power-time, linear
inverse-of-time

Kordi et al. (36) 2 TT 3,600 and 1,200 m 4.94 ± 0.32 NO 30 min Linear distance-time 400 m running track

3 3,600, 2,400 and 1,200 m

Olaya-Cuartero
et al. (37)

1 TT (9/3-min
Stryd test

9 min maximum effort, 3 min 4.45 ± 0.67 4.32 ± 0.57 (half-marathon) 30 min Stryd CP calculator 400-m running track (Stryd
running power meter)

Pettitt et al. (38) 1 3MT As fast as possible 4.46 ± 0.41 4.55 ± 0.24 (50%Δ treadmill
GXT)

— CS over the last 30 s running track (using GPS)

Ribeiro et al.
(39)

2 TT 400, 2,000 m 13.9 ± 2.2 13.4 ± 2.1 (10 km race) 48 h Linear distance-time running track (400 m)

(Continued)
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TABLE 3 Continued

Author Num.
of trials

Protocol
(outcome)

Setting Critical speed
(m.s−1)/power

(watts) (mean ± SD)

Compared with
laboratory tests/with

performance

Recovery time
between
sessions

Calculation (Math.
model)

Condition

Ruiz-Alias et al.
(23)

2 TT 3, 9 min 338 ± 55 230 ± 43 (TT—3,9 min
treadmill)

30 min Work-time, inverse-of-time 400 m running track (Stryd
power meter)319 ± 52 (no wind)

Ruiz-Alias et al.
(40)

5 TT 3, 4, 5, 10, 20 min 263 ± 58 NO 72 h Linear work-time 400 m running track (Stryd
power meter)265 ± 59 Linear inverse-of-time

Smyth and
Muniz-Pumares
(41)

Multiple Raw training data Fastest times for 400, 800, 1,000, 1,500,
3,000, 5,000 m within 16 weeks pre-
marathon

3.74 ± 0.08 m·s−¹ Marathon performance
(R2 = 0.67)

— Linear distance-time Strava® online platform

Triska et al. (16) 3 TT TTs equalled the corresponding time to
TTE trials

3.77 ± 0.35 3.75 ± 0.36 (TTE—treadmill) 48 h Linear inverse-of-time 400 m running track

Triska et al. (42) 3 TT 12, 7 and 3 min 4.17 ± 0.37 NO 60 min Linear inverse-of-time 400 m running track

10, 5 and 2 min 4.29 ± 0.30

Van Rassel et al.
(22)

2 TT 1,200, 2,400 m 3.97 ± 0.42 (CS) Speed at CP
(800 m) = 3.95 ± 0.46

60 min Linear inverse-of-time 400 m running track

278 ± 29 (CP) Power at CP
(800 m) = 275 ± 29

3 1,200, 2,400 m + (1 of 3,600, 4,000,
4,400 m to cover ∼15 min)

3.89 ± 0.44 (CS) Speed at CS
(800 m) = 3.88 ± 0.44

270 ± 28 (CP) Power at CS
(800 m) = 271 ± 28

Vassallo et al. 4 TTE Running speeds attained at VO2max,
110% VO2max, Δ70% (difference
between GET and VO2max), Δ85%
(exhaustion within 2 and 15 min)

3.7 ± 0.2 NO 48 and 72 h Linear distance-time 400 m running track (using
audio tone to control speed)424 ± 20 Linear work-time

1 3MT As fast as possible Test (3.6 ± 0.4) NO CS over the last 30 s
(speed-time)

400 m running track (power
and speed derived from GPS)Retest (3.6 ± 0.4)

Test (443 ± 37) CP over the last 30 s
(power-time)Retest (450 ± 36)

*km.h−1 *comparing with linear test; 3MT, 3 min all-out test; CS, critical speed; GET, gas exchange threshold; TT, time trial; TTE, time to exhaustion test (constant-work rate); T10, 10-minute submaximal treadmill test; VO2max, maximum oxygen uptake; Δ, magnitude
of the interval between gas exchange/ventilatory threshold and VO2max/maximal aerobic running speed.
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Galbraith et al. (33), using the same longer protocol (12, 7, and

3 min), found that while CS measurements remained reliable, D′
exhibited a 13.3% variation, underscoring its sensitivity to trial

duration. These findings highlight the importance of carefully

selecting trial durations that balance the physiological demands

of anaerobic and aerobic systems to ensure reliable results.

