
TYPE Review
PUBLISHED 29 November 2024| DOI 10.3389/fspor.2024.1507402
EDITED BY

Ronald F. Zernicke,

University of Michigan, United States

REVIEWED BY

Akira Tamaki,

Hyogo Medical University, Japan

Massimiliano Gobbo,

University of Brescia, Italy

*CORRESPONDENCE

Paul W. Ackermann

paul.ackermann@ki.se

RECEIVED 07 October 2024

ACCEPTED 15 November 2024

PUBLISHED 29 November 2024

CITATION

Ackermann PW, Juthberg R and Flodin J

(2024) Unlocking the potential of

neuromuscular electrical stimulation:

achieving physical activity benefits for all

abilities.

Front. Sports Act. Living 6:1507402.

doi: 10.3389/fspor.2024.1507402

COPYRIGHT

© 2024 Ackermann, Juthberg and Flodin. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Sports and Active Living
Unlocking the potential of
neuromuscular electrical
stimulation: achieving physical
activity benefits for all abilities
Paul W. Ackermann1,2*, Robin Juthberg1 and Johanna Flodin1

1Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska
Institutet, Stockholm, Sweden, 2Department of Trauma, Acute Surgery and Orthopedics, Karolinska
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Neuromuscular Electrical Stimulation (NMES) uses electrical impulses to induce
muscle contractions, providing benefits in rehabilitation, muscle activation, and
as an adjunct to exercise, particularly for individuals experiencing
immobilization or physical disability. NMES technology has significantly
progressed, with advancements in device development and a deeper
understanding of treatment parameters, such as frequency, intensity, and
pulse duration. These improvements have expanded NMES applications
beyond rehabilitation to include enhanced post-exercise recovery, improved
blood glucose uptake, and increased lower limb venous return, potentially
reducing thrombotic risks. Despite its benefits, NMES faces challenges in user
compliance, often due to improper electrode placement and discomfort
during treatment. Research highlights the importance of optimizing
stimulation parameters, including electrode positioning, to improve both
comfort and treatment efficacy. Recent innovations, such as automated
processes for locating optimal stimulation points and adaptable electrode
sizes, aim to address these issues. When combined with wearable
technologies, these innovations could improve NMES treatment adherence
and deliver more consistent, long-term therapeutic outcomes for patients
with various physical limitations. Together, these developments indicate a
promising future for NMES, presenting a valuable tool to enhance the benefits
of physical activity across diverse populations, from rehabilitative care to
broader health and wellness applications.

KEYWORDS

neuromuscular electrical stimulation, immobilization, muscle strengthening, exercise,
blood flow, venous thromboembolism, motor points

Introduction

Neuromuscular electrical stimulation (NMES) is a treatment method used to create

muscle contractions through electrical impulses. NMES mimics the body’s nervous

system during voluntary muscle activation, but instead of the signal originating in the

brain, it comes from an electrical stimulator. This is achieved by placing electrodes on

the skin over the target muscle.

The use of electricity for medical treatment dates back to ancient Egypt and Greece,

where electric eels were used for pain relief. Modern NMES evolves from Galvani’s 18th

century discovery that electric current can induce muscle contraction (1). Today,

electrical stimulation is applied in various medical contexts, such as transcutaneous
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electrical nerve stimulation (TENS) for pain management (2) and

NMES in rehabilitation settings. NMES is commonly used to

strengthen weakened muscles, reduce muscle atrophy during

immobilization (e.g., after surgery or injury), and complement

exercise to optimize training effects (3, 4).

However, current NMES protocols still suffer from poor

compliance and inadequate efficacy, attributed to limited/

insufficient user proficiency regarding repeated application of

electrodes in the correct placement. Research has shown that

electrode placement based on a prior manual search of the

optimal points and individual adaption of electrode dimensions

significantly improves treatment effectiveness and comfort (5).

Recent innovations have introduced an automated search process

that identifies the optimal stimulation points and electrode sizes for

each patient, ensuring consistent results and improved compliance

with NMES treatment (6). Combined with wearable technologies,

such as garment-based applications, these advancements hold the

potential to enhance treatment adherence and improve long-term

outcomes for patients with physical disabilities.
General considerations of NMES usage

Settings for optimal NMES usage
Studies have shown that the NMES parameters also affect the

comfort and effectiveness of the stimulation (3, 7–9). Several

parameters can be adjusted during NMES, such as frequency,

pulse width, intensity, waveform, plateau time, on:off-time and

ramp-up/ramp-down time (Figure 1).

