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Introduction: Despite robust evidence on the benefits of high intensity interval
training using body weight (WB-HIIT), the effects of different training
configurations on morpho-functional adaptations are still unclear. Therefore,
the aim of the present study was to assess the effects of two distinct WB-HIIT
protocols on morphological and general fitness adaptations in healthy active
young individuals.
Methods: Thirty-four participants (22 males and 12 females) were randomly
assigned to one of the following groups: 30 s of all-out effort interspersed with
10 s of passive recovery (G30× 10, n= 17) or 40 s of an all-out effort interspersed
with 20 s of passive recovery (G40 × 20, n= 17). Nine exercises were performed
for both protocols, in two weekly sessions, during a 6-week intervention period.
Morphological (ultrasound-derived muscle thickness of the vastus lateralis [MTVL])
and general fitness (muscle endurance and maximal oxygen consumption)
assessments were performed at pre- and post-interventionmoments.
Results: Both training protocols elicited significant improvements in all
dependent variables (p < 0.05), with no significant between-group differences.
Conclusion: Regardlessof the trainingconfiguration, bothWB-HIITprogramsserve
as time-efficient strategies to induce changes in muscle thickness of the vastus
lateralis and functional adaptations in healthy, physically active young individuals.

KEYWORDS

high-intensity interval training, muscle thickness, cardiorespiratory fitness, muscle
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Introduction

High-intensity interval training using body weight (WB-HIIT) has gained prominence

as an effective and accessible strategy for improving physical fitness, health, and quality of

life (1, 2). Importantly, WB-HIIT has been shown to induce similar cardiorespiratory [i.e.,;

maximal oxygen consumption (VO2max); cardiac autonomic function] (3) and
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neuromuscular adaptations (3–5) compared with traditional

cycling and treadmill-based HIIT and Moderate-Intensity

Continuous Training (MICT) in healthy adults. These effects of

WB-HIIT on cardiorespiratory fitness may be attributed to its

all-out effort nature (above 100% VO2max), which would

significantly elicit both central (e.g., increased cardiac output)

and peripheral adaptations (e.g., enzymatic adaptations or

increased mitochondrial volume and density) as well (6). For

neuromuscular responses, both strength and morphological

adaptations previously reported to be induced by WB-HIIT

programs (7) could be mainly attributed to the fact that WB-

HIIT involves high execution speed and stretch-shortening cycles

that favor recruitment of type II muscle.

Other advantages of WB-HIIT include its efficiency in terms of

time (8), the possibility of performing this exercise in different

environments, without the need for specific equipment (9),

and a higher self-efficacy and greater enjoyment compared

to traditional training approaches (10). Altogether, these

characteristics are important when considering individual

preferences related to gym membership, the costs involved, and

the training environment (11).

However, few studies directly compared the effects of different

WB-HIIT configurations on morphofunctional adaptations.

Moghaddam et al. (12), for example, demonstrated similar

skeletal muscle cross sectional areal accrual following two

different WB-HIIT protocols (10-5-HIIT or 20-10-HIIT) after

4 weeks. In a latter study from the same research group (13),

both protocols were also equally able to induce significant

increases in VO2max. Therefore, given the scarce nature of the

literature comparing distinct WB-HIIT programs and the need

for a better understanding whether these different training

regimens could somehow maximize the benefits to health and

physical performance, the present study aimed to verify whether

different WB-HIIT protocols could generate different muscle

thickness and functional adaptations in healthy, physically active

individuals. Our initial hypothesis was that both groups would

present improvements in morphological variables in a similar

way, regardless of the training configuration.
Methods

Participants

Thirty-four healthy subjects (men n = 22 and women n = 12),

volunteered to participate in the study. The process of recruiting

volunteers for the study was conducted among Physical

Education students during the academic semester. Participants

were selected by distributing informational flyers and sharing

announcements in classrooms. The materials contained details

about the purpose of the study, eligibility criteria, procedures

involved, and potential benefits of participating. Interested

students were encouraged to sign up and participate voluntarily.