This variability reflects the metabolic demands associated with

trial duration. Shorter trials, due to their high intensity,

predominantly rely on anaerobic metabolism, often leading to

incomplete depletion of D′ and inconsistent attainment of

VO2max. In contrast, longer trials (>15–20 min) may fail to

sustain the severe-intensity domain due to reduced intensity or

motivational factors, leading to inconsistent attainment of

VO2max (17, 49). VO2max is rarely achieved in trials shorter than

1–2 min or longer than 15–20 min, highlighting the importance

of optimizing trial duration for accurate assessment (11, 50).

Caen et al. (51) emphasized the necessity of adhering to strict

methodological criteria for CP/CS determination in cycling,

including trial durations between 2 and 15 min and ensuring

VO2max attainment. While these findings were developed in the

context of cycling, the shared physiological principles underlying

endurance performance suggest that similar practices could

enhance reliability and minimize variability in field-based CS

estimates for runners.

Beyond the complexities of selecting an optimal trial duration,

achieving and verifying VO2max during field testing remains a

critical challenge. While field tests closely mirror laboratory results,

the absence of physiological markers like VO2max introduces

uncertainty. Portable metabolic analyzers, such as the wearable

Cortex device, offer a potential solution by enabling VO2max

validation during field trials. However, integrating such equipment

increases complexity and costs, potentially limiting accessibility,

especially for recreational athletes or resource-constrained settings.

Nevertheless, adopting such technologies could enhance the

reliability of CS estimates across diverse environments, ensuring

their applicability for both research and practical training purposes.

4.1.2 Number of trials and predictive accuracy
The number of trials required for field-based CS testing is a

critical consideration in test design. While three trials are

commonly employed to ensure accuracy, this approach can

significantly increase the time burden of testing. Consequently,

some studies have investigated whether two trials could provide

comparable reliability. Figueiredo et al. (32) found no significant

differences between CS values derived from a three-TT protocol

(2,600, 1,800, and 1,000 m) and a two-TT protocol (2,600 and

1,000 m). Similarly, Gifford and Collins (52) confirmed that CS

calculated from 1,500 and 3,000 m trials strongly correlated with

true CS. Kordi et al. (36) further demonstrated that two-point

protocols (3,600 and 1,200 m) were as effective as more complex

three-point versions for predicting 5 km performance. Notably,

the three-point model for 5 km performance prediction showed a

higher correlation with CS than peak running velocity in

recreational runners (32).

The use of two trials, however, remains a subject of debate.

Pethick et al. (12) cautioned that two trials might not fully
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account for standard error, potentially introducing bias in D′
estimation when greater precision is required. Ruiz-Alias et al.

(40) and Van Rassel et al. (22) further demonstrated that two

trials using the Stryd power meter provided comparable CS

and CP values to those from three trials, suggesting that a

third trial may not be necessary. It is important to note,

however, that the accuracy of the Stryd power meter can

depend on where the device is placed—most commonly on the

laces of the right foot. This placement may introduce a

biological error linked to the device’s location (i.e., left or right

limb), particularly relevant for track athletes who often display

asymmetries in strength and muscle stiffness between lower

limbs (23). These findings highlight the need to carefully

balance the trade-offs between achieving accuracy and

maintaining practicality in field-testing protocols, while also

accounting for potential sources of error, such as equipment

placement and individual variability.

Field-based tests have also been shown to offer superior

predictive accuracy for outdoor race performance compared to

laboratory-based tests. Ruiz-Alias et al. (23) reported that track-

based CP and W′ values were significantly higher than those

from treadmill tests, even when adjusting for wind resistance.

This finding underscores the physiological differences between

testing environments and the potential advantages of field-based

protocols in reflecting outdoor performance. As an example,

Nimmerichter et al. (6) found that treadmill-based CS estimates

tended to underestimate 5 km race performance by 5%–9%,

whereas field-based tests over fixed distances (400 and 2,000 m),

such as those validated by Corrêa et al. (20) and Ribeiro et al.

(39), proved more reliable for predicting 10 km race velocities.

These studies collectively suggest that field-based tests not only

yield higher performance metrics but also offer greater predictive

accuracy for real-world race outcomes.

However, some limitations persist. For instance, Corrêa et al.

