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Introduction: The anterior talofibular ligament (ATFL) is the most vulnerable
ligament in ankle sprains. Most patients recover after this injury with conservative
treatment, while 20%—40% progress to chronic ankle instability that requires
surgical stabilization. Conventional MRI does not provide a comprehensive image
of the ATFL. We aimed to evaluate the feasibility of using 3D MRI to facilitate the
understanding of ATFL injuries and the operative planning.
Methods: A total of 21 healthy asymptomatic volunteers with 30 normally
functioning ankles and 13 patients with 18 sprained ankles were studied. MRI
scans were divided into two groups: Group 1 (normal ankle) and Group 2 (injured
ankle). The data of all 48 cases were exported to Mimics and reconstructed into
3D models. The image quality of all 3D models was evaluated using a 5—point
subjective scoring system. The length, width, and thickness of the ATFL were
measured in the 3D model in Mimics and compared to the 3D MPR image data.
Results: The image quality score was 4.57 ± 0.32. There was no statistically
significant difference between the 3D model and the 3D MPR image of ATFL
measurements in both groups (P > 0.05).
Discussion: We concluded that 3D MRI can be used to reconstruct a 3D model
of the ATFL for accurate measurements of the ATFL anatomical structure, which
holds potential to improve preoperative planning and intraoperative navigation
for young sports medicine doctor, facilitate diagnosis of ATFL injuries and
make the decision about the operative method.

KEYWORDS

3D model reconstruction, ankle joint, mimics 21.0, MRI DICOM file, clinical evaluation,
surgical planning

Introduction

Ankle sprain is one of the most common injuries in the general population (1, 2). The

incidence of lateral ankle sprains is estimated at approximately 7.2 per 1,000 person-years

(3). However, considering that many injured people may not seek medical care for lateral

ankle sprain, this incidence rate is likely a considerable underestimation. The anterior
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talofibular ligament (ATFL) injury accounts for 73% of all ankle

ligament rupture (4). Sustained damage to ATFL after an ankle

sprain can cause high risk of ankle instability during sport and

recreational activities (5). According to previous studies,

20%–40% of ATFL injury progresses to persistent pain and

chronic instability (6, 7). Over time, ankle instability can lead to

cartilage damage and osteoarthritis (8). The knowledge of the

anatomy and biomechanics of each injured ankle joint is,

therefore, essential for optimal treatment.

The injury to the lateral ankle ligament is usually diagnosed

by physical examination (including the anterior drawer test

and the talar tilt test), stress radiography, ultrasound, MRI,

and ankle arthroscopy. However, there is often a high rate of

missed diagnosis by physical examination alone, and stress

radiography cannot accurately display and quantify the strain

of ATFL in vivo (9). Ultrasound is not the preferred diagnostic

method for ATFL injury due to operator dependency (10–12).

Ankle arthroscopy is an invasive and indirect manipulation,

which is therefore less used (13). MRI is widely used to

diagnose injury of ATFL because its high accuracy, specificity,

and sensitivity (14). MRI is the imaging modality of choice

because of the following reasons: no ionizing radiation, high

spatial resolution, superior soft tissue contrast, capability of

gadolinium contrast imaging, and multiplanar imaging

capability. Compared to 1.5T MRI, 3.0T MRI offers nearly

double signal-to-noise ratio (SNR) and better gradient

performance and wider bandwidths. Newer systems also

provide higher gradient amplitudes and slew rates (gradient

rise time). This translates into higher spatial resolution and

smaller slice thickness (almost half compared to 1.5T) with

increased fluid conspicuity (Excessive slice thickness result in

partial structural loss) (15). 3-dimensional multiplanar

reconstruction (3D-MPR) is usually exploited and the

resulting planar image slices are used for injury evaluation.

The establishment of 3D ATFL models is of great value to the

study of the anatomic structure of the ankle joint and the

diagnosis of ATFL injuries, as well as surgery simulation and

biomechanical properties analyses. 3D MRI has been used to

be an accurate ACL injury risk assessment tool to promote

and apply it to a wider range of sports training and injury

monitoring (16, 17). Mimics (Materialize, version 21.0,

Belgium) has been used in dentistry (18) and breast surgery

(19) 3D model reconstruction. Mimics has also been used for

ankle joint reconstruction with computerized tomography

(CT) in preoperative simulation (20–23). However, there have

been no studies of ligament reconstruction with MRI images.