Pulse width, frequency, and intensity
Overall, research has shown that increasing each of pulse width,

frequency, and/or intensity leads to recruitment of more muscle

fibers, resulting in higher force production (7–10). However,

these parameters also affect the comfort of stimulation.
FIGURE 1

Examples of parameters that may be adjusted for optimal treatment effects
adapted from Juthberg et al. (10).
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Frequency correlates directly with muscle torque production,

even when using textile electrodes (12). Longer pulse widths,

such as between 400 and 600 μs, selectively target motor fibers,

while shorter pulse widths target sensory fibers to a higher

extent. Consequently, longer pulse widths positively influences

muscle torque production. Studies on quadriceps NMES suggest

that a pulse width of 400–600 µs and frequency between 30 and

50 Hz provide optimal muscle recruitment without inducing

excessive muscle fatigue and metabolic demands (3).

On: off-time and ramp-up/ramp-down time
The on: off-time and ramp-up/ramp-down time are believed to

mainly affect comfort. The optimal on: off time is not well

defined, but if the off-time is too short, the risk of fatigue

increases due to insufficient muscle recovery (3). Prior research

has demonstrated that an on: off time of 1:5 (e.g., 10 s on and

50 s off) allows the muscle to recover between stimulations (3).

High- and low-intensity NMES
Most research has focused on high-intensity NMES, aiming to

mimic the muscle contractions during maximal exercise, which is

desirable for muscle strengthening effects (13, 14). However, high

intensity NMES can be quite painful. In contrast, low-intensity

(LI)-NMES results in minimal pain (15) while still producing

muscle contractions, an outcome which significantly increases both

venous and arterial blood flow. LI-NMES has therefore been

demonstrated as a promising method to prevent venous

thromboembolism in both calf and quadriceps muscles (12, 16–18).

Differences between NMES and voluntary muscle
contractions

While NMES aims to mimic voluntary muscle contraction, it

differs from the contractions induced via the central nervous

system in a number of ways. NMES activates muscle units

simultaneously between the position of the electrodes, often
and comfort during neuromuscular electrical stimulation (NMES). Image
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targeting superficial muscles, and recruits them repetitively in a

fixed spatial pattern, which leads to quicker fatigue compared to

voluntary contractions (3, 7–9). In contrast, voluntary muscle

contractions disperse the recruitment of motor units and vary

their activation in numbers and across changing locations. NMES

also primarily targets fast-twitch muscle fibers, which contribute

to quicker fatigue but on the other hand is advantageous for

rehabilitation, as these are the fibers predominantly weakened

following injury or surgery (3).

Side effects of NMES
In recent years, an increasing number of studies have

indicated that improper electrical stimulation can have

harmful effects (19). In addition to common muscle soreness

lasting one to four days after treatment, over-treatment can

result in muscle fiber damage, increased secretion of creatine

kinase, and muscle breakdown (rhabdomyolysis). This can

potentially lead to acute kidney failure, especially in

individuals whose kidney function already is reduced (20).

These injuries have been particularly noted with excessive

muscle training in suits, i.e., whole-body electromyostimulation,

containing many electrodes stimulating several muscle groups

simultaneously (20). However, whole-body electromyostimulation

has in recent reviews of controlled trials shown significant,

moderate to large effect sizes on sarcopenia, muscle mass and

strength parameters (21).

Other side effects or drawbacks of current NMES treatments are

that many patients experience discomfort or pain during

stimulation (3, 4), and difficulties in correctly setting up the

NMES device without assistance, leading to low adherence

(22, 23). Adherence to treatment is the most important factor in

determining whether the treatment in clinical practice can achieve

the effects shown in studies. This challenge has prompted

researchers at Karolinska Institutet to focus on the development

and optimization of NMES, including integrating the treatment

into clothing, which has the potential to dramatically improve

treatment adherence with NMES (Figure 2) (24).

NMES electrodes
Optimal NMES usage requires adapting the size, number, and

placement of electrodes (Figure 2). Studies have shown that larger

electrodes are more comfortable than smaller ones, but excessively

large electrodes decrease the effectiveness of the treatment (15, 25).