(20) identified biases in performance prediction, with men

tending to overestimate and women to underestimate their

capabilities, highlighting the limited representation of female

participants in these studies. This gap restricts the generalizability

of findings across genders. Furthermore, the use of shorter

distances, such as 400 m, deviates from the more commonly

employed protocols and may influence the results by skewing

estimates towards higher speeds.

Balancing the number and duration of trials is critical for

designing effective field tests. Two-trial protocols, while practical

for time-constrained training settings, remain a topic of debate,

as some researchers argue they may compromise precision in

estimating CS and D′. In contrast, three-trial protocols are

increasingly preferred due to their ability to deliver greater

accuracy and reliability, making them the more robust choice in

most scenarios.

4.1.3 Order, time gap, and recovery time in
protocol design

In addition to trial duration and length, the order, gap and

recovery between trials significantly affect outcomes. Ruiz-Alias

et al. (40) recommended a minimum gap of 7 min between the
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shorter and longer trials, as shorter gaps (e.g., 3 and 4 min) did not

meet validity criteria. In contrast, combinations such as 3–10 min

or 5–20 min produced valid results. Additionally, trial order was

found to influence PO, with longer trials conducted first yielding

higher outputs (40). Most studies favor arranging trials from

longest to shortest or randomizing the order to minimize

potential bias.

Equally important is the recovery time between trials, which

also influences the protocol design. While longer recovery

periods (e.g., 3 h and 30 min) (23, 32–36, 42) are typically

recommended for ensuring high agreement and low prediction

error in CP assessments, recent studies suggest that shorter

recovery periods, such as 30 min, may be sufficient in running

protocols (23, 32–34, 36). Triska et al. (53) found that a 30-min

recovery produced similar POs compared to tests conducted on

different days. Moreover, CS values from 30- or 60 min recovery

field tests correlated well with treadmill-based tests, though

discrepancies were noted in D′ values between treadmill and

field protocols (33).

These findings highlight the importance of tailoring trial

recovery times to the context of field testing. Shorter recovery

periods offer a practical solution for time-constrained settings,

particularly in training environments, without significantly

compromising performance reliability. However, careful

consideration of trial order and randomized sequences remains

crucial for minimizing potential biases and ensuring valid results.

4.1.4 Innovative approaches and emerging
technologies

Innovative methodologies have expanded the scope of field-

based CS and CP estimation. Hunter et al. (44) utilized three

TTs (3, 7, and 12 min) in uncontrolled conditions, supplemented

by power meter technology (Stryd Inc.), and incorporated a HAB

approach, in which participants tracked their regular training

over six weeks. Retrospective analyses revealed no significant

differences in CS and CP estimates among TT, 3MT, and HAB

methods, even when accounting for environmental variability.

Despite these promising results, questions remain about the

optimal duration of HAB data collection and the extent to which

environmental factors, such as weather and terrain, influence CS

accuracy over prolonged periods.

Similarly, Smyth and Muniz-Pumares (41) utilized raw race

data from distances of 400, 800, 1,000, 1,500, 3,000, and 5,000 m

to estimate CS. The best-performing model, incorporating 400,

800, and 5,000 m distances, achieved a low prediction error

(∼7.67%) for marathon performance, demonstrating its utility in

race planning and analysis. Despite these promising outcomes,

the reliance on race data, like the HAB approach, presents

limitations. The inability to verify maximal effort introduces

variability, which may compromise the robustness of CS

estimates in certain scenarios. Additionally, environmental

conditions, such as weather and terrain, along with motivational

factors, can influence the reliability of these methods.

Nevertheless, HAB and raw data approaches offer a seamless

integration into training routines without requiring additional

testing sessions. They are particularly advantageous for
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monitoring performance trends over time in competitive athletes.

However, these methods require careful consideration of

variables such as maximal effort, motivation, and environmental

consistency, which may vary across observation periods.
4.2 3-minute all-out test

The 3MT is a valuable alternative to traditional TTE and TTs,

offering a more time-efficient way to estimate CP and CS without

requiring multiple trials. Its design is grounded in the principle of

fully depleting the anaerobic reserve (D′) within the first 150 s of

an all-out effort, after which the power output or speed stabilizes.

This stabilization phase reflects the athlete’s CS, representing the

maximum sustainable speed without further depletion of D′
(14, 15). This stabilization represents the transition from

anaerobic to aerobic energy pathways.