Operative stabilization is required if instability persists after

full non-operative treatment (24–26). Surgical reconstruction of

the ATFL has gradually become a mainstream option for chronic

ankle instability. The bone tunnel localization, whether during

ATFL repair and reconstruction surgery, mainly depends on

the identification of the ATFL’s footprint area (27–30).

Locating the bone tunnel during ATFL reconstruction surgery

mainly depends on identifying the “footprint area”—the

anatomic origin and insertion point of ATFL (27–31).

However, there is no uniform standard for the determination
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of the footprint area, despite some previously proposed

methods such as the number and angle of fibula tunnels, as

well as the fixation techniques selected at the location of each

bone tunnel (25). Many studies (26, 32–34) have not intentionally

located the footprint area, but instead identified the remnants of

ATFL to drill the bone tunnel.

In this study, we hypothesized that for foot and ankle surgeons

ATFL 3D modeling using Mimics based on 3D isotropic MRI scan

sequences could more intuitively display the ATFL than 3D MPR

images, and improve preoperative planning and intraoperative

navigation for young sports medicine doctor. We, therefore,

measured the length, width, thickness of the ATFL on the 3D

MPR images and in the 3D model, respectively, and compared

the difference between the two measurements to provide a

comprehensive feasibility study of 3D-MRI based ATFL

3D modeling.
Methods

This prospective study was approved by the ethics committee.

Informed consent was obtained from all participants.
Original data

In this study, a total of 21 healthy asymptomatic volunteers

(males: females, 10:11; mean age, 27 ± 5.86 years) and 13 patients

with sprained ankle (males: females, 7:6; mean age, 30 ± 8.14

years) were initially recruited for this prospective study. All

asymptomatic volunteers were supposed to undergo bilateral

ankle 3D MRI examination, however, 9 volunteers had motion

artifacts during scanning and 3 volunteers were reluctant to

undergo bilateral ankle MRI examination due to the doubled

scanning time (compared to unilateral scan). In the end, 9

volunteers with bilateral ankle 3D MRI examination (9 right

ankles and 9 left ankles corresponded to each other) and 12

volunteers with unilateral ankle 3D MRI scan (5 left ankles and

7 right ankles) were enrolled, for a total of 30 ankles collected as

Group 1. Five patients underwent bilateral ankle 3D MRI

examination (5 right ankles and 5 left ankles corresponded to

each other), and 8 patients underwent unilateral ankle 3D MRI

scan (5 left and 3 right ankles), for a total of 18 ankles collected

as Group 2.

For healthy volunteers, the inclusion criterion was no history of

sprain to either ankle. The inclusion criteria for patients were a

history of ankle sprain [Ankle sprain is defined as the stretching

or tearing of lateral ligamentous complex, deltoid ligament and

distal tibiofibular syndesmosis ligaments (35)] and the initial

sprain must have occurred at least 3 months before study

enrollment. The exclusion criteria for Group 2 were a history of

lower limbs musculoskeletal surgery, fracture above the ankle, the

contraindication of MRI scan (such as implant of cardiac

pacemaker and/or vascular stent and other metal implantations),

and individuals who are unable to cooperate with MRI scan. For
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FIGURE 1

Manually adjusted the gray value and formed the green mask.
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healthy volunteers, the same exclusion criteria applied in addition

to a history of ankle sprain.
Examination method

MRI was performed using a 3.0-T magnetic resonance system

(Ingenia CX, Philips Healthcare, Best, the Netherlands) with an

eight-channel phased-array ankle coil. All subjects were placed in

the feet first supine anatomical neutral position and scanned

using a sagittal 3D isotropic proton density (PD)-weighted turbo-

spin-echo (TSE) sequence (VISTA, Philips Healthcare). Sponge

pads were placed around the feet to maintain a neutral ankle

position and reduce the subject’s movement. The magnetic

resonance imaging parameters were as follows: TR, 1,000 ms; TE,

34 ms; echo-train length, 63; Field of view (FOV), 180 × 160 ×

180 mm3; acquisition matrix, 400 × 356 × 400; acquisition voxel

size, 0.45 × 0.45 × 0.45 mm3; reconstruction voxel size, 0.225 ×

0.225 × 0.225 mm3; compressed sensing acceleration factor, 6;

excitation flip angle, 90°; refocusing flip angle, 65°; number of

averages, 2; scan time, 5 min and 56 s.

