
TYPE Original Research
PUBLISHED 23 December 2024| DOI 10.3389/fspor.2024.1491064
EDITED BY

Fraser Carson,

Lunex University, Luxembourg

REVIEWED BY

Francesco Dimundo,

ITASCS—Italian Strength & Conditioning

Society, Italy

Gerasimos V. Grivas,

Hellenic Naval Academy, Greece

*CORRESPONDENCE

Michael Romann

michael.romann@baspo.admin.ch

RECEIVED 04 September 2024

ACCEPTED 25 November 2024

PUBLISHED 23 December 2024

CITATION

Romann M, Javet M, Hernandez J, Heyer L,

Trösch S, Cobley S and Born D-P (2024)

Longitudinal performance trajectories of

young female sprint runners: a new tool to

predict performance progression.

Front. Sports Act. Living 6:1491064.

doi: 10.3389/fspor.2024.1491064

COPYRIGHT

© 2024 Romann, Javet, Hernandez, Heyer,
Trösch, Cobley and Born. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Sports and Active Living
Longitudinal performance
trajectories of young female
sprint runners: a new tool to
predict performance progression
Michael Romann1,2* , Marie Javet1 , Julia Hernandez1,2 ,
Louis Heyer1,3, Severin Trösch4, Stephen Cobley5 and
Dennis-Peter Born1,2,6

1Department of Elite Sport, Swiss Federal Institute of Sport Magglingen, Magglingen, Switzerland,
2Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, 3Swiss Athletics
Federation, Ittigen, Switzerland, 4Datahouse, Zürich, Switzerland, 5Exercise & Sport Science, Faculty of
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Background: Longitudinal performance tracking in sports science is crucial for
accurate talent identification and prognostic prediction of future performance.
However, traditional methods often struggle with the complexities of
unbalanced datasets and inconsistent repeated measures.
Purpose: This study aimed to analyze the longitudinal performance
development of female 60 m sprint runners using linear mixed effects models
(LMM). We sought to generate a practical tool for coaches and researchers to
establish benchmarks and predict performance development.
Methods: We analyzed 41,123 race results from 8,732 female 60 m track
sprinters aged 6–15 years, collected from the Swiss Athletics online database
between 2006 and 2021. Only season-best times per athlete and only athletes
with at least 3 season-best times in their career were included. LMM was used
to generate performance trajectories, benchmarks, and individual predictions.
A practical software tool was developed and made available to allow individual
performance prediction based on race times from previous seasons. In
addition, classic empirical percentile curves were constructed using the
Lambda-Mu-Sigma (LMS) method.
Results: LMM handled the dataset’s complexities, producing robust longitudinal
performance trajectories. Compared to empirical percentiles generated using
the LMS method, which provided a retrospective view of performance
development, the mixed model approach identified individualized longitudinal
performance developments and estimated predictions of future performance.
The best-fitting model included log-transformed chronological age (CA) as a
fixed effect and random intercepts and slopes for each athlete. This model
explained 59% of the variance through fixed effects (marginal R2) and 93%
through combined fixed and random effects (conditional R2).
Conclusion: LMM provided longitudinal sport performance data, enabling the
establishment of performance benchmarking and prediction of future
performance. The software tool can assist coaches in setting realistic training
goals and identifying promising athletes.
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Introduction