To be able to participate, participants were required not to

present cardiometabolic conditions or medication usage that

could interfere in the outcomes being assessed. Participants
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reported performing regular exercise for at least 150 min/week,

predominantly running, cycling, fitness training, and ball sports

(International Physical Activity Questionnaire-IPAQ) (14)

according to the recommendations of the World Health

Organization (15). After approval from the Research Ethics

Committee (no. CAAE 41375120.6.0000.5542), participants read

and signed an informed consent document. The study was

carried out according to the Declaration of Helsinki.
Experimental procedures

The experimental period lasted 8 weeks: the first week was a

familiarization period and pre-intervention tests (baseline); the

second to seventh weeks were training intervention periods; and

the eighth week was post-intervention tests. Assessments of

muscle thickness (primary outcome) and aerobic fitness and

general fitness (secondary outcomes) were performed in pre- and

post-intervention moments.

Two testing days were adopted for both assessment moments,

separated by at least 72 h. The first visit consisted of muscle

thickness and aerobic fitness assessments. The volunteers were

also weighed and measured for height. On the second visit,

general fitness tests were performed. After baseline

measurements, participants were randomly assigned, by simple

draw, to one of the WB-HIIT groups: a group performing 30″ of

all-out effort followed by 10″ of passive rest (G30 × 10; n = 17)

or a group performing 40″ of all-out effort followed by 20″ of

passive rest (G40 × 20; n = 17). Both groups displayed with 11

men and 6 women.

Participants were instructed to refrain from intense exercise

and alcohol for 72 h before measurements. All assessments were

performed by the same researchers. No restricted dietary control

was adopted, but the subjects were instructed by a nutritionist

not to change their dietary intake/usual nutrition during the

entire study period. Both groups also received general guidance

on healthy eating habits at the beginning of the study and were

allowed to continue with their regular physical activity during

the study period.
Muscle thickness

Ultrasonography was used to determine the muscle thickness

of the vastus lateralis (MTVL), using an ultrasound-imaging unit

(Mindray; DP10; Shenzhen, China), with a wave frequency of

7.5–10 megahertz (MHz). The ultrasound probe was applied

perpendicularly to the skin for measurement. A water-soluble gel

was used on the transducer to aid acoustic coupling and remove

the need for excess contact pressure on the skin. Muscle

thickness was defined as the distance between the interface of the

muscle tissue and subcutaneous fat to the bones. Imaging was

performed on the right side of the subjects’ body. The subjects

were asked to fast for 3 h before the tests, and muscle thickness

(MT) assessments were performed at the same time of day at

pre- and post-testing.
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The assessments were performed at 50% distal between the

lateral condyle of the femur and greater trochanter (16) with the

subjects resting supine on an examination bed, with their knees

fully extended and relaxed. The examined limb was secured to

minimize undesired movements. The same researcher was

responsible for carrying out both evaluations and was blinded to

the intervention group of the participants during the

experimental period. The values of the coefficient of variation

and standard error of measurement were 3.18% and 0.76 mm,

respectively (data from our laboratory).
General fitness measures

Muscular endurance was evaluated by the sit-up, push-up, and

Burpee’s squat thrust tests. The sit-up test was conducted with

participants initially positioned on a mat (supine position), with

their feet fixed on the ground, heels together, and at 30–45 cm

from the hip, with the fingers intertwined behind the head. The

elbows were required to touch the knees at the anterior flexion of

the spine and each repetition was counted as the subject returned

to the initial position. Maximum repetitions performed correctly

within 1 min were recorded (17).

For the push-up test, participants were instructed to initiate the

test in a prone position (facing downward) with their hands placed

on the floor, slightly wider than shoulder-width apart, and the feet

(also placed on the floor) either together or shoulder-width apart,

ensuring the body is straight from head to heels, forming a plank-

like posture. In addition, the elbows were completely extended and

the trunk away from the floor. In the descendent phase, the upper

body needed to touch the floor, and the hands should be lifted for

one second to ensure the body is completely flat on the floor. One

repetition was counted when the body moved back to the starting

position and the maximum number of repetitions completed was

recorded (2). When the participant was unable to raise their

elongated torso and lower body from the floor, the test was finished.