The FOV covered from the planta pedis to 5 cm above the

ankle joint line, and all subjects were positioned and examined

by the same radiographer. The sagittal plane, coronal plane, and

axial plane 3D MPR images were reconstructed and stored in the

standard format of DICOM 3.0.
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3D ATFL model reconstruction

The DICOM images were imported into the Mimics

(Materialize, version 21.0, Belgium) to obtain the ATFL 3D

model (Figure 1). The detailed operations of the Mimics in our

study are provided in the supporting information.
Image quality evaluation

The image quality of all 3D models was evaluated by two

radiologist (XL and MD with 22 and 10 years of experience in

foot and ankle radiology, respectively) and two surgeons (DD

and LO with 22 and 8 years in foot and ankle surgery) using a

5-point subjective scoring system (36) to determine whether the

image quality of 3D model affected the subsequent measurement

(Table 1). All evaluators were blinded to the clinical information.
ATFL measurements

The ATFL’s width and thickness in each model were measured

on the fibula side, the middle side (halfway between insertion and

origin), and the talus side, respectively (Figure 2). When

measurements were taken using the 3D MPR data, we selected

the middlemost axial layer of ATFL’s footprint on the sagittal
frontiersin.org
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TABLE 1 Five-point subjective scoring system for the 3D MPR images and
the 3D models.

Scores Quality
scale

Degree of obstruction

5 Excellent No distortion in the quality of the image

4 Good The distortion can be seen, but not hinder the
measurement

3 Medium The distortion can be seen clearly, slightly hinder
measurement

2 Bad Serious distortion

1 Terrible Unable to identify
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plane and the coronal plane. At this layer, the middle point of the

footprint on the talus/fibula was selected as the measurement point.

The distance between the two middle points was measured as the

length. Similarly, the thickness was measured at three points on

the same layer. Finally, the width was measured on the sagittal

plane with homologous measuring sides. For the measurement

on the 3D model, length was measured as the distance between

the two middle points of the footprints on the talus side and the

fibula side. The measurements of width and thickness were

similar to the measurements on the 3D MPR images.
Reproducibility

To determine the reproducibility of the ATFL measurements

on both the 3D model and the 3D MPR images, 10 cases (5 left

ankles and 5 right ankles) were randomly picked for repetitive

measurement with a 2-week interval conducted by the same

foot-ankle surgeon. An additional independent investigator,

blinded to the first investigator’s measurements, performed

measurements on the same 3D models from the 10 random
FIGURE 2

The measuring method on the 3D MPR image. The red line, blue line, and t
fibular side, respectively.
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cases. Finally, based on the results of the two investigators, the

inter-observer variability was evaluated.
Statistical analysis

The sample size was determined by using power analysis. We

presumed that there was a significant difference between the

ATFL measurements from the 3D model and the 3D MPR

images when the mean values of the difference were larger than

one standard deviation of the mean value, with an α value of.05,

and a power of 0.9. With this setting, it yielded an expected

paired sample size of 13. All data were statistically analyzed in

SPSS (version 26.0 for Windows, IBM, Chicago, IL, USA). Image

quality scores and ATFL measurement results were demonstrated

as mean ± standard deviation. The data normality was evaluated

with the Kolmogorov-Smirnov test. ANOVA was used to

compare the ATFL length, width, and thickness between the 3D

model and the 3D MPR image. When P > 0.05, the difference

was considered not statistically significant.
Results

The image quality score was 4.57 ± 0.32, indicating that all the

3D models had good quality without distortion that would

otherwise hinder the subsequent measurements.