Understanding the individual athlete’s journey from initiation

to peak performance is of fundamental interest to athlete

development researchers and sport practitioners. The trajectory

of an athlete’s performance is influenced by a multitude of

contextual, environmental, and individual factors, as highlighted

in recent studies on talent identification and talent development

in various sports. Understanding these factors is critical for

designing effective athlete development frameworks and tailoring

interventions to optimize long-term performance outcomes

(1, 2). A recent and growing body of research highlights the

importance of assessing performance development, rather than

relying solely on current competitive performance, as a critical

criterion for sustainable and long-term talent development. To

understand development, longitudinal data assessments are

required rather than a single performance test (1, 3, 4). At an

individual level, performance development is influenced by

contextual, environmental, and training conditions,

anthropometric and physiological development, as well as

biomechanical and technical skill development. This complexity

complicates athlete assessment and makes predictions at a young

age difficult (5). Multi-factorial and regular assessments, as

provided by longitudinal data collection, are required to establish

a comprehensive understanding of performance development, i.e.,

baseline starting points, relative progress and change, rates of

development relative to other athletes, and the likely underlying

factors contributing (or not contributing) to progression (or sub-

optimal progression) (6). As such, there is a growing interest in

determining practical developmental benchmarks (7) and

performance forecasting based on longitudinal data, as these

methods optimise the use of existing resources to improve athlete

development and gain a competitive advantage (8–10).

Benchmark percentiles can serve several purposes in athlete

development: talent selection, identification of progressing latent

talent, organizational/coaching interventions and programme

targeting (11). Performance trajectories can also be used to

construct percentile curves, which determine an individual’s

relative progress at a given point in development (or over a

period of time) compared to a specific reference population.

There are two main methods for constructing percentile curves:

empirical percentiles—calculated directly from observed data

using the Lambda-Mu-Sigma (LMS) method—and mixed

models. The LMS method models the changing distribution of

measurements over time and includes three parameters: Lambda

(L), Mu (M), and Sigma (S), which represent the skewness, the

median, and the coefficient of variation, respectively. These

parameters are fitted with a maximum penalized likelihood, to

smooth the percentile curves, which is particularly useful when

assessing individual trajectories relative to a specific reference

population (12–14). However, the accurate estimation of

percentiles from the LMS method relies on the assumption that

the variables of interest are normally distributed after the

transformation and smoothing. Although this method has been

widely used in fields such as health and sport science to produce

reference growth charts and to monitor physical fitness (15), the
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LMS method primarily provides a retrospective view of past

performance development and may not adequately account for

individual variability over time in a longitudinal dataset. As such,

when analyzing longitudinal performance the mixed model

approach is superior to the LMS, due to its flexibility when

dealing with unbalanced data, its ability to provide individualized

trajectories and predictions, its statistical robustness, and its

greater explanatory power (16).

Linear mixed models (LMMs) are particularly well suited to

dealing with the complexities inherent to longitudinal sports

data, such as multiple dependent observations and unbalanced

data. These models account for the heterogeneity in the

frequency of observations due to factors such as injuries, team

selection and changes in competition schedules, making them

ideal for longitudinal sports science research (16–18). This

flexible statistical approach incorporates both fixed and random

effects allowing a comprehensive analysis of performance

trajectories and allows researchers to include multiple predictors

and account for individual differences while improving the

accuracy of longitudinal trends and allowing for benchmarking.

An additional advantage of the LMM is the ability to predict and

forecast future trajectories (e.g., performance development) based

on a combination of current and past information (10, 16, 19).

LMM-predictions are calculated by combining the best linear

predictor of random effects with the best linear estimate of

fixed effects. Typically, predictions are made for a subset of

explanatory variables at given values, while the remaining

variables are either averaged or set to specific values. The

prediction process involves selecting explanatory variables and

relevant model terms, determining averaging variables, and

deciding on appropriate weightings for the averaging across

dimensions in the prediction model (10, 19). If accurate, such

predictive capabilities could beneficially inform the decision-

making and programming of sports scientists and practitioners.

For example, Born et al. (11) demonstrated the utility of LMM in

the development of normative data and percentile curves for

long-term athlete development in swimming, demonstrating their

effectiveness in establishing cohort-based performance benchmarks

and individualized predictions. In addition, Antink et al. (20)

highlighted the value of longitudinal data in formulating more

accurate predictions of future athlete performance decline in

Swedish veteran track and field athletes.

Taken together, performance trajectories and predictions of

future performance can improve athlete and talent development.