The simplicity and practicality of 3MT has been enhanced by

tools such as GPS devices, accelerometers, power meters and

stopwatches, enabling its use in field settings (14, 15, 43, 44, 54).

Vanhatalo et al. (55) demonstrated that these technologies

facilitate the application of 3MT in real-world conditions,

making it a valuable tool for athletes and coaches. However,

transitioning from controlled laboratory settings to outdoor

environments introduces challenges, including surface variability,

wind, temperature, and athlete motivation. These factors,

combined with the potential for pacing behaviors, underscore the

importance of robust protocol design. Hunter et al. (44) found

that despite instructions, pacing behaviors were observed,

highlighting the need for careful participant preparation and

protocol design.

Studies have consistently validated the 3MT for estimating CS.

Aguiar et al. (14) reported high reliability for CS determination,

with test-retest coefficients above 0.90, though the test

underestimated D′ by approximately 16%. Similarly, Broxterman

et al (15). found a strong correlation (r = 0.92) between field-based

3MT and treadmill-based TTE tests, further confirming the

validity of 3MT in estimating CS. Although W′ was again

underestimated. Pettitt et al. (38) demonstrated that GPS-enabled

3MT provides reliable predictions for races ranging from 1,600 to

5,000 m, although errors increased for shorter events like the 800 m.

Innovations in 3MT methodology have aimed to address some

of its limitations. Vassallo et al. (43) introduced a novel power-

based model that tracked real-time variations in power output

during over-ground running. By focusing on power rather than

speed, this approach accounted for pacing fluctuations,

acceleration, and deceleration, providing a more comprehensive

assessment of mechanical demands. Although this model tended

to overestimate CP and D′ compared to traditional protocols (by

approximately 25 W for CP and 7 kJ for D′), it highlighted the

potential for integrating power-based measurements into 3MT

applications, particularly for sports requiring frequent speed

changes. Another innovative approach was demonstrated by

Hunter et al. (44), who showed that 3MT could be conducted

unsupervised with reliable outcomes when participants followed

clear instructions. However, this adaptation raises questions about
frontiersin.org

https://doi.org/10.3389/fspor.2025.1520914
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Lipková et al. 10.3389/fspor.2025.1520914
whether unsupervised results are comparable to those obtained

under supervised conditions. Future research should focus on

establishing the reliability and validity of unsupervised 3MT across

diverse field environments, particularly for recreational athletes.

While the 3MT offers significant advantages in terms of

practicality and efficiency, it appears better suited for experienced

runners accustomed to performing at maximal intensity. Novice

runners may struggle to deliver consistent all-out efforts,

potentially affecting test accuracy. Additionally, field tests lack the

ability to verify maximal efforts through physiological markers like

VO2max attainment, which adds complexity to standardizing

results. The consistent underestimation of D′ presents challenges

for prescribing high-intensity interval training, emphasizing the

need for careful protocol design. Environmental factors, such as

surface variability and weather conditions, further highlight the

importance of controlled settings to ensure reliable outcomes.

In conclusion, the 3MT integrates anaerobic and aerobic

parameters in a single trial, making it a valuable tool for

estimating CS in both laboratory and field settings. Continued

advancements, such as the integration of power-based monitoring

and innovative technologies, hold promise for enhancing the test’s

accuracy and applicability. However, its dependence on maximal

effort and sensitivity to pacing behaviors highlight the importance

of robust protocols, participant preparation, and environmental

consistency to optimize test reliability.
4.3 Practical applications of the critical
speed concept

The CS is a valuable tool for assessing endurance performance

and planning effective training strategy for runners. However,

applying CS in real-world settings presents unique challenges,

particularly due to variability in physiological responses around

the CS threshold. This variability creates a “grey zone,” as

described by Jones et al. (11), where uncertainty exists near the

estimated CS. For example, a CS value of 5 m/s with a 5% error

margin could place an athlete either in the heavy-intensity

domain (below CS at 4.75 m/s) or the severe-intensity domain

(above CS at 5.25 m/s), complicating training prescriptions and

pacing strategies. Caen et al. (51) also emphasized that such

variability is influenced not only by biological factors but also by

methodological aspects, including differences in trial durations

and testing protocols. Addressing these factors is essential to

refine CS testing protocols, ensuring greater accuracy and

applicability in both research and practical training settings.

