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Accuracy of smartwatches in
predicting distance running
performance
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Objective: This study examined the accuracy of smartwatches in predicting
running performance.
Methods: A total of 154 amateur runners (123 males and 31 females) were
recruited. After wearing the HUAWEI WATCH GT Runner for a minimum of six
weeks, the runners’ actual completion times for 5 km, 10 km, and half
marathon distances were measured, resulting in 288 test instances. The
predicted completion times for the same distances displayed on the watch on
the test day were recorded simultaneously.
Results: The actual and predicted performances for the 5, 10, and 21.1 km
distances were highly correlated, with r≥ 0.95 (p < 0.001) and r2≥ 0.9 for all
three distances, an error rate between the measured and predicted values of
less than 3%, and intraclass correlation coefficient ≥0.9. The bias ± 95%
limits of agreement were −20.4 ± 44.2 s for 5 km, 4.1 ± 299.1 s for 10 km, and
143.8 ± 400.4 s for the half marathon.
Conclusions: This study confirmed that the smartwatch exhibits high precision
in predicting 5 km, 10 km, and half marathon performances, with an accuracy
exceeding 97%. The performance prediction features of smartwatches can
effectively guide amateur runners in setting reasonable competition goals and
preparing for races.
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1 Introduction

Running has several health benefits, including reduced all-cause and cardiovascular

disease mortality (1). This has led to the global popularity of running and marathons.

The number of marathons held in China increased from 12 in 2010 to 53 in 2014 and

rapidly grew to approximately 1,100 by 2017, with nearly 5 million participants. The

number of participants increased by over 2.2 million between 2016 and 2017. By 2019,

the number of events had risen to 1,900, attracting approximately 7 million participants

(2). This has sparked tremendous interest in running performance prediction among

many individuals, from competitive athletes to amateur enthusiasts, because it can help

them prepare for competitions and train more effectively.

Numerous studies have demonstrated that running performance can be predicted

through single or combined measures of anthropometric and physiological markers

(3–6). In early laboratory conditions, running performance was highly correlated with

treadmill speed at peak maximal oxygen uptake (r = –0.88 to −0.94); lactate threshold

running speed (r = –0.80 to −0.92), and VO2max% at 16 km/h (r = 0.76–0.90); and
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TABLE 1 Basic information of participants.

Male
(N= 123)

Female
(N= 31)

Age (years) 34.2 ± 4.6 30.5 ± 2.3

Height (cm) 172.6 ± 5.2 159.3 ± 3.5

Weight (kg) 67.9 ± 8.0 54.3 ± 4.5

BMI [body mass (kg)·height (m)−2] 22.8 ± 2.4 21.4 ± 2.0

Years of running (years) 4.6 ± 2.4 3.7 ± 1.8

Average monthly running distance (km) 155.0 ± 70.1 82.6 ± 25.4

Average training pace (sec/km) 339.5 ± 46.4 390.9 ± 34.5

Average monthly running time (h) 15.9 ± 8.6 10.0 ± 4.4

Average half-marathon best time (min) 102 ± 19 131 ± 20

Average marathon best time (min) 196 ± 55 266 ± 28

5 KM Measured Performance maximum
heart rate (%)

98.69 ± 0.98 98.85 ± 1.02

10 KM Measured Performance maximum
heart rate (%)

94.85 ± 1.29 94.68 ± 1.38

21.1 KM Measured Performance
maximum heart rate (%)

84.89 ± 2.84 84.41 ± 2.68

5 KM Measured Performance RPE 17.89 ± 0.68 17.90 ± 0.10

10 KM Measured Performance RPE 17.97 ± 0.58 17.96 ± 0.59

21.1 KM Measured Performance RPE 18.09 ± 0.53 17.85 ± 0.65

Values are mean ± SD.
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VO2max (r = 0.55–0.86). Additionally, the time taken to complete

the 10 km or 21.1 km races was a predictive marker for marathon

and ultramarathon performances (r = 0.91–0.97), suggesting that

medium-long distance running performances are also highly

correlated with marathon or longer distance race performance (7).

One study used a linear graph model based on the time taken by

runners to complete two different distances, facilitating the

prediction of performance at various distances from the 10 km race

to marathons. The results revealed correlation coefficients of 0.89

and 0.97 for the 10 and 20 km times, respectively, with marathons

(8, 9). Other studies have found that the total duration of

progressively increasing load testing on a treadmill correlates with

marathon performance (r2 = 0.45) (5). However, an outdoor

12-minute run test (Cooper test) was found to predict half-

marathon performance more accurately than progressive increases

in laboratory-based maximal oxygen uptake tests (outdoor test:

r2 = 0.873, indoor test: r2 = 0.769) (10). Given that running involves

long-duration endurance activity against one’s body weight, a

lighter weight and lower fat content are evidently beneficial for

improving performance. Hence, some studies have established sex-

specific linear prediction models based on body fat percentage and

everyday training running speed (males: r2 = 0.42, females: r2 = 0.68)

(11). Other studies incorporated parameters such as body fat

percentage, running speed, and weekly training volume into a linear

model, achieving an r2 of 0.81 (12).