This study addresses the challenge of providing individualized

performance predictions in youth athletics by leveraging advanced

longitudinal modeling techniques. Unlike traditional percentile-

based methods, this research integrates individual performance

developments through linear mixed-effects models to establish

benchmarks and forecast future performance, offering a novel tool

for coaches and practitioners to support talent development. By

generating a practical tool for practitioners, athlete assessment,

individual athlete development programming, coaching

intervention, and talent selection could be improved.

The primary aims of the study were: (1) to establish age-

specific reference values using classical empirical percentile
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curves and progressive mixed model approaches, and (2) to

develop a prediction model and a practical software tool to

predict future performance development.
Methods

Subjects

To analyze race results from female 60 m sprint runners from

competitions held in Switzerland between 2006 and 2021, a total

of 160,852 observations were provided by the online and public

database of the Swiss Athletics Federation. Only results from

officially licensed outdoor competitions were selected for this

study. In addition, only results for athletes aged between 6 and 15

(11.3 ± 2.1 years) have been retained in the database (observations

n = 160,667). This was justified because the 60 m sprint is an

official distance in Switzerland only up to U16. After that, the

official distance is 80 m. All data were analyzed anonymously. The

study was approved by the institutional review board of the Swiss

Federal Institute of Sport Magglingen (Reg.-Nr. 227-2024) and by

the ethical standards of the World Medical Association

(Declaration of Helsinki). No written informed consent from the

subjects was required, as the present study utilized only publicly

available data that were analyzed anonymously.
Procedure and data analysis

To ensure a high quality of the data, results that deviated by

more than 3 standard deviations from the average performance

within each age category were identified as outliers and removed

from further analysis. To be included in the data set for the

longitudinal data analysis, only athletes with at least three

seasons of participation (minimum for longitudinal analysis)

were further considered (21). The season’s best times were used

to identify trends and development patterns over time.

According to the later described statistical model, the three race

results did not have to originate from three consecutive seasons.

The final data set contains 41,123 observations from 8,732

different female athletes. All data analyses were completed using

R statistical software (R Core Team) version 2024.04.2 + 764.
Empirical percentile curves vs. linear mixed
model approach

Empirical percentile curves
To achieve the first aim of this study, which is to establish age-

related reference values, two methods were analyzed. The first

method, already used in sports science for modeling smoothed

percentile curves, is the LMS method (11, 15). The LMS method

is particularly effective for modeling growth and performance

data as it accounts for skewness and kurtosis in the distribution

(13). The GAMLSS (Generalized Additive Models for Location,

Scale, and Shape) method was used to fit the LMS models,
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utilizing the gamlss function from the R package of the same

name (22). This method provides a high flexibility, which is

crucial for capturing complex variations in athletic performance

across different ages. Only the 3rd, 10th, 25th, 50th, 75th,

90th and 97th percentile curves were then plotted for

visual representation.

Mixed model approach
As a second method, linear mixed effects model (LMM) was

used. LMM enables the analysis of longitudinal measures with a

variable number of observations per subject without excluding

data, in contrast to more traditional methods such as ANOVA.

Furthermore, LMM is particularly well suited to explaining the

development over time (16). To generate the reference values

with the LMM, several steps were undertaken. First the predictive

model explaining the relationship between sprint performance

and chronological age (CA) was created. For that, a new variable

CA_mindiff’ (later called CAdiff) was calculated CAdiff = CA-

min (CA) + 1, resulting in an x-axis intersection at one.

Then normal distribution of the data was investigated with a

Q-Q plot and Kolmogorov tests. Both tests indicated non-

normally distributed data (p < 0.05). The data were log-

transformed to compensate for the non-normal distribution and

to linearize the relationship between performance and CA.