The optimal size also depends on the muscle being stimulated, with

larger muscles generally requiring larger electrodes (15, 25).

Placement of electrodes on so-called motor points has been

shown to provide more comfortable and effective stimulation

(3, 5). The electrophysiological definition of a motor point is the

location on the skin which requires the lowest intensity of

electrical stimulation to cause a muscle contraction (26).

However, the time-consuming manual motor point search with a

motor point pen requires training, and thus poses a problem in

the daily use of NMES. Therefore, anatomical maps have been

developed showing where on the body motor points are most

likely to be found (5, 27, 28). However, there is significant

individual variation in the location of motor points and thus
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normal users will experience problems in locating motor points,

which will lead to a compliance problem with the therapy.

Multiple NMES electrodes in a matrix
To address these challenges and account for the large individual

variation in motor point locations, years of development has led

to an automatic motor point search procedure performed within

a matrix of electrodes, which may improve NMES treatment

adherence (6). Within a matrix of electrodes, multiple electrodes

can be combined to form individualized electrode sizes,

enhancing both compliance and treatment outcomes.

Customizing electrode sizes is essential for different treatment

indications and muscle groups. Additionally, varying stimulation

within the electrode matrix can reduce muscle fatigue and recruit

a broader range of muscle fibers. As a result, NMES within an

electrode matrix offers the potential for automatic electrode

placement over motor points, with individualized electrode sizes

and numbers tailored to specific treatments.
Muscle strengthening effects of NMES

NMES is currently used both as a complement to training to

optimize the effect in healthy individuals and by physiotherapists

as part of rehabilitation, such as after surgery or injuries, to

maintain muscle strength and strengthen weakened muscles (3,

4, 27–29). Most earlier studies on the training effects of NMES

have focused on its use alongside voluntary muscle activation

(30, 31). However, recent studies show that NMES alone can also

have beneficial effects on maintaining muscle strength,

rehabilitating injuries, and achieving recovery after training (3, 32).

NMES with voluntary muscle contraction
Several studies have demonstrated that combining NMES with

voluntary muscle contractions yields superior training effects, both

in younger and older individuals (3, 9, 29–31). For example, one

study demonstrated that NMES combined with leg and gluteal

strength training three times a week during for four weeks in

older adults improved walking test times more than exercise

alone (33). Another study in young, healthy and physically active

individuals showed that a 6-week training program involving

vertical jumps with added electrical stimulation increased jump

height by 10% more than just jump training alone or no training

at all (3). These findings suggest that NMES can stimulate parts

of the muscle that regular exercise may not easily reach and/or

provide a greater load the than typical training. Moreover, a

recent study indicated that NMES and exercise can potentiate

each other even when performed on opposite extremities (34).

These observations suggest involvement of either systemic

mediator mechanisms and/or effects mediated through the

central nervous system.

NMES without voluntary muscle contraction
Studies have shown that NMES alone can achieve a relatively

high percentage of the maximum force generated during

voluntary muscle activation, without any voluntary contraction
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FIGURE 2

Image of NMES pants seen from the outside (A frontside, B backside) and inside (C frontside, D backside). On (A,B) there are connectors for
stimulation. The larger electrodes are sized 5 × 9 cm (upper electrodes in C and all electrodes in D) and the smaller (lower electrodes in C) are
sized 5 × 5 cm. The NMES pants are developed together with the Swedish School of Textiles at the University of Borås, Sweden. Image adapted
from (12).
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(3, 9, 35, 36). To measure the force generated during knee

extension exercises of the thigh muscles, a dynamometer

(Biodex) is used, and the maximum force generated is referred to

as the “maximum voluntary contraction” (MVC) (37). The

degree of muscle activation during NMES can also be measured

using this device (36), and the percentage of MVC achieved is

reported as a percentage of MVC.

Research suggests that a stimulation level of at least 20% of

MVC is required for muscle-strengthening effects (9). Muscle

contractions induced by NMES generally produce lower force

output than voluntary contractions, usually less than 50% of

MVC at the highest tolerable intensity (38), which is attributed

to the difference between how the muscles are activated (3, 8, 9).
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NMES may also activate more superficial muscle fibers, which

could result in poorer training outcomes compared to regular

exercise. This has led to further research aimed at improving

NMES techniques (38), including optimizing the number,

placement, and size of electrodes, NMES parameters, and

training protocols (8, 15, 23, 39). Additionally, combining NMES

with methods like blood flow restriction has shown potential for

producing better training effects than NMES alone (38, 40).