Besides the anthropometric and physiological indicators,

training parameters such as the frequency of training, total

running volume, average volume per run, maximum weekly

training distance, and training intensity also influence marathon

performance. Research suggests that the maximum weekly training

distance is an important predictor of marathon performance

among amateur runners (13). In long-distance races between 10

and 90 km, runners who ran more than 100 km per week

completed the race significantly faster than those with lower

weekly running volumes (14). Other studies have found that if the

maximum training volume in daily training exceeds 21 km and

the average training volume exceeds 10 km, the monthly training

volume becomes the most important factor in predicting

marathon performance. However, if these conditions are not met,

the monthly training volume is not related to marathon

performance, suggesting that the monthly training volume only

significantly affects marathon performance when daily training

distances reach a certain level (15). Overall, runners who train

more frequently with higher weekly training volumes and longer

training durations tend to perform better in races (16). Elite

marathon runners have significantly higher total weekly running

volumes and training speeds than average marathon runners (14)

making these the core reasons for their superior performance.

Although marathon performance can be predicted using

anthropometric and physiological indicators (7, 12), these measures

require strict testing conditions and expensive equipment, limiting

their application to a small segment of the population.

Consequently, applying these prediction models to amateur runners

is difficult. However, training parameters are easier for amateur

runners to obtain. Extensive research has confirmed that training

parameters are crucial for predicting marathon performance.
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Furthermore, running tests conducted in natural environments may

provide more accurate predictions of running performance than

laboratory tests (10).

With the rapid development of smart wearable devices,

wristbands and smartwatches are widely used in the fitness field

and have been validated for evaluating physiological indicators

such as maximal oxygen uptake (VO2max), maximum heart rate

(HRmax), energy expenditure (EE), and heart rate variability

(HRV). Smartwatches are prevalent among amateur runners. They

can accurately record training parameters, such as distance, time,

and running speed, and physiological parameters, such as heart

rate, while allowing for long-term data accumulation. Many

running watch brands have developed running performance

prediction functions based on training and physiological

parameters. However, no publicly published studies have validated

the accuracy of running performance predictions using these

smartwatches. In this study, we selected the HUAWEI WATCH

GT Runner as the device to be validated. By comparing the

predicted running performance of amateur runners using the

HUAWEI WATCH GT Runner with their actual running

performance, we assessed the accuracy and error level of the

watch’s performance prediction function. We hypothesized that

smartwatch-predicted running performance would be highly

consistent with the actual running performance.
2 Materials and methods

2.1 Participants

Between January 2021 and November 2022, 154 amateur

runners (123 males and 31 females) participated in this study.

All participants had experience running and participating in

marathons. Participants’ basic information is presented in
frontiersin.org
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Table 1. This study was approved by the Ethics Committee of

Nanjing Sports Institute in accordance with the Declaration of

Helsinki. The participants were informed about the experimental

plan, procedure, and related testing requirements, and were asked

to sign a written informed consent form before testing. To

improve the quality and accuracy of the test data, the

participants were asked not to engage in high-intensity exercise

or consume food containing caffeine or alcohol 48 h before testing.
2.2 Experimental procedure

The study protocol was approved by the Institutional Review

Board of the Bioethical Committee of the Nanjing Sports

Institute (RT-2021-03) and met the requirements of the

Declaration of Helsinki. HUAWEI WATCH GT Runner devices

were distributed to 154 participants who wore them for a period

ranging from three months to two years. During this period, the

runners maintained their normal training habits without any

intervention in their routine. For each running session, the watch

was set to record the relevant parameters such as heart rate,

time, and pace. At the end of each session, the data were saved,

uploaded, and updated using a Bluetooth-connected application.

The predicted performance was recorded on the day of the test

and before the start of the measured performance test. The

predicted performance refers to the smartwatch’s prediction of

the time it takes the participant to complete 5, 10, and 21.1 km.

The measured performance refers to the time taken by the

participant to complete 5, 10, and 21.1 km with maximum effort.

To obtain more reliable predictive scores from the participants,

they were required to wear the device for a minimum of six weeks.