In the next step of the LMM analysis, the best fitting mixed

effects model was identified. Models were formulated using the

LMER (linear mixed effects regression model) function from the

lme4 (v1.1-31) package in R Studio (23). The initial model, with

logarithmic sprint performance as the dependent variable,

includes one overall fixed intercept and random intercepts for

each athlete (represented by id). This model accounts for the

variability in results across athletes who appear multiple times in

the data frame and serves as the base model. Then stepwise

forward variable selection was done to define successive models.

The second model additionally introduces logarithmic age as a

fixed effect, while the third model further includes logarithmic

age as an additional random slope (see Table 2 for details).

To identify the best-fitting model for the present data, the

analyses of the following parameters were undertaken: likelihood

ratio test (higher is the value, the better the model), Akaike

Information Criterion (AIC), and Bayesian Information Criterion

(BIC) (with lower values indicating a better fit), assessed through

the ANOVA function (24). After the identification step, model

quality was further checked by controlling the linearity and

normality assumptions. Linearity was assessed using a Tukey-

Anscombe plot, while the normal distribution of random effects

and residuals was evaluated using Q-Q plots. The Q-Q plot

showed that the residuals were normally distributed, as evidenced

by the predicted values aligning closely along a diagonal straight

line across the standardized residuals (25).

The next step consisted in creating general reference values

based on the best-fitted linear mixed model. For easier and

practical interpretation of theses references, data were back-

transformed to the original scale. Using the model estimation

parameters, typical development patterns (mean trajectory, ±1

and ±2 standard deviations from the intercept) were plotted to
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visually assess the relationship between CA and performance. This

relationship was expressed for the mean trajectory using the

following equation:

sprint performance ¼ eest intercept�CAest slope

With: est intercept: estimate of the fixed intercept

est slope: estimate of the fixed slope

To complete the reference values, the following typical

development patterns ±1 and ±2 standard deviations from the

intercept were defined adding ±1 respective ± 2 standard

deviations of the random intercept of the grouping factor id to

the estimate of the fixed intercept.
Individual forecasting model

In a subsequent analysis, the individual sprint performance

results were plotted against the established reference values to

visually depict each athlete’s development trajectory. Forecasting

models for each athlete were then derived by extracting the

individual coefficients (intercept and slope) from the optimal

mixed effects model. These coefficients were incorporated into

the predictive equation, generating a tailored model that includes

both fixed and random effects, thereby enabling the prediction of

the athlete’s future performance trajectory.

To assess the athlete’s performance development relative to

the overall group, percentile ranks were determined. Initially, the

percentile rank of the individual intercept, which indicates the

athlete’s initial performance level, was calculated using the LMM.

The same approach was applied to calculate the percentile rank for

the individual slope, representing the athlete’s performance

progression over time. This method, inherent to the LMM, allows

for the assessment of performance development across time rather

than a singular performance point, as is typical with the LMSmethod.
Bootstrapping for prediction uncertainty

The accuracy of the predicting performance development is

highly dependent on both the complexity of the model and the

number of data points available for each athlete. To provide a

robust assessment of this prediction, we used a bootstrapping

approach to quantify the uncertainty surrounding individual

performance predictions (26). Specifically, 1,000 bootstrap

samples were drawn from the original data set. For each

bootstrap sample, the mixed-effects model was re-estimated,

allowing for the recalibration of individual-specific intercepts and

slopes. These recalibrated estimates were then used to generate

predicted performance scores across the CA range. The resulting

distribution of predictions at each CA allows to calculate 95%

confidence intervals, providing a detailed measure of uncertainty.

These confidence intervals were then overlaid on the individual

prediction curves, providing a clear visualization of the potential

variability in future performance predictions.
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Results

Dataset overview

This study analyzed 41’123 race results from 8,732 female 60 m

sprint runners aged between 6 and 15 years in Switzerland,

covering competitions held between 2006 and 2021.
Comparison: empirical percentile curves vs.
mixed model approach

Empirical percentile curves
Using the LMS method with the GAMLSS function in

R Studio, empirical percentile curves were generated for the

dataset. These curves represent the 3th, 10th, 25th, 50th, 75th,

90th and 97th percentiles of performance over 60 m sprint across

the different age groups (see Figure 1).