The measurement of ATFL in Groups 1 and 2 on the 3D MPR

image and 3D model are shown in Tables 2, 3. There was no

statistically significant difference between the 3D model and the

3D MPR image of the ATFL measurements in both groups

(all P > 0.05).
he green line indicate the measured spot on talar side, middle side, and
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TABLE 3 Comparison of the ATFL measurements between 3D models and
3D MPR images in group 2.

Group 2 (sprained
ankle)

Original data
(mm)

3D model
(mm)

P
value

Length 17.82 ± 2.75 18.06 ± 2.90 0.794

Thickness of the fibula side 3.44 ± 1.14 3.43 ± 1.08 0.971

Thickness of the middle 3.49 ± 1.13 3.56 ± 1.10 0.868

Thickness of the talus side 2.95 ± 0.96 2.90 ± 1.01 0.887

Width of the fibula side 6.77 ± 1.00 7.04 ± 1.13 0.448

Width of the middle side 6.96 ± 1.14 7.36 ± 0.94 0.253

Width of the talus side 6.49 ± 1.37 6.76 ± 1.40 0.562

TABLE 2 Comparison of the ATFL measurements between 3D models and
3D MPR images in group 1.

Group 1 (normal
ankle)

Original data
(mm)

3D model
(mm)

P
value

Length 17.24 ± 3.01 17.28 ± 3.04 0.960

Thickness of the fibula
side

2.36 ± 0.36 2.35 ± 0.33 0.916

Thickness of the middle 1.60 ± 0.38 1.54 ± 0.34 0.523

Thickness of the talus side 1.36 ± 0.33 1.32 ± 0.29 0.669

Width of the fibula side 3.85 ± 0.77 3.83 ± 0.78 0.915

Width of the middle side 3.87 ± 0.81 3.82 ± 0.79 0.828

Width of the talus side 4.93 ± 0.86 4.91 ± 0.82 0.930
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Intra-observer and inter-observer
reproducibility

The ICC values in the intra-observer analysis were 0.99 and 0.93

for the length and the thickness measured with 3D MPR images,

respectively, and the ICC values were 0.99 and 0.93 when measured

on the 3D models. The ICC values in the inter-observer analysis

were 0.99 and 0.93 for the length and the thickness measured with

3D MPR images, respectively, and the ICC values were 0.99 and

0.95 when measured on the 3D models. Taken together, these ICC

values indicated good intra- and inter-observer stability for the

measurements taken on both the 3D MPR images and the 3D models.
Discussion

This study was the first to perform 3D modeling of ligament

tissue, particularly the ATFL, based on 3D MRI data and verified

the ATFL anatomy measurements by referring to the 3D MPR

images. Our work may aid in understanding the anatomy of

ATFL, understanding different types of ATFL injuries, and

operative planning or preoperative simulation for ATFL injury

patients (tunnel location in the ATFL reconstruction operation,

etc.). Our measurements were consistent with the previous

anatomical literature based on cadaver research (30, 37–39).
Scanning parameters

Image segmentation method based on gray level threshold of

surface rendering technology, as a result, the given default gray
Frontiers in Sports and Active Living 05
threshold range of soft tissue (245−490 GV) based on proper

manual adjustment, eventually we set the gray-level threshold

range between 130 and 350 GV, made the large difference of

adjacent area of gray threshold, with well efficiency and accuracy

in the reconstruction.

The acquisition of thin-slice MRI images is crucial for

accurate 3D modeling. In prior studies, the commonly used

thickness of clinical ankle MRI is 3–4 mm (14, 40–43). As such,

structural loss of the ATFL and the partial volume effect could

hamper the establishment of 3D models. With the recent

development of fast imaging techniques (compressed sensing in

our study), we achieved a layer thickness of 0.45 mm.

Our protocol added a 3D high-resolution PD-Weighted image

(5 min and 56 s) which reduced the acquisition time by using

compressed sensing technology as compared to conventional

2D imaging in all three orientations (acquisition time of

about 12 min). This acquisition time was indeed acceptable

to the subjects. Cushion pads and sandbags were used to

help patients stay in a fixed neutral ankle position and to

reduce the field inhomogeneities that may contaminate the

resulting images.