For the Burpee’s squat thrust tests [adapted from Vandana

et al. (18)], participants started in a standing position and were

instructed to squat down and kick out their legs. The

participants were then instructed to perform the reverse order of

movements, to complete one full repetition (19). From the signal

“go” the participant was asked to repeat this movement as

rapidly as possible and the number of movements completed was

recorded. When participants were unable to perform the

movement properly, the test was finished. A 10 min rest interval

was adopted between tests. All tests were performed in the same

order during both pre- and post-intervention assessments. In

addition, all researchers that carried out the assessments were

blinded to the intervention group of the participants during the

experimental period.
Maximum oxygen consumption

The maximum oxygen consumption (VO2max) was measured

using the Yo-Yo Endurance test. In summary, all participants were
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lined up along the starting line with one foot behind the line

(cone A) and began running when instructed by the audio

recording, when signaled to by the recorded audio beep (cone B),

the volunteers turned and returned to the starting point. The

participant continued to shuttle back and forth between the two

lines 20 m apart, in time to the audio cues. At regular intervals,

the time between audio signals was reduced and the running

speed needed to be increased. The test was finished when the

participants were not able to follow the beep two times in a row

(20, 21). The distance (meters) covered in the test was then

recorded and, in order to estimate the VO2max, the following

equation was adopted: VO2max (ml.kg.min−1) = (Distance

covered in meters * 0.0084) + 36.4. The same researcher was

responsible for carrying out both evaluations and was blinded to

the intervention group that the participants were allocated to

during the experimental period.
Training intervention

The G40 × 20 WB-HIIT training session involved 1 min of

general warm-up (stationary running) followed by 9 exercises

(40 s stimulus in all-out intensity of effort) divided into 3 blocks

with 2 sets each. Passive rest intervals of 20 s between exercises,

40 s between sets, and 60 s between blocks were given (Table 1).

The exercises adopted were, Block 1: Squat Jump, Curl up, and

Skipping; Block 2: Wide arms push-up, “sumo” squat, and

mountain climber; Block 3: Jumping jack, push-up, and

spider plank.

The G30 × 10 WB-HIIT training session involved 1 min of

general warm-up (stationary running), followed by 9 exercises

(30 s stimulus in all out intensity) divided into 3 blocks with 3

sets each. Passive rest intervals of 10 s between exercises, 30 s

between sets, and 60 s between blocks were allowed (Table 2). All

exercises were the same as adopted in the G40 × 20 protocol. All

sessions for both protocols were supervised by researchers not

involved in data analysis.

The training routine lasted 6 weeks, since this time frame has

been previously shown to induce relevant adaptations in both

cardiorespiratory and morphological outcomes (22–24). Two

weekly sessions were performed throughout the intervention

period, since previous evidence suggest this training frequency as

suitable for both beginner and intermediate individuals (11).

Whenever a volunteer was absent, the training session was

performed on another day in the same week. As a result, the

adherence rate was 100% for both protocols.
Statistical analysis

The normality and homogeneity of variance were analyzed

using the Shapiro-Wilk and Levene tests, respectively. The mean,

standard deviation (SD), and 95% confidence interval (95% CI)

were calculated for each dependent variable. To compare

between-groups baseline characteristics, an unpaired student

t-test was adopted. A repeated measures analysis of variance
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TABLE 1 Description of G40 × 20 whole-body high-intensity interval training protocol.

Block 1 Set 1 Squat Jump 20 s rest Curl up 20 s rest Skipping 40 s rest

Set 2 Squat Jump Curl up Skipping 60 s rest

Block 2 Set 1 Wide arms push-up 20 s rest “Sumo” squat 20 s rest Mountain climber 40 s rest

Set 2 Wide arms push-up “Sumo” squat Mountain climber 60 s rest

Block 3 Set 1 Jumping jack 20 s rest Push-up 20 s rest Spider plank 40 s rest

Set 2 Jumping jack Push-up Spider plank 60 s rest

TABLE 2 Description of G30 × 10 whole-body high-intensity interval training protocol.

Block 1 Set 1 Squat Jump 10 s rest Curl up 10 s rest Skipping 30 s rest

Set 2 Squat Jump Curl up Skipping 30 s rest

Set 3 Squat Jump Curl up Skipping 60 s rest

Block 2 Set 1 Wide arms push-up 10 s rest “Sumo” squat 10 s rest Mountain climber 30 s rest

Set 2 Wide arms push-up “Sumo” squat Mountain climber 30 s rest

Set 3 Wide arms push-up “Sumo” squat Mountain climber 60 s rest

Block 3 Set 1 Jumping jack 10 s rest Push-up 10 s rest Spider plank 30 s rest

Set 2 Jumping jack Push-up Spider plank 30 s rest

Set 3 Jumping jack Push-up Spider plank 60 s rest

TABLE 3 Baseline values for anthropometric variables for each
experimental group.