The analysis showed a clear trend of improving performance

(faster times) with age for all the percentiles. For example, the

median performance time (50th percentile—P50) decreased from

11.35 s at age 7 to 8.75 s at age 15. The percentage improvement is

greater in the younger age categories [from 6 years to 7 years

−0.60 s (−5.0%)] than in the older ones [from 14 years to 15 years

−0.12 s (– 1.3%)]. The percentile curves provided reference values

for evaluating individual athlete performance. Athletes performing

at predefined percentiles (e.g., the 97th percentile) can be identified

as exceptional performers compared to their peers.

Mixed model approach
Model comparison
According to the linear mixed effect model comparison analysis,

the results indicated that Model 3 (CA_SLOPE) (Table 1)

provided the best fit for the data [lowest AIC value (−152,493),
χ2 = 3,357,4, p < 0.01]. Assumptions for model quality (linearity

and normal distribution) were met, supporting the validity of our

linear mixed model (For details of the model comparison

analysis, see appendix). The development of the sprint

performance over 60 m is best explained by the chronological

age, including a subject-specific deviation from the overall

relationship allowing the slope to vary by subject (Table 2).

The addition of log(CAdiff) as random slope induces a

supplementary significant and negative effect (beta =−0.18, 95%
CI [−0.18, −0.18], t(41,117) =−255.44, p < .001; Std.

beta =−0.63, 95% CI [−0.64, −0.63]) compared with the two

other models. By specifying a random intercept for each

individual, the fact that everyone’s results may be correlated (for

example, a fast individual today is probably fast tomorrow) is

considered, which is highly probable in this context.

Benchmarks
In Figure 2, the plot shows typical development patterns for 60 m

sprint performance from the best fitted LMM. The black solid line

symbolizes the mean performance development (50th percentile).

The dashed lines represent the deviations (± 1 SD and ±2 SD) to

the mean performance development (i.e., the 2.3th, 15.9th,
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FIGURE 1

Empirical percentile curves elaborated with the LMS method for the 60 m sprint.

TABLE 2 Details of the best fitting model.

Predictors log(performance sek)

Estimates CI p
(Intercept) 2.5899 2.5873–2.5926 <0.001

CAdiff [log] −0.1775 −0.1789 – −0.1761 <0.001

Random effects
σ2 0.0007

τ00 id 0.0090

τ11 id.log(CAdiff) 0.0019

ρ01 id −0.84
ICC 0.8204

N id 8,732

Observations 41,123

Marginal R2/conditional R2 0.5902/0.9264

2

TABLE 1 Description of the mixed models.

Number Name Equation
Model 1 SPRINT_0 LMER (log(performance_sek)∼1 + (1 | id)

Model 2 CA LMER (log(performance_sek)∼log(CAdiff) + (1 | id)

Model 3 CA_SLOPE LMER (log(performance_sek)∼log(CAdiff) + [log
(CAdiff) | id]

Model 1 SPRINT_0 log(performance_sekij) = β0 + b0j + εij

Model 2 CA log(performance_ sekij) = β0 + β1 log(CAdiffij) + b0j +
εij

Model 3 CA_SLOPE log(performance_ sekij) = (β0 + b0j) + (β1 + b1j) log
(CAdiff) + εij

Romann et al. 10.3389/fspor.2024.1491064
84,1th, 97,9th percentiles). The gray lines represent each individual

model. For a more practical interpretation, the plot is represented

back-transformed to the normal scale.