The image quality score was 4.57 ± 0.32, indicating that the

slight distortion in 3D modeling is negligible and would not

affect the observation and measurement (36). According to our

study, in contrast to two-dimensional graphics, a 3D model can

provide the surgeon with more information about the ATFL

injury location and type, as well as the presence or absence of

avulsion fractures (Figure 3).
Contrast to conventional measurements

One of the major defects of conventional measurements is the

dependance on specific axial and sagittal sections, making it

difficult to accurately define the size and injured location of the

ATFL due to the oblique ligaments course. To present a

complete view of the ligament, Kim et al. (44) captured the

ATFL using the regular axial plane by changing ankle position

during the scan, leading to complicated scans and patient

suffering. Park et al. (45) obtained the CFL views on the

sagittal T2WI in the plane at 45° angled projections based on the

plantar surface at mid-calcaneus level, making it difficult to

read the other structures on coronal plane. 3D MRI has been

widely used in recent years (46, 47), which allows image

reconstruction in flexible orientations. Moreover, it has been

reported that 3D MRI can be used to measure the meniscus

position and its size (48, 49) and intervertebral disc (50).

Teramoto A et al. (51) suggested that 3D MRI might be a

useful modality to visualize both the ATFL and the CFL.

However, their approach was still planar image and not

intuitive. An advantage of 3D modeling based on 3D MRI is the

potential to find the injuries of location, types, and degrees

of the ATFL more accurately and intuitively. Such modeling

allows for large sample origination/insertion and footprint

research of the ATFL and the CFL in living subjects due to its

non-invasive nature.
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FIGURE 3

The normal and injured ATFL. Transparent blue represents the ATFL, the red represents the bone fragment. (a) is intact and normal ATFL; (b) is partial
avulsion of the ATFL at fibular side with poor ligament tension; (c) is completely avulsed swollen ATFL; (d) is avulsion fracture at fibular origin of ATFL;
(e) is avulsion fracture at talar insertion of ATFL.

He et al. 10.3389/fspor.2024.1488082
Guiding clinical practice

Patients with ankle sprains may undergo 3D MRI scan to

diagnose and determine the appropriate course of treatments.

Operative therapy is required if instability persists after a

comprehensive conservative treatment (52). Ankle arthroscopy,

which simultaneously provides good intraarticular vision and

lesion treatment, has been widely used recently. The current

operative methods for ATFL injuries are anatomic ligament

repairment and anatomic reconstruction with tendon grafts. For

patients with origination or insertion of the ATFL avulsed, repair

was required. If the ATFL was completely torn, anatomic

ligament reconstruction was required (33). Whether it is

anatomical repairment or reconstruction, the precise location of

ATFL’s insert point is necessary (31). Technology based on 3D

MRI could accurately determine the area and location of the

footprint of the ATFL and select the appropriate rivet or bore bit

for bone tunnel before the operation begins [as the bone tunnel

should not be drilled by the diameter of the graft, but by the size

of the footprint (33)]. On the other hand, anatomic

reconstruction with tendon grafts includes autografts and

allograft tendon grafts. When tendon allografts were chosen, the

thick tendons were often trimmed to reach the appropriate
Frontiers in Sports and Active Living 06
diameter, which causes a certain amount of waste. In summary,

we can use this technology to perform preoperative simulations

in order to determine the location and diameter of the bone

tunnel. These simulations would enable the choice of the

appropriate drill and allograft tendon grafts to avoid waste in the

future. And we could also determine the drill point directly as

intraoperative navigation after completely preoperative planning.

One drawback in the practice would be the slightly increased

post-processing time for the 3D reconstruction.

The measurements in this study went as far as 0.01 mm.