Variables G30 × 10 G40 × 20 p-value
Age (years) 23.8 ± 8.7 25.5 ± 6.8 0.517

Weight (kg) 71.0 ± 17.1 73.1 ± 11.3 0.683

Height (cm) 172.1 ± 9.1 169.7 ± 5.8 0.376

BMI (kg/m2) 23.9 ± 4.9 26.2 ± 5.6 0.201

Mean ± standard deviation.

kg, kilograms; cm, centimeters; BMI, body mass index.

TABLE 4 Pre- and post-intervention values for the dependent variables
assessed for each group (mean ± SD).

Variables Pre Post MD
(95%CI)

ES

Δ% d

MTVL (mm)
G30 × 10 22.8 ± 5.6 24.6 ± 5.2a 7.8 1.8 (0.9–2.7) 0.08

G40 × 20 23.4 ± 3.8 26.3 ± 4.0a 12.3 2.9 (2.2–3.5) 0.18

Sit-up (reps)
G30 × 10 29.5 ± 8.4 32.8 ± 9.3a 11.1 3.4 (1.4–5.2) 0.10

G40 × 20 33.3 ± 9.6 38.2 ± 8.0a 14.7 4.9 (1.8–8.1) 0.13

Push-up (reps)
G30 × 10 28.5 ± 11.9 33.6 ± 10.7a 17.8 5.1 (0.7–9.4) 0.11

G40 × 20 35.4 ± 16.1 41.2 ± 18.5a 16.3 5.9 (1.0–10.8) 0.09

Burpee’s squat thrust (reps)
G30 × 10 29.9 ± 17.1 42.3 ± 27.8a 41.4 12.4 (3.3–21.4) 0.17

G40 × 20 29.1 ± 21.4 43.5 ± 26.5a 49.4 14.4 (6.6–22.3) 0.16

VO2max (ml.kg.min−1)
G30 × 10 41.3 ± 2.6 45.1 ± 4.3a 9.2 3.8 (2.7–4.9) 0.35

G40 × 20 40.9 ± 2.2 45.0 ± 3.8a 10 4.1 (2.8–5.4) 0.44

MTVL, Muscle Thickness of the Vastus Lateralis; reps, number of repetitions; VO2max,

maximal oxygen consumption during Yo-Yo test; MD, mean difference; CI, confidence

interval; ES, effect size; d, Cohen’s d.
aSignificantly different from baseline.

Evangelista et al. 10.3389/fspor.2024.1513030
(ANOVA) was used to compare the effects of time (pre vs. post)

and groups (G30 × 10 and G40 × 20), as well as the group vs.

time interaction for the variables MTVL, Sit-up, Push-up,

Burpee’s squat thrust, and VO2max. In case of significant

F values, a Bonferroni post-hoc test was used for paired

comparisons. The assumptions of sphericity were assessed using

the Mauchly test. When violated, the Greenhouse-Geisser

correction factor was applied. If any participant presented a pre-

post change above 3 SD (outlier), his/her data was removed from

the analysis. The effect size between groups (and the respective

95% CI) was calculated using Cohen’s d and interpreted

qualitatively as follows: trivial (<0.2), small (0.2–0.5), moderate

(0.6–1.2), large (1.2–2.0), and very large (>2.0). A priori sample

size calculation was performed considering fat free mass as the

outcome measure, with a power of 0.80 and a target effect size of

0.38 (7), which required a minimum of 16 participants in each

group to be included. The significance value adopted was

p≤ 0.05. All analyses were conducted in SPSS version 21 (IBM

Corp, Armonk, NY).
Results

No significant differences from baseline were noted for any of

the anthropometric variables in each group (all p > 0.05, Table 3).

Thirty-four participants completed the intervention period, and

the adherence for the intervention was 100% for both groups.
Frontiers in Sports and Active Living 04
One subject from the G30 × 10 group did not attend the final

Yo-Yo testing session. Therefore, data from this participant were

not considered for the analysis of this variable. Table 4 displays

the pre- and post-intervention values for all the dependent

variables assessed for each experimental group.
Muscle thickness

For MTVL, a significant main effect of time (F1,16 = 65.645;

p = 0.001), but no effect of group (F1,16 = 0.638; p = 0.436) or

group × time interaction (F1,16 = 2.750; p = 0.117) was observed

(Table 4). No significant difference was noted for the
frontiersin.org
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absolute increase from baseline between groups (mean