σ , Residual variance; τ00 id, variance of the random intercepts across individuals; τ11 id.log

(CAdiff), variance of the random slopes for log(CAdiff) across individuals (id); ρ01 id,

correlation between the random intercepts and random slopes; ICC, Intraclass Correlation

Coefficient; N id, Number of id.
Performance prediction

The mixed model’s ability to predict future performance was

evaluated using the longitudinal data. Individual performance

trajectories were plotted, and future performance was forecasted

based on the model. As the prediction is dependent on model’s

complexity and the number of existing datapoints for the

considered athlete, an accuracy of the prediction was calculated

with a bootstrapping approach. The accuracy is shown in

Figure 3 for an example case of an athlete, with the light blue area.
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Interpretation of individual trajectories

Individual performance trajectories revealed that athletes with

higher initial performance levels showed less improvement over

time compared to those with lower initial performance levels.

This was evidenced by a negative correlation between random

intercepts and slopes (r =−0.84).
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FIGURE 2

Back transformed data to normal scale with individual models.

Romann et al. 10.3389/fspor.2024.1491064
In Figure 3, the individual model of a case athlete example

(dashed blue line) and her actual performance results (solid blue

line) are depicted. By considering the individual athlete’s data,

both the intercept, which describes the initial performance level,

and the slope, which represents the development trajectory, were

extracted and percentile ranks were calculated. This approach

allows the athlete to be positioned relative to the overall group

and is of great interest for long term athlete’s development. For

example, the analysis indicated that the athlete example depicted

in blue had an initial performance level situated at the 14,6th

percentile. In comparison to the overall group, this athlete

exhibited a very good progression in performance improvement,

as reflected by a result at the 97,9th percentile. This comparison

highlights the variability in both starting performance levels and

developmental trajectories among athletes.
Practical tool

A shiny app (https://baspo-ehsm-tw.shinyapps.io/sprint_60m_w/)

was developed to assist coaches and athletes in predicting

future performance (Figure 4). Based on the least three

season’s best times, the tool predicts performances for the next

seasons. As reference values, typical development patterns

of the population obtained from the LMM are represented in

the background.
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Discussion

The primary objective of this study was to provide age-specific

reference values using percentile curves for 60 m sprint

performance and to develop a prediction model and a practical

software tool for predicting future performance development.

Mixed models were able to deal with the complexities of such

longitudinal sports data, such as multiple dependent observations

and unbalanced data sets. Compared to traditional ANOVA, this

approach can provide comprehensive benchmarks and predictive

models for performance development.

The results indicated that the best-fitting model included log-

transformed chronological age as a fixed effect and both a

random intercept and slope for each athlete, demonstrating that

these variables significantly impact performance development.

This finding is supported by existing literature, which suggests

that individual growth patterns and the ability to handle multiple

performance observations are crucial for accurate performance

prediction (27, 28). This aligns with the findings by Newans

et al. (16), who highlighted that traditional repeated measures

ANOVA would exclude a significant portion of data, thus

limiting the analysis. In this study, mixed models allowed us to

include all available data points, regardless of missing data,

which is a common occurrence in sports due to factors such as

injuries and team selection. The mixed model analysis provided

detailed individual performance trajectories, allowing for precise
frontiersin.org
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FIGURE 3

Representation of competitions’ performances of a case athlete example (blue dots) with her performance prediction (dashed blue line) and the
respective prediction’s accuracy (light blue). Black lines represent the global performance development from the overall population.

FIGURE 4

Practical tool for performance prediction.

Romann et al. 10.3389/fspor.2024.1491064
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benchmarking and a realistic performance prediction. Athletes

with higher initial performance levels (higher positive intercept)

exhibited lower positive slopes, indicating less room for

improvement. This inverse relationship between initial

performance and improvement potential aligns with previous

studies in sports science (17). The ability to predict future

performance based on individual trajectories is a significant

advancement, offering practical tools for coaches and sports

scientists to set realistic training goals and can help to identify

promising young athletes.

International comparison: article de Tonnessen et al. 2015: only

the 100 best athletes from 11 to 18 years old over 60 m (similar

progression in performance).
Methodological considerations

Mixed models offer several advantages over traditional

ANOVA, particularly in the context of longitudinal data analysis.