Studies have validated the robustness of CS for training

purposes. Figueiredo et al. (56) demonstrated that CS and peak

running velocity are equally effective for prescribing endurance

training in recreational runners when determined under controlled

track settings. At the same time, gender-specific differences in

pacing strategies highlight the practical relevance of CS. Female

marathon runners, for example, tend to perform closer to their CS

than males, particularly in time brackets of 170–360 min. This

even pacing approach contrasts with the variability observed in

male runners, who often experience significant slowdowns in the
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latter stages of a race, especially those with slower performances.

For less experienced runners, individualized pacing strategies based

on CS are essential to mitigate fatigue and sustain performance (41).

In competitive scenarios, the utility of CS extends to performance

prediction and race strategy planning. Elite marathoners typically

compete at approximately 95% of their estimated CS (57), while

half-marathon runners have been shown to race at around 97.3%

of their CP, with no significant differences between CP determined

by the 9/3-minute Stryd CP test and the race’s target CP (37).

Supporting this, Smyth and Muniz-Pumares (41) demonstrated that

runners initiating a marathon at approximately 87.6% of their CS

generally achieve better outcomes, whereas those starting above this

threshold often experience pronounced slowdowns as the race

progresses. Similarly, marathon speeds average around 84.8% of CS,

with faster runners competing closer to their CS (∼93%) compared

to slower runners (∼78.9%). These findings highlight CS’s versatility
not only as a robust predictor of performance but also as a valuable

tool for refining pacing strategies across different performance

levels. By tailoring race strategies based on CS, runners can better

balance energy expenditure and mitigate fatigue, ultimately

enhancing race outcomes.

The application of CS is not limited to race-day strategies but

extends to training program design. Field-based CS tests, such as

TTs and 3MT, provide reliable metrics that coaches can use to

design individualized training programs. Intervals prescribed just

below CS help optimize aerobic endurance, while those above CS

engage anaerobic capacity. Clark et al. (58) demonstrated that

high-intensity interval training (HIIT) prescribed at intensities

between 110% and 130% of CS has been shown to yield

significant improvements in aerobic performance. Moreover,

enhancing CS can translate directly into improved race results. For

example, increasing CS from 4.90 m/s to 4.99 m/s has been shown

to result in a 36 s reduction in a 10,000 m race time, underscoring

the substantial impact of targeted CS training program (35).

By integrating CS into training and race planning, runners and

coaches can better manage pacing, fatigue, and energy reserves,

leading to optimized performance. These applications highlight

CS’s critical role in bridging theoretical models and practical

strategies, making it an indispensable tool for endurance athletes

aiming to achieve peak performance.
4.4 Practical summary of field tests

Field-based testing methods offer significant advantages for a

wide range of athletes, including their simplicity, accessibility, and

suitability for various performance levels. For recreational runners,

tests can often be performed using minimal equipment, such as a

stopwatch and a marked distance, and completed within a single

day with a 30-min recovery period. However, several practical

factors must be considered to ensure test reliability and validity.

To aid practitioners in implementing these methods effectively,

Table 4 provides a summary of key recommendations and

limitations for different protocols, including TTs, TTE, 3MT, and

approaches based on raw or habitual training data. This table

highlights critical parameters such as test duration, recovery times,
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TABLE 4 Comparison of field-based testing testing methods for critical speed estimation.

Method Factor Key recommendation Limitation
TTs Length, duration Use fixed durations or distances (e.g., 3, 7, and 12 min or 1,200,

2,400, 3,600 m), Trials should be 3–12 min to balance aerobic and
anaerobic energy systems.

Shorter trials (<3 min) rely heavily on anaerobic systems; longer
trials (>15 min) risk reduced intensity.

Number of trials Minimum of two trials (e.g., 1,200 m and 3,600 m) for practical
settings; three trials for increased precision.

Two trials may not fully account for D′ variability or standard
error.

Recovery time Recovery: 30–60 min between trials; random or longest-to-shortest
order.

Short recovery times may affect fatigue and performance
reliability.

Environmental
Factors

Perform tests in consistent conditions (e.g., track or flat terrain). Requires high motivation and pacing consistency; environmental
conditions can introduce variability.

Equipment Stopwatch, GPS devices or power meters for accurate data
collection (e.g., Stryd power meter).