difference = 1.01 ± 0.58 mm, 95% CI = −0.18 to 2.20 mm). For

the between-group ES comparison, a trivial effect was observed

(d =−0.13). Twelve (70.5%) and sixteen (94.1%) participants

from the G30 × 10 and G40 × 20 (respectively) responded above

the typical error of measurement.
General fitness measures

For the sit-up test, a significant main effect of time

(F1,16 = 23.000; p = 0.001), but no effect of group (F1,16 = 2.323;

p = 0.147) or group × time interaction (F1,16 = 0.617; p = 0.444)

was observed (Table 4). No significant difference was noted for

the absolute increase from baseline between groups (mean

difference = 1.58 ± 1.88 repetitions, 95% CI =−2.24 to 5.42

repetitions). For the between-group ES comparison, a trivial

effect was observed (d =−0.09).
A significant main effect of time (F1,16 = 10.798; p = 0.005), but

no effect of group (F1,16 = 3.105; p = 0.097) or group × time

interaction (F1,16 = 0.053; p = 0.821) was observed for the push-up

test (Table 4). No significant difference was noted for the

absolute increase from baseline between groups (mean

difference = 0.7647 ± 3.336 repetitions, 95% CI =−6.03 to 7.56

repetitions). For the between-group ES comparison, a trivial

effect was observed (d =−0.02).
Similar results were noted for the burpee’s squat thrust, where a

significant main effect of time (F1,16 = 22.676; p = 0.001), but no

effect of group (F1,16 = 0.001; p = 0.980) or group × time

interaction (F1,16 = 0.093; p = 0.764) was observed (Table 4). After

detecting outliers (individual responses above 3 SD), one subject

from each group was removed, and no significant difference was

noted for the absolute increase from baseline between groups

(mean difference = 2.813 ± 3.314 repetitions, 95% CI =−6.031 to

7.560 repetitions). For the between-group ES comparison, a

trivial effect was observed (d =−0.03).
Maximal oxygen consumption

A significant main effect of time (F1,15 = 57.758; p = 0.001), but

no effect of group (F1,15 = 0.155; p = 0.709) or group × time

interaction (F1,15 = 0.287; p = 0.600) was observed for VO2max

(Table 4). After detecting outliers (individual responses above 3

SD), one subject from the G40 × 20 group was removed, and no

significant difference was noted for the absolute increase from

baseline between groups (mean difference = 0.06 ± 0.78 ml/kg/min,

95% CI =−1.56 to 1.69 ml.kg.min−1). For the between-group ES

comparison, a trivial effect was observed (d =−0.03).
Discussion

The aim of the current study was to verify whether different

WB-HIIT protocols would generate different muscle thickness

and functional adaptations in healthy and physically active
Frontiers in Sports and Active Living 05
individuals. Confirming the initial hypothesis, our main findings

indicate that both experimental protocols (G30 × 10 and

G40 × 20) resulted in similar improvements in all the assessed

variables after 6 weeks of intervention.

To our knowledge, studies comparing different training

configurations that involve only WB-HIIT protocols are scarce,

with most investigations being directed towards comparisons

with traditional HIIT, performed on a treadmill (25) or cycle

ergometer (26). Therefore, this somehow challenges the

comparisons of our findings with others.

The WB-HIIT protocols adopted in our study were sufficient to

induce significant hypertrophy for the VL muscle. Our results are in

line with previous investigations that reported WB-HIIT as a feasible

training approach to increase muscle size. Evangelista et al. (24), for

example, reported a significant increase in MT of the VL muscle of

health individuals after 6 weeks of a 40 × 20 WB-HIIT protocol. or

associated with external load (e.g., kettlebell) (12). Similar to our

findings, Moghaddam et al. (12) also failed to demonstrate distinct

muscular morphological adaptations (muscle cross sectional area)

in recreationally active participants following two different WB-

HIIT protocols (10-5-HIIT vs. 20-10-HIIT). Interestingly, the

mean relative hypertrophic response was similar between the

present study and Moghaddam et al. (12) (10.5% and 9.7%,

respectively) when accounting for the values of the whole sample.