We organized periodic tests for 5 km, 10 km, and half-marathon

distances. A total of 154 participants underwent 288 testing

sessions throughout the study period, with variations in the

number of completed tests and distances covered by each

participant. The actual number of test sessions per participant

ranged from one to six. Prior to the running test, it was ensured

that the participants were not physically fatigued, had rested for

at least two consecutive days prior to the test, had not consumed

caffeinated or alcoholic food, and had completed only one

distance at a time, with a three-month interval between two

adjacent tests. Prior to each test, the predicted scores displayed

on the participants’ watches were recorded. The half-marathon

test was conducted outdoors on a known half-marathon route,

and the 5 and 10 km tests were conducted on a standard 400 m

track. The participants were required to exert their full effort

during the tests, and their actual performance was recorded.

Immediately following the test, the participants were asked to

rate their perceived exertion (RPE6–20) (17). In the RPE6–20

scale, a 6 is labeled as “very easy” and a 20 is labeled as “total

exhaustion.” All participants wore the HUAWEI WATCH GT

Runner smartwatch during the run to track their exercise heart

rate. The maximum heart rate for each participant was calculated

by subtracting their age from 220. The intensity level was

calculated by dividing the average heart rate during the event by

the maximum heart rate. The actual tests were conducted in the
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morning, when the temperature was 16–24 degrees Celsius and

the relative humidity did not exceed 50%.
2.3 Smartwatch

In this study, the smartwatch model of HUAWEI WATCH GT

Runner was selected. This smartwatch is based on the HUAWEI

TruSportTM scientific training system, which encompasses a

comprehensive set of running performance algorithms. By

leveraging smart wearable devices such as watches, accessories, and

mobile management software (APP), as well as motion detection

and AI-based training guidance algorithms, the HUAWEI

TruSportTM scientific training system provides a reference for

assessing the running ability, training load, and physical condition

of amateur runners. The fundamental principle behind the

performance prediction of the system is that after completing the

initial run, the watch can display the predicted results for

distances of 5 km, 10 km, half-marathons, and full marathons

based on the individual’s heart rate, speed measurements, and the

relationship between the two. Every 24 h, regardless of whether a

run has taken place on that day, the watch updates the

performance predictions by connecting to the APP. If no exercise

is performed on a particular day, the changes in performance

predictions are minimal and can be ignored. However, if a run is

completed on a given day, the performance predictions are

refreshed based on factors such as the heart rate, time, and

running speed. According to the official instructions for the

HUAWEI WATCH GT Runner smartwatch, runners should wear

the smartwatch for 42 days for a more accurate prediction of

running performance.The HUAWEI TruSportTM scientific

training system updates the performance predictions based on all

the running data within each 42-day cycle. This process

incorporates rolling iterations; therefore, the performance

prediction on the 43rd day is updated using complete data from

days 1–42, the 44th day prediction is based on days 2–43, and so

on. Consequently, after 43 days of wearing the smartwatch, the

running performance predictions consistently utilize a rolling

update based on the previous 42 days of data, rather than relying

solely on the most recent run. This mitigates the impact of short-

term fluctuations in running performance on the prediction.

Therefore, to assess runners’ ability more accurately, the

participants wore the watch for at least 42 days.
2.4 Data analysis

Statistical analysis was performed using SAS JMP Pro 17.0.0.

Descriptive statistics were used to analyze the participants’ basic

information. Several methods were employed to assess the

accuracy of the watch’s predicted scores. A simple correlation

coefficient (r) was used to describe the correlation between the

measured and predicted scores. The coefficient of determination

(r2) was used to assess the goodness of fit between the measured

and predicted scores. The absolute error rate was calculated using

the formula (measured value—predicted value)/measured
frontiersin.org
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value × 100%. An error rate less than 5% was considered

acceptable. The intraclass correlation coefficient (ICC) was used

to evaluate the consistency between the predicted and measured

values. The corresponding standards for ICC, indicating excellent,

good, fair, and poor agreement, were ≥0.9, 0.75–0.9, 0.6–0.75, and
≤0.75, respectively. To evaluate the level of agreement between the

predicted and measured values, the limits of agreement (LoA)

interval was calculated by adding and subtracting 1.96 times the

standard deviation from the difference between the measured and

predicted values. The Bland–Altman scatter plot was employed to

visually describe the agreement, with a consistency rate of over

95% within the LoA interval indicating good agreement (10, 18).
3 Results

The measured and predicted values for the 5 km, 10 km, and

half-marathon (21.1 km) distances showed a high degree of

correlation (r≥ 0.95, p < 0.001) (see Table 2) and r2 ≥ 0.9,
FIGURE 1

Bland-Altman plots of measured and predicted performance for the 5 km r

TABLE 2 Correlation between measured performance and predicted perform

TD SS MP(sec) PP(sec) ER(%)
5 km 13 1,382.3 ± 141.3 1,402.9 ± 145.9 −1.47
10 km 237 2,999.9 ± 528.2 2,935.6 ± 485.6 0.10