The molecular effects of NMES
To better understand the effects of NMES on muscle, several

studies have examined its effects at the gene and muscle fiber

levels (13, 41–45). One study comparing a 30-min NMES session
frontiersin.org
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at the highest tolerable intensity with regular strength training

found that both methods altered the expression of genes

activated by exercise in the thigh muscle 24 h post-workout (13).

While regular strength exercise regulated gene expression to a

greater extent than NMES, NMES remains a good alternative

when regular exercise is not possible (13).

A recent study conducted by our research group demonstrated

that a single NMES session at 20% MVC, using NMES pants,

regulated 4,448 differentially expressed genes (DEGs), with an

80% overlap with the 2,571 DEGs regulated by regular exercise.

The genes regulated by NMES included well-known exercise-

related genes such as PPARGC1A, ABRA, VEGFA, and GDNF.

Only eight genes were regulated in opposite directions by NMES

and exercise. The three genes upregulated by NMES and

downregulated by exercise included genes involved in neurite

outgrowth (MYLIP), cell proliferation and regulation of

mTORC1 signaling (ICK) and negative regulation of cell

proliferation (JARID2) (34). It was also demonstrated that the

NMES-session at 20% of MVC could be applied with an

acceptable level of discomfort, e.g., VAS below 4 (34).

In other studies, the effect of multiple NMES treatments (over 5

days to 10 weeks, with 3–6 sessions per week, lasting 18 min to 2 h

per session) have been shown to affect gene and muscle fiber

composition in both younger (41, 43) and older adults (41, 44).

These effects have also been observed orthopedic contexts, aiding

recovery of quadriceps strength after knee surgery, anterior cruciate

ligament reconstruction and total knee arthroplasty (42, 46–48).

In summary, studies have concluded that NMES can preserve

muscle mass, prevent muscle atrophy, and to some extent alter

and improve gene expression. When compared to regular

exercise, the effects of NMES are less pronounced, but it remains

a valuable option for individuals unable to engage in

regular exercise and as a complement to standard training for

healthy individuals (41, 42).
NMES benefits during physical inactivity

Physical inactivity is a major and growing global health

problem, contributing to approximately 3.2 million preventable

deaths each year (49, 50). Immobilization and inactivity are

closely linked to the development and progression of obesity,

type 2 diabetes (50), venous blood clot development in the legs

and lungs (51), and reduced muscle strength and balance, which

can lead to falls, particularly in older adults (49, 50, 52). While

physical activity is an effective way to counteract these negative

effects, it is not always possible, especially after surgery or for

older patients with underlying illnesses (53). Current treatment

methods for these conditions are often insufficient, largely due to

low compliance. There is a clear need for improved treatment

options to mitigate the adverse effects of physical inactivity.

NMES, which uses the body’s own energy to create muscle

contractions, is an alternative way to activate muscles during

periods of immobilization (30, 54–56). This makes NMES

especially beneficial for older adults, post-surgical patients, and

individuals with cardiovascular risks or other co-morbidities,
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such as chronic obstructive pulmonary disease, who have

difficulty engaging with exercise programs.

Improved balance
For people over 65, there is a 30% risk of falling each year (57),

and for those living in nursing homes, this rate increases to 50%

(48). Falls in older adults can result in severe consequences,

including fractures, immobilization, and even death (58). While

regular physical activity reduces the risk of falls and related

fractures (50), many older adults are unable to engage in such

activities. NMES has, especially among older and/or untrained

individuals, been shown to provide effective muscle activation,

resulting in improved muscle strength and function (30, 31, 45,

54, 55, 59). For example, NMES treatment for 30 min, 2–3 times

a week for 9 weeks has been shown to improve walking test time

by 15%–20% (45).

Improved metabolic control
In addition to the risk of falls, physical inactivity also increases

the risk of type 2 diabetes and obesity (50). Globally, one in eleven

adults has diabetes, and in 2019 more than four million people died

due to diabetes or its complications, equating to one death every

8 s. In addition to those already diagnosed with diabetes, even

more people have pre-diabetes with the risk of developing the

disease but also with a great opportunity for prevention (60).