They provide greater flexibility in handling missing data,

incorporate both fixed and random effects, and allow for the

inclusion of multiple predictors. This makes them particularly

suited for sports science research, where data heterogeneity and

non-standardized measurement intervals are common challenges

(29). Furthermore, in our case, the linear relationship between

the dependent variable and the explanatory variable obtained

through logarithmic transformation makes data analysis more

accessible. It may be that, by analyzing other relationships

and/or integrating more parameters into the model, the

relationship is no longer linear, necessitating the application of

more complex mixed models. Making practical application

less affordable.

The application of mixed models in our study allowed for a

more nuanced understanding of performance development. By

explicitly modeling time and accommodating individual

variability, mixed models provided insights that would not be

possible with traditional methods. For instance, the ability to

model individual trajectories and predict future performance

offers a significant practical advantage for talent identification

and development programs.
Practical implications

The model provides a robust framework for benchmarking

athletes’ performance development relative to their peers,

enabling coaches to identify talent and athletes with exceptional

potential. Furthermore, the predictive tool facilitates the

assessment of individual performance trajectories and the

establishment of realistic, data-driven performance goals. By

leveraging this tool, coaches can evaluate training effectiveness

and detect critical periods that require attention, such as declines

in performance, stagnation, or significant improvements.

Identifying these patterns creates opportunities for meaningful

dialogue with athletes to uncover and address the underlying

causes of deviations from expected trajectories. By incorporating
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a limited yet impactful set of explanatory variables, the current

model offers a streamlined and practical approach to

understanding factors influencing performance development. For

example, a declining trajectory might signal the need for

modifications to training loads or recovery practices, while

surpassing age-specific benchmarks could indicate readiness for

more advanced challenges. These practical applications highlight

the value of integrating advanced statistical models and

longitudinal data into athlete development, bridging the gap

between research insights and actionable coaching practices. Our

findings emphasize the importance of continuous monitoring

and assessment of athletes’ performance over time. By utilizing

longitudinal data and advanced statistical methodologies, coaches

and sports scientists can make evidence-based decisions that

enhance athlete development, improve training outcomes, and

optimize resource allocation.
Limitations and future directions

Despite the strengths of our study, some limitations warrant

consideration. The reliance on existing competition

performances introduces potential biases related to

competition level, age groups, and specific timeframes.

Additionally, the retrospective nature of the analysis and the

treatment of outliers could influence the observed performance

trajectories. Future research should aim to combine

retrospective and prospective data collection with standardized

protocols and databases to provide a more comprehensive

understanding of athlete development. While the principles of

longitudinal performance tracking are broadly applicable and

unspecific to sex, physiological and developmental differences

between females and males influence performance trajectories.

Future studies should therefore establish percentiles and

provide the predictive tool for young male athletes.

Additionally, sex comparisons may reveal interesting insights

into performance development, hence may identify possible

specific or generalizable trends. As shown in this study the

LMM provides improved prediction of athletes’ performance.

Future research should expand this approach to include

additional key performance parameters and biological age,

which were not considered in the current study. In addition,

mixed models should be applied in different sports, age

groups, and both genders to validate and extend the results of

this research.
Conclusion

Our study provides performance trajectories and benchmarks

using classic LMS percentiles and mixed models, which help to

overcome multiple dependent observations and unbalanced

datasets in longitudinal performance data and provide a

predictive model for future performance. The results provide

valuable insights into the complexities of talent development and

highlight the importance of using appropriate statistical methods
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for continuous assessment and benchmarking. The benchmarks

and predictive models generated by this research provide

practical tools for sports practitioners. The tool can help predict

future performance based on individual trajectories, which is a

significant advance for coaches and sports scientists. Further

research building on this foundation can enhance our

understanding of athlete development across different sports and

will improve evidence-based practice in sport.
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