However, in the modern practice, manual surgery usually

operates in the scale of millimeter precision. Increased precision

is necessary in many aspects of orthopedics, and thus modern

orthopedics surgery suffers from insufficient accuracy. In fact, the

increased use of orthopedic robots has the potential to

dramatically improve the operation accuracy (53). Won-Joon

et al. (54) reported that robot-assisted anterior cruciate ligament

reconstruction using an MRI-based navigation system had

improved the accuracy of the femoral tunnel position. Zhang Q

et al. (55) had stated that robotic navigation during spine surgery

showed good results and had potential for further research. As a

result, we would expect that with the aid of orthopedic robots

and with proper preoperative planning and intraoperative
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navigation, it is possible to achieve precision in the formation of

bone tunnels to enhance operative ATFL repair and/or reconstruction

surgery. In this sense, higher accuracy measurements will lead to a

better and earlier understanding of the pathological emergence

and progression. Such insights which will ultimately lead to

benefits in the surgical repair of the ligament, given sufficient

development in surgery technologies.

Our study encountered some limitations. Firstly, MRI produces

a static image and can only be measured in a neutral position (one

cannot study different joint positions). Secondly, there were no

weightbearing during the MRI scans. Thirdly, the sample size

was relatively small. Fourthly, the cost of MRI scan may be

relatively expensive and not suitable for everyone else. Finally, we

did not evaluate the CFL of the lateral ankle complex. In future

investigations, a large population prospective study is needed to

evaluate, optimize and further establish the ATFL and CFL 3D

model, using MRI.
Conclusion

Thin-slice 3D MRI can help to reconstruct the ATFL 3D model

and to provide accurate anatomical knowledge about ATFL injuries

that may improve preoperative planning and intraoperative

navigation for young sports medicine doctor. This technology

will facilitate diagnosis of ATFL injuries and make the decision

about the operative method.
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Appendix

Supporting information

The detailed operations in the Mimics

The view images generated by the MR image data in DICOM

format and imported into the Mimics (Materialize, version 21.0,

Belgium) are grayscale images, which can be used to segment the

desired organization pixel images by setting different gray

threshold ranges through Threshold (Figure 4).

In this study, based on the given default custom gray threshold

range (245–490 GV, grey value), the lowest threshold and the highest

threshold were adjusted manually so that the bone tissue and soft

tissue can be completely separated. For lower gray threshold

would not show the tissue pixel we need and lose details, higher

gray threshold makes it hard to differentiate tissues. The final gray

threshold range was set between 130 and 350 GV, and a green

Mask was formed (Figure 1). Then the Split Mask was used to
FIGURE 4

Four main views in the mimics. A coronal view is at the top left, an axial vi
dimensional view is at the bottom right.
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split talus and fibula pixel from the green mask, respectively

(Figure 5). On this basis, Draw and Erase operations can be

reasonably performed on talus and fibula pixels by comparing

with coronal view and sagittal view, and a more accurate and

complete talus/fibula pixel image Mask can be obtained after editing.

After editing the talus/fibula pixel image in the green Mask,

Calculate Part can be used to accurately calculate the generated

target Mask. Then, the 3D model of the selected talus/fibula can

be reconstructed, and a more accurate 3D geometric model can

be obtained. Finally, Draw and Erase were used to edit the ATFL

pixel image manually between talus object and fibula object

because ATFL is low signal or no signal on MR images.

Calculate was again used to obtain the ATFL 3D model

(Figure 6). Figure 7a shows that the 3D ATFL model has

sharp edges, holes, and a rough surface. Using Wrapped and

Smoothing, a 3D ATFL smoothing model was obtained

(Figure 7c). The Measure function icon operates on the

smoothed 3D model of ATFL to obtain the length, width, and

thickness (Figure 8).
ew is at the top right, a sagittal view is at the bottom left, and a three-
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FIGURE 5

Split mask. The green Mask was split to Region A and Region B. The wathet area and red area indicate fibula and talus, respectively.
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FIGURE 6

The contouring of the ATFL on the axial view.

FIGURE 7

(a,b) Are the original raw 3D model of the ATFL; (c) is the wrapped and smoothed 3D model of the ATFL.
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FIGURE 8

The measuring method. The 3D model of ATFL is shown in yellow. The blue line, the green line, and the red line indicate the length, width, and
thickness of the ATFL, respectively.
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