Device placement (e.g., left vs. right foot) can introduce
variability in data. (Stryd device). Availability and cost of devices
like GPS or Stryd may limit accessibility in some settings.

Verification of
VO2max

Optional but enhances reliability; consider portable metabolic
analyzers for field tests.

Adds cost and complexity; limited availability in some settings.

TTE Duration Trials between 2 and 15 min with consistent pacing Challenging to maintain consistent pacing without physiological
feedback (e.g., VO2max verification).

Number of trials 3–5 trials to improve reliability. Time-consuming; impractical in some field settings.

Environmental
factors

Perform tests in controlled and consistent conditions. Weather, wind, and surface variability may influence reliability.

Equipment auditory tone for speed synchronization Dependence on auditory cues may not fully eliminate pacing
variability or ensure maximal effort.

Verification of
VO2max

Optional but enhances reliability; consider portable metabolic
analyzers for VO2max validation.

Adds cost and complexity; not always feasible in field settings.

3MT Protocol design Perform a single all-out effort to deplete anaerobic reserve and
estimate CS.

May underestimate D′ by ∼16%; maximal effort varies among
participants.

Environmental
factors

Conduct tests in consistent conditions (e.g., track or flat terrain). Weather, surface, or temperature may influence results.

Equipment Use GPS devices, accelerometers, or power meters (e.g., Stryd) for
real-time monitoring and data collection.

Device placement (e.g., left vs. right foot) can introduce
variability in data. (Stryd device). Availability and cost of devices
like GPS or Stryd may limit accessibility in some settings.

Participant
suitability

Best suited for experienced runners accustomed to maximal
intensity efforts.

Less practical for novices or those unaccustomed to all-out tests.

Raw/habitual
data approach

Data source Use recent race data, or habitual training data for CS estimation. Relies on consistent effort and accurate data tracking; maximal
effort in races may vary by motivation.

Duration Combine data from multiple races/training (e.g., 400, 800, 5,000 m
or 3, 7, 12 min)

Questions remain about the optimal duration of HAB data
collection.

Environmental
factors

Ensure consistent training/race conditions where possible. Variability in conditions (e.g., wind, terrain) may affect results.

Equipment Use GPS devices or power meters to record and analyze data trends. Data accuracy depends on device calibration and consistent use.

Availability and cost of devices like GPS or Stryd may limit
accessibility in some settings

CS, critical speed; D′, the finite distance above CS; TTs, time trials; TTE, time to exhaustion; 3MT, 3 min all-out test; GPS, global positioning system; VO2max, maximal oxygen uptake; HAB,
habitual training data.
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environmental considerations, and equipment requirements,

offering a practical guide for optimizing test design and execution.
5 Study limitations

This review has some limitations. First, this study is not a meta-

analysis, which limits the depth of statistical analysis and

generalization of the results. Additionally, comparing different

protocols presents challenges, as they are not fully standardized

and can vary in key aspects. Another limitation is that most of the

included studies focused on participants with running experience,

making it difficult to determine how these findings would apply to

the general population or recreational athletes. Furthermore, the

studies reviewed were predominantly male-based, resulting in a

gender imbalance that may affect the generalizability of the
Frontiers in Sports and Active Living 11
findings. Lastly, the findings of this review should be interpreted

with caution due to the potential risk of bias in the included studies.
6 Conclusion

This systematic review highlights the effectiveness of field-

based assessments, such as TTs and the 3MT, for determining

CS in runners. These protocols have shown practical utility in

real-world conditions, particularly for predicting outdoor race

performance. Key factors influencing the accuracy of CS include

the number and duration of trials, recovery time, and trial order.

With their ecological validity, field-based methods offer a more

practical and relevant approach for performance assessment

compared to laboratory-based tests, particularly in experienced

athletes. Emerging approaches, such as the use of raw race data or
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habitual training data, hold significant promise for simplifying field-

based testing and seamlessly integrating it into everyday training

practices. These methods, while still in the early stages of

exploration, could greatly enhance accessibility and applicability

across diverse athletic populations and environments. A major gap

in the current research lies in the limited inclusion of female

participants, which raises questions about the generalizability of

findings. Future studies should prioritize addressing this disparity

to ensure that protocols are equally effective and applicable for

athletes of all genders. Additionally, continued efforts are needed

to refine data-driven methods and explore their potential to

revolutionize field-based assessments, enabling more personalized

and adaptive performance evaluations.
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