In general, the positive effects of both WB-HIIT programs herein

observed may be explained by the exercises included in the

training programs (squat jump and sumo squat). Additionally, the

insertion of plyometric exercises (e.g., squat jump) in WB-HIIT

routines may produce positive effects in hypertrophy of the lower

limb muscles when compared to traditional resistance training

(27). High intensity interval training using body weight also

involves exercises with high-speed execution and short rest periods

combined with stretching-shortening cycles, which favor the

recruitment of type 2 muscle fibers, thus promoting muscle

hypertrophy (7, 28). From a mechanistic perspective, the positive

effects of WB-HIIT on muscle mass outcomes may be explained

by the fact that the high tensile stress placed upon the skeletal

muscle during HIIT programs have the potential to upregulate

cellular mechanisms, specially through the expression of genes and

proteins implicated in muscle mass regulation, increase muscle

protein synthesis and activate muscle satellite cells (28). Therefore,

although high-intensity interval exercise induces a smaller increase

in myofibrillar protein synthesis compared to resistance-type

exercise (29), both WB-HIIT programs studied by the present

investigation may be feasible approaches to be implemented in

training programs aiming to promote skeletal muscle hypertrophy.

The improvements associated with VO2max through the

application of WB-HIIT protocols are already well documented in

the literature (30). The percentage increase from baseline reported

herein (∼10%) is in accordance with previous investigations [∼7%
and ∼16% from McRae et al. (8) and Schaun et al. (25),

respectively]. Additionally, the magnitude of the effect sizes for

both WB-HIIT protocols observed herein are within the 95%

confidence interval of improvement in VO2max (0.28–1.23)

recently reported in a meta-analytic investigation (7). The absence

of distinct effects between WB-HIIT protocols were already
frontiersin.org
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described in the study of Maghaddam et al. (13), in which similar

increases in VO2max were observed when comparing 10-5-HIIT

vs. 20-10-HIIT protocols (+9.4% and 8.9%, respectively) after 4

weeks. These findings point out that short-duration protocols with

all-out efforts are able to generate relevant improvements in

cardiorespiratory fitness in healthy active individuals, with repeated

performance of WB-HIIT exercises causing a cardiopulmonary

output comparable to traditional endurance training (31). The

observed improvements in cardiorespiratory fitness in the present

study may be partially explained by increased mitochondrial

volume and density, along with elevated plasma and blood

volumes resulting from high stroke volume due to low-volume

HIIT protocols (6, 32, 33). It is important to acknowledge that

larger increases in VO2max could be expected if a longer

intervention period was afforded by the present study. This

statement holds true based on a linear dose-response relationship

between increases in cardiorespiratory fitness and the total training

time implemented during WB-HIIT programs (7).

The similar improvements in muscular endurance between

training protocols were somehow already expected, since a

previous investigation (8) has already reported increases in both

sit-up and push-up tests (64% and 135%, respectively) in

physically active women after just 4 weeks of training. These

findings suggest that WB-HIIT protocols, originally designed to

improve aerobic fitness, can also improve muscular endurance in

healthy individuals (8). Additionally, it seems that the

improvement in muscular endurance is dependent on/specific to

the exercises adopted in the training routines. Essentially,

exercises that involve pushing, pulling, lifting, and jumping will

improve the performance of the muscles associated with these

movements (24). Therefore, from a practical standpoint,

recreationally active individuals aiming to increase their

functional parameters may benefit from an HIIT protocol

performed exclusively with body weight exercises, regardless of

the training session configuration.

The present study is not without limitations. Firstly, we

acknowledge that the study lacks a control group, which limits

the ability to draw definitive conclusions about the causal effects

of WB-HIIT. Future studies should include a control group to

strengthen the evidence base and allow for more rigorous

comparisons between WB-HIIT and other training modalities.

The short duration of the intervention period, a better control of

the physical activity levels of the subjects, and the low sample

size must be considered as well. Importantly, the fitness tests

used were based on field protocols, and therefore, must be

viewed with caution. Also, the training volume (total number of

repetitions) was not controlled, which should be considered in

futures studies. In addition, subjective variables that play a

relevant role in exercise adherence (e.g., enjoyment and perceived

exertion) should be addressed in future investigations that aim to

compare distinct WB-HIIT protocols. Lastly, the recruitment of

physical education students limits the generalizability of our

findings to other populations, such as older adults or sedentary

individuals. We recommend that future research include a more

diverse sample of participants to improve the applicability of the

findings across different groups.
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Conclusions

Our findings suggest that, regardless of the training

configuration, both WB-HIIT programs serve as time-efficient

strategies to induce changes in muscle thickness of the vastus

lateralis and functional adaptations in healthy and physically

active individuals, allowing the exercises to be performed almost

anywhere, making them highly accessible to the general

population, especially for those who have limited or no access to

fitness equipment and facilities. Therefore, we suggest that both

training protocols are suitable options for exercise programs

designed to promote improvements in general health and

physical fitness parameters.
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