21.1 km 38 6,015.9 ± 667.0 5,872.1 ± 632.0 2.30

Total 288 3,292.4 ± 1,179.5 3,253.9 ± 1,180.2 0.32

Values are mean ± SD. TD, Test Distance; SS, Sample size; MP, Measured performance; PP, Pred
Agreement.
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indicating a strong goodness of fit between the measured and

predicted values. The error rate between the measured and

predicted values was less than 3%, with an ICC≥ 0.9, indicating

a high level of consistency between the predicted and measured

values. For the 5 km distance, the bias ± 95% LoA was

−20.4 ± 44.2 s. For the 10 km distance, the bias ± 95% LoA was

4.1 ± 299.1 s. Finally, for the half-marathon distance, the

bias ± 95% LoA was 143.8 ± 400.4 s.

Figures 1–3 present the Bland–Altman scatter plots for the 5 km,

10 km, and half-marathon distances, respectively. In these plots,

100% of the scatter points for the 5 km test, 95.8% of the scatter

points for the 10 km test, and 97.4% of the scatter points for the

half-marathon test fall within the bias ± 95% LoA interval.
4 Discussion

The purpose of this study was to validate the accuracy of a

smartwatch (HUAWEI WATCH GT Runner) for predicting
un.

ance.

R r2 SEE (sec) ICC L LOA U LOA
0.99 0.98 32.9 0.98 −64.6 23.8

0.95 0.90 153.0 0.96 −295.0 303.2

0.95 0.91 254.4 0.93 −256.6 544.1

0.99 0.98 165.6 0.99 −299.8 342.7

icted Performance; ER, Error Rate; ICC, intraclass correlation coefficient; LOA, The Limits of

frontiersin.org
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FIGURE 2

Bland-Altman plots of measured and predicted performance for the 10 km run.
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running performance. The participants’ percentage of maximum

heart rate and RPE results (Table 1) during the 5, 10, and 21.1 km

tests indicated that they performed the tests with maximum effort

(17, 19). Based on the results of this study, the hypothesis was

confirmed. The findings of this study revealed a high correlation

between the measured and predicted performances for the 5 km,

10 km, and half-marathon distances (r = 0.99, r = 0.95, and

r = 0.95, respectively). The ICCs for all distances exceeded 0.9, and

the Bland–Altman analysis showed that over 95% of the

differences fell within the LoAs, indicating good consistency. The

error rates for all three distances were below 3%, with the lowest

error rate observed for the 10 km distance at 0.10%. The

coefficient of determination (r2) for the 10 km distance was 0.90,

and the bias ± 95% LoA was 4.1 ± 299.1 s. The error rate for the

half-marathon predicted performance was 2.3%, with an r2 of 0.91,

and the bias ± 95% LoA was 143.8 ± 400.4 s. Therefore, the errors

in the performance predicted by the smartwatch were deemed

acceptable, with a higher accuracy observed in the prediction of

the 10 km performance than the half-marathon.

In previous studies, various mathematical models have been

employed to predict running performance. These models include

linear, logarithmic, hyperbolic, and multiple regression models

(20–22). Correlations between aerobic parameters (VO2max,

vVO2max, and LT), training variables (training volume and

pace), body composition indicators (body mass index and body

fat percentage), and running performance were analyzed.

Regression models were used to establish the prediction

equations. Among these models, the prediction models for
Frontiers in Sports and Active Living 05
marathon performance based on body morphology and training

variables demonstrated moderate utility with r2 values ranging

from 0.41 to 0.68 (12, 23). Beat Knechtle predicted half-

marathon times for male and female runners using the following

equations: male race time (in min) = 142.7 + 1.158 × body fat

percentage (%)–5.223 × running speed during training (km/h)

(r2 = 0.41); and female race time (in min) = 168.7 + 1.077 × body

fat percentage (%)–7.556 × running speed during training (km/h)

(r2 = 0.68) (11, 24, 25). However, higher accuracy in predicting

running performance has been achieved by combining training

variables with aerobic parameters (r2 = 0.87–0.90) (24). Gómez

used parameters such as the respiratory compensation threshold

(RCT) speed, vVO2max, training experience, weekly training

volume, stride length, and stride frequency to establish four

prediction models. The model based on RCT speed, vVO2max,

and training experience demonstrated the highest relative

accuracy (r2 = 0.90) for half-marathon prediction. The predicted

time (in min) for this model was calculated as follows: predicted

time (min) = 169.54–2.51 peak speed (km/h)–2.25 RCT speed

(km/h)–0.37 running experience (years) (24).