Physical activity is crucial both for prevention and treatment of

type 2 diabetes, but as mentioned above, many are unable to

engage in regular exercise. For these individuals, NMES presents

as a valuable alternative, offering similar effects as regular

physical activity on blood sugar regulation (53, 61–64). One

study demonstrated that patients with type 2 diabetes who

performed 40-min quadriceps NMES sessions, 5 days per week

for 8 weeks, significantly improved fasting glucose levels and

reduced body fat (53). A systematic review has confirmed these

effects (65). Moreover, patients with type 2 diabetes often suffer

from peripheral artery disease, which causes ischemic pain in the

lower limbs and impairs walking. NMES has been shown to

increase peripheral arterial flow, reduce ischemic pain, and

enhance walking distances (66). However, systematic reviews call

for more high-quality trials to draw definitive conclusions (67).

Preventing the formation of blood clots
Another significant risk posed by physical inactivity and

extended immobilization is the development of blood clots in the

legs or lungs (51). Between 1 and 4 out of 100 people will

develop a blood clot requiring treatment during their lifetime

(68). Anticoagulant treatments, while available, are not always

effective (69), and for older adults who are prone to falls, they

pose a bleeding risk (70). Mechanical compression therapy, such

as intermittent pneumatic compression (IPC), is used in

hospitals to increase blood flow, mimicking the muscle pump

action that occurs during walking (71). However, IPC machines

are too large and noisy for use outside of hospital environments,

which is why NMES treatment, where electronics can be

minimized, provides a quiet and mobile treatment option outside

of hospitals. NMES treatment on the calf and quadriceps has
frontiersin.org

https://doi.org/10.3389/fspor.2024.1507402
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Ackermann et al. 10.3389/fspor.2024.1507402
been shown to improve venous blood flow in the leg vessels (12, 17,

18). Adding NMES treatment to drug therapy with anticoagulants

during knee replacement surgery (72) and for patients undergoing

major surgeries (73) reduces the risk of blood clots in the leg. While

NMES alone can lower the risk of clots compared to no treatment

during immobilization, it has not yet proven as effective as

anticoagulants (18, 74). More research is needed to explore

NMES as a sole treatment for preventing blood clots, as studies

in this area are limited (18).
Future directions

Future research should clarify the similarities and differences

between the effects of NMES and regular physical exercise. One

notable area of exploration is the load or impact on the

cardiovascular system. Additionally, exercise has demonstrated

neurobiological benefits, such as protection against cognitive

disorders like dementia. A key factor released during exercise,

which is brain protective, is brain-derived neurotrophic factor

(BDNF). Interestingly, NMES has also been demonstrated to

increased BDNF levels (75). The neurobiological effects of muscle

stimulation are likely mediated via the release of myokines,

which are peptide modulators of several tissue processes such as

brain neuroplasticity, bone mineralization, and tissue repair (76).

Notably, NMES has demonstrated the production of several

myokines, which can exert beneficial effects on the

pathophysiology of several conditions in patients with limited

mobility (76). Future research should in more detail delineate the

indications, settings and optimal dose-response relationships of

NMES to induce beneficial effects.
Limitations

While NMES shows promise, certain patients may be “non-

responders” to NMES, particularly those with low contractile

responses. Thus, in a study of critically ill patients in an intensive

care unit it was demonstrated that patients with higher severity of

illness were more likely to be non-responders to NMES (77).

However, NMES has shown positive effects to maintain and

improve limb strength in other severely ill populations, such as

those with acute exacerbation of chronic obstructive pulmonary

disease (78), acute heart failure (79), chronic kidney failure on

hemodialysis (80) and spinal cord injury (81). Still, the existing

studies have reported a wide range of stimulation parameters.

Thus, future high-quality randomized trials should focus on

standardizing NMES settings for specific indications.
Conclusion

In summary, NMES offers a range of applications with positive

effects for both older and younger individuals, including those who

are healthy or living with health conditions. It can serve as a

complement to physical activity or as an alternative when
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traditional exercise is not feasible, providing similar benefits.

Additionally, NMES can also be considered as a non-invasive

tool to address several research questions regarding muscles and

muscle function in compromised populations. Although current

NMES applications remain suboptimal, recent advancements in

automated electrode placement and individualized stimulation

settings show promise. These developments may improve

treatment adherence and deepen our understanding of how to

optimize NMES for various populations.
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