In recent years, with the rapid development of technology, the

use of big data and intelligent algorithms has made it possible to

improve the accuracy of performance prediction. Intelligent

performance prediction algorithms based on AI include the

Artificial Neural Network (ANN), k-Nearest Neighbor (KNN), local

matrix completion, and others (26–28). Prediction algorithms based

on AI differ from mathematical models in that they involve

premodeling, continuous learning, and the refinement of algorithms
frontiersin.org
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FIGURE 3

Bland-Altman plots of measured and predicted performance for the half-marathon (21.1 km) run.
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based on the collected human and training data, improving their

accuracy as the sample size increases. In a study that utilized

variables such as the underlying 10 km performance, body mass

index, age, and sex, ANN and KNN models were used to predict

marathon performance. The results showed that the correlation

coefficients of both models reached 0.9, and the prediction

accuracies were above 94% (with KNN outperforming ANN with

an average absolute error of 2.4% compared with 5.6% for ANN),

indicating high accuracy (18). The results demonstrated high

precision in predicting running performance via mathematical

models or AI-based intelligent algorithms. This indicates that

predicting running performance has matured in terms of logical

reasoning and computational models in experimental research,

thereby providing a theoretical basis for designing and developing

wearable smart devices to predict running performance.

Our research results demonstrated that the accuracy of

performance prediction by the smartwatch was above 97%,

indicating satisfactory precision in performance prediction by the

smartwatch. According to Huawei’s official website, the

smartwatch uses the HUAWEI TruSportTM system to predict

running performance, but the algorithm for predicting running

performance and specific related variable indicators is not

publicly indicated in the product description, which may involve

trade secrets (29). According to the introduction of the watch

function, the smartwatch uses distance measurement through

GPS technology and heart rate measurement through PPG

technology during running, and these two technologies are
Frontiers in Sports and Active Living 06
currently recognized as mature technologies for smartwatches to

measure distance and heart rate, so the input parameters are

consistent and rigorous, and at the same time, they provide

reliable data for the accurate prediction of running performance.

Heart rate, running pace, and running volume are commonly

used indicators for predicting running performance. Heart rate

and running pace are utilized to assess training intensity, while

running volume evaluates training load. These indicators are

then incorporated into prediction models to generate

performance outcomes. Hagan developed marathon performance

prediction models based on running pace and running volume,

which demonstrated high accuracy: Race Time = 449.88−7.61
(Mean km/day)−0.63 (Training pace, m/min) (R2 = 0.68) and

Race Time = 214.24 + 393.07 (BMI)−0.68 (Training pace, m/min)

(R2 = 0.76) (30).

Research has also confirmed that predicting running

performance using data from races that are closer in distance

yields higher accuracy (25). The HUAWEI WATCH GT Runner

refreshes performance predictions based on each running

performance and updates them based on past running

performance, aligning with the inherent relationship between

training level and performance, thus ensuring the reliability of

the indicators.

In this study, the smartwatch exhibited high accuracy in

predicting performance at 5 km, 10 km, and half-marathon

distances, with an accuracy rate exceeding 97%. Therefore, for

amateur runners, the long-term use of the smartwatch can
frontiersin.org
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provide accurate predictions of race performance and assist

runners in training more effectively and formulating race

strategies based on these predictions.
4.1 Limitations of the study

First, the participants in this study were amateur runners rather

than high-level athletes. Further validation is required to determine

whether the smartwatch can accurately predict the performance of

elite athletes. Second, we observed a discrepancy in sample sizes

across the different testing distances, with a larger concentration

of samples in the 10 km and half-marathon tests, whereas the

sample size for the 5 km test was relatively small.
4.2 Practical application

Aerobic metabolism indicators such as VO2max, vVO2max,

and lactic threshold can be used to predict long-distance running

performance. However, obtaining these indicators requires

expensive laboratory equipment and stringent experimental

conditions, making it difficult for amateur runners to access the

testing opportunities. The HUAWEI WATCH GT Runner is a

running smartwatch designed for the public. By continuously

recording metrics such as heart rate and running speed, time,

and distance, it provides accurate and dynamic information for

predicting running performance. The smartwatch offers the

advantages of simpler operation, shorter time, and lower

economic costs compared with traditional laboratory testing

based on aerobic metabolism indicators, making it highly

promising for practical